Zeprom

PROGRAMMER'S MANUAL

An Erasable Programmable Read Only Memory Module

for the HP-41 Handheld Computer

Zengrange

ZEPROM Module

An Erasable Programmable Read Only Memory Module
for the HP-41 Handheld Computer

Programmer’s Manual

April 1988

@ Zengrange Limited, England, 1988

ZEPROM - Programmer’s Manual

Publisher
Zengrange Lid, Greenfield Road, Leeds, LS9 8DB, England.

Printing History
BAION T st 2 April, 1988

Copyright

This manual is protected by copyright; with ail rights being reserved by
Zengrange Ltd. Duplication, extraction, translation or distribution is permitted
only upon prior written authorisation from the copyright holders.

Trademarks

The following names are trademarks of their respective companies:

ZEPROM & ZENROM. c.ooooice e, ZE0GFANQE Limited, Leeds, England.

ZENGIANGE ..ottt ZENQ TANGE Linited, Leeds, England.

HP-41, HP & Hewlett-Packardcccceevveeveenncesene e Hewlett-Packard Company, U.S.A.
Notice

No expressed nor implied warranty is made with regard to this manual (including
any information, examples, keystrokes, procedures or program material that it
may contain) nor to its merchantability or fitness for any particular purpose. This
manual is made available solely on an "as is" basis, and the entire risk as to
quality and performance is with the user. Sheould any of this material prove
defective, the user (and neither the producer nor any other party) shall bear the
entire cost of all necessary correction and incidental or consequential damages
in connection with or arising out of the furnishing, use, or performance of this
material.

2 April, 1988 at 2:01

i © Zengrange Lid - 1988

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

© Zengrange Ltd -

~ ZEPROM - Programmet’s Manual

Contents

Introduction v
About this Manual ... v
The HP-41 ROM Format 1
The ZEPROM Module 5
Physical DeSCrptiono....oooeieeeees e,
ZEPROM Configurations

Straight 16K Module

Bank-Switched 16K Module.........

Straight 8K Module

Bank-Switched 12K Module ...,
Selecting the Best Configuration..................cccocooooeioieiieere,
Bank Switching 13
INIrOAUCHION ..o 13
Implementation onthe HP-41,...........een 14
Bank Switching of Machine Code ..o 15

EXaMPes.........oooii e, 18
Bank Switching of User Code Programsccoceooevvevicomneon. 24

Examples.......ccooooiie L .25
ZEPROM Voltage Converter 29
Switching ON & OFF........................ e 29
PlUGQING TN e, 30
BAMBIIBS. ... e K3
Care and MaiNtenance.cco oo 32
Burning Methods 33
BUMING FICUFES ..o e 33
Controlling SOWAre ..o, 34
The Programmer ROM 37
The INStruction Set ... e ee e 38

Keying in Arguments for InStructions................cccoceeiveeeian. 38

Test Functions

Bank Switching Instructions

ZEPROM - Programmer’s Manual

Appendix A

Appendix B

Appendix C

Appendix D

Burn Instructions and Output Formats ... 40
Function Description INeX............cooriieii e 43
The Utility ROUTINES.......coiii i 88
Technical Data 91
Programming ZEPROM ... a1
VOIAGE. ..ottt 9
CYEIE oo N

RESIICHONS. .. oot 92
HP-ROM Compatibil
Erasing ZEPROM

Electrical Informationccciiirrircie v s a5
Copyright & Using ZEPROM..........cooiiicce s 96
Programmer ROM Software Listings 97
Utility Routines (RPN 97
Bank Switching Code........ccoi 102
Warranty & Servicing 104
Limited Warranty ...

Shipping for Service.....

Technical Assistance............cococoeeeeeen

Glossary 107
Index 109

© Zengrange Ltd - 1988

. Introduction

Introduction

The ZEPROM Module and its programming fixture, the ZEPROM Voltage Converter,
continue the Zengrange commitment to providing innovative, user oriented solutions for
Hewlett Packard's hand-held and portable computers. This philosophy began with the
ZENROM Programmer’s Module; which for the first time opened up HP-41 Synthetic
and Machine Code programming (M-code) to the non-technicai user without requiring
complex computer hardware or software.

The ZEPROM module continues that tradition by providing users with an ability to store
favourite programs, utility routines and data in a plug-in module. In this way they are
free from accidental erasure, corruption and tampering and are always available to the
HP-41 without the need to load from card, tape or disc. In the past, burning a moduie
entailed either buying expensive programming fixtures, or ordering a minimum of 100
ROM modules from Hewlett Packard. With its two companion products, the ZEPROM
Voltage Converter and the PROGRAMMER ROM software, ZEPROM can even be burnt
from the HP-41 itself, at a reasonable cost and by the non-technical user.

The ZEPROM module has been designed to be software compatible with the custom
and application ROM modules produced by Hewlett Packard, thereby allowing
ZEPROM to be used for debugging code prior to committing to ROM manufacture.
Compatibility even extends to the ability to operate ZEPROM in a bank-switching mode.

To ensure durability and reliability under the most testing of conditions, ZEPROM has
been designed to the exacting standards of the British Ministry of Defence and has
been component and type tested to MIL STD 883C and B$9400.

About this Manual

This manual is designed for users intending to program a ZEPROM module. It therefore
assumes that the user is knowledgeable about HP-41 user code programming and has
a good general understanding of the HP-41. The information provided, used together
with the utllity routines pre-programmed into one 4K core of ZEPROM, will easily enable
a user to burn user code programs. Where different requirements exist, a user can
quickly write user code programs using the PROGRAMMER ROM functions.

A user wishing to exploit ZEPROM more fully by writing and loading M-code functions,
ot intending to operate ZEPROM in bank-switched mode, will require a more in-depth
understanding of the HP-41 and M-code programming in particular. Although we have
explained in some detail the subject of bank-switching within both user code and M-
code programs, M-code programming requires a complete handbook to itself and is
thus beyond the scope of this handbook. Users interested in M-code programming or
synthetic programming should refer to the handbook for the ZENROM Module,

© Zengrange Lid - 1988 v

ZEPROM Module - Programmer's Manual

This ZEPROM Programmer's Manual covers the following topics:

- a brief overview of the format used for HP-41 ROM modules,

= the organisation of ZEPROM, its possible configurations and how to select
the best for your circumstances,

. possible burning methods, fixtures and software,

= bank switching in both M-code and user code routines,

. burning using the ZEPROM Voltage Converter,

= the functions provided in the PROGRAMMER ROM software.

- using the automated utility routines; enabling inexperienced users to load
programs from memary directly into ZEPROM.

Because programming skills and requirements vary so widely, it is difficult to detail a
sequence for reading this manual; however, we strongly recommend that you do read
all chapters. Even though you may not fully understand each topic, you will find the
background information of benefit when you eventually come to burn ZEPROM with
your own programs. In writing the mantal, we have tried to provide program examples
to illustrate the procedures involved. By examining those examples, users should very
quickly be able to burn and use their own modules.

Throughout this manual we have referenced HP-41 memory address locations, etc., in
hexadecimal notation.

vi © Zengrange Lid - 1988
e

Chapter 1: The HP-41 ROM Format

Chapter 1

The HP-41 ROM Format

This chapter is intended only as a brief summary of the subject. For a more detailed
explanation, users should refer to the ZENROM Owner's Manual, or one of the many
text books on the HP-41.

The HP-41 can address 65536 (64K) words of ROM and each word in that ROM space
has a 4 digit (16 bit) address at which it is located. This 64K of ROM space is split up
into 16 pages of 4K-bytes each, of which pages 0 through 7 are reserved for the HP-41
itself or for system enhancements such as Timer, HP-IL module, etc..

The eight pages 8 through F are dedicated to the four |/O ports at the rear of the
computer and each port contains two of the 4K-byte pages; thereby allowing either 4 or
8K ROM modules to be plugged into the port. However, most HP application modules
are 4K and as such occupy only the lowest addressed page available in that port. A few
ROMs, such as the HP-IL DEVELOPMENT ROM, contain 8K of data and so occupy both
pages of that port.

Port 1 Port2
Upper Fage {9-hex) Upper Page (B-hex)
Lower Page (8-hex) Lower Page {A-hex)

Port 3 Port 4
Upper Page (D-hex) Upper Page (F-hex)
Lower Page (C-hex) Lower Page (E-hex)

HP-41 Input & Qutput Ports

This limited address space for each port places restrictions on the use of the high
capacity modules such as ZEPROM, in that because the module contains 16K, it will
electrically occupy two adfacent ports, even though it physically occupies only one
port. For example, if plugged into port 1 or 2, it consumes both port 1 and 2 address
space. Simitarly, plugged into port 3 or 4, it uses both ports 3 and 4. It was in order to
overcome these limitations that Hewlett-Packard developed the technigue of ‘bank-
switching’ in which only 8K of the module is switched on-line at any one time. These
switched banks, called ‘Primary’ and ‘Secondary’, are shown In the following HP-41
Memory Map. Bank-switching will be described in more detail in Chapter 3.

© Zengrange Ltd - 1988 1

B e

ZEPROM Module - Programmer’s Manual S ‘

!
Primary Bank Page Secondary Bank Page {
Port 4 Upper Page F | Port4 Upper Page F q
Lower Page E Lower Page E
Port 3 Upper Page D || Port3 Upper Page D ‘
Lower Page C Lower Page G
Port 2 Upper Page B || Port2 Upper Page B '
Lower Page A Lower Page A [
Port 1 Upper Puge 9 || Port1 Upper Page 9
Lower Page 8 Lower Page 8 ¢
HP-IL/Mass Storage ROM 7 {
Printer ROM 6 ‘
Timer ROM 5 || CX Extended Functions 5
Reserved page 4 ‘
CX Extended Functions 3 {
Operating System 2 i
0 '
HP-41 Memory Map 1

If no module is present in any particular page, then that page will appear to the HP-41 to
be full of NCPs (000 words).

All pages in ROM or ZEPROM must conform to a specified format irrespective of

whether they contain M-code functions or user code programs. This is shown in the ‘
diagram below. In referring to addresses in the page, we will use a general format, e.g.

xFC7h, where the x’ refers to the particular page number of the port into which the

module is plugged, and the ‘h’ refers to the value being expressed in hexadecimal '
notation.

The first word of each 4K page, at address x000h (hex), is the XROM number of that
page, coded in hexadecimal. For example the first word of the TIMER ROM, which has

an XROM number of 26, will be 01Ah. The maximum value of this word is 01Fh, i.e. [
XROM 31. The second word of the page, at address x001h, indicates the number of
catalogue entries in that ROM. (The header of a page, e.g: -TIME 2C, also counts as (

an entry in the catalogue.) Once again this word is coded in hexadecimal and can
range in value from 000h, for no catalogue entries, to 040h for 64 catalogue entries.

2 © Zengrange Ltd - 1988
R RRRRRRRRRRRBmBDBDp SRR RRRRRRARRRR AR AR A A A A A A A A A

- - 9 9

_ Chapter 1: The HP-41 ROM Format

Address Description
X000 XROM number of page
y x001 Number of FAT (catalogue) entries (n)
] x002 to x003 Address of the first function in page
4 x{2n) to x(2n+1) Address of the last function in page
y x(2n+2) to x(2n+3) End of the FAT (signified by two null words)
y x(2n+4) Start of functions and /or program code
) xFC7 to xFCA Bank-switching code (required in switching pages)
) :
xFF4 to xFFA Interrupt vectors
) xFFB to xFFE ROM trailer and bank-switched bits at xFFD
) xFFF Page checksum
J HP-41 ROM Format

The next section of the page is called the 'Function Address Table’, commonly known
as the 'FAT'. Each entry in the catalogue requires two words in the FAT to determine
the start address of the function (or program) and other status information about that
' entry. Because the HP-41 needs to know where each module function or program is

iocated in order t¢ be able to execute it, the start addresses are stored in the FAT. The
) FAT itself is arranged in catalogue order, with the first pair of words pointing to the
address of the first catalogue function, the second pair pointing to the second function,
etc.. The last entry in the FAT must be followed by two NQOPs (000h) marking the end of
the FAT. For example, a page with two functions might appear as follows:

Address Word
' xB88 815 XROM number of page is 21 decimal
xB81 paz Page has only 2 catalogue entries
x882 ae4
| x@E3 BZF First function starts at address x42Fh
x@Bd a1
| PG 923 Second function starts at address x123h
xBB6 apa
xB@T anp NOPs to mark the end of the FAT
]
@ Zengrange Ltd - 1988 3

R

ZEPROM Module

Normally the first function in a page will be the header, which is coded in the same
manner as any other function. A header should always be at least 8 characters in ¢
length so that it cannot be executed by ‘conventional’ methods and so that it will show
up as a ROM page header during a CAT 2 on an HP-41CX. It is customary for the first {
executable address of the header to be a RTN and for the header name to begin with a
hyphen. ‘

The rest of the page, up to the special reserved words starting at address xFFah, is
available for function or program code. However, if the page is to be used for bank- ‘
switching, then the special bank-switch code defined by Hewlett-Packard to swap the
banks of a bank-switched module will be loaded at addresses xFC7h thraugh xFCAh.

Addresses xFF4h through xFFAh are reserved for interrupt vectors which are polled by

the operating system at various times. Unless you fully understand the use of these [
interrupts, we recommended leaving them as NOPs since their misuse can cause the

HP-41 to lock up.

After the interrupt vectors come 4 words, at addresses xFFB through xFFE, containing
the page trailer. The trailer should contain a four character sequence indicating the
code revision number. In addition, the 8th and 9th bits of the word at xFFD will define
whether or not that page is bank-switched.

The last word of a page, at address xFFF, is always a page checksum.

4 © Zengrange Lid - 1988

Chapter 1: The HP-41 ROM Format

Chapter 2

The ZEPROM Module

Physical Description

ZEPROM is a 16K EPROM (Erasable Programmable Read Only Memory} module for the
HP-41 housed in a standard-sized module casing which plugs into the computer.

A ZEPROM module can be programmed and erased without dismantling the module,
thus reducing the risk of damage to the circuitry. Erasure is achieved via a window in
the top half of the casing above the EPROM chip by exposing it to an ultra-violet (UV)
light source. A custom chip built into the module, interfacing the EPROM to the HP-41,
also contains a mini-programmer to allow programming by a low-powered, low-cost
device using suitable software. After programming, ZEPROMs can only be erased by
exposure to an intense UV light source. For specifications, etc., see Appendix A

ZEPROM complies with Hewlett-Packard’s convention for bank-switching and uses the
machine code instructions ENBANK1 (100h) and ENBANKZ (180h) for control of
switching. Because many other devices and software for M-code programming all use
the WMLDL (040h) instruction for programming, we have designed ZEPRCM to be
programmed in the same way. However, because EPROM type devices reguire a
longer write cycle, a special algorithm is needed to ensure that they stay programmed
once the programming voitage is removed. The algorithm is detailed in Appendix A.

ZEPROM Configurations

ZEPROM can be configured and programmed to appear to the HP-41 in a number of
different formats. The most suitable format will be determined by the user's own
particular requirements and is set under software control to give the greatest flexibility.
A ZEPROM module has two basic configurations, ‘bank-switched and ‘straight’
{unswitched); these heing controlled by data burnt into ZEPROM at the location xFFDh
in each module core. By using a bank-switched format and duplicating code intc more
than one core, ZEPROM can emulate various other configurations.

© Zengrange Lid - 1988
e

ZEPROM Module - Programmer’'s Manual .

Straight 16K Module

In its basic form, ZEPROM is configured as a 16K module, split into four 4K
pages. This is the default mode in which ZEPROM is supplied and into which it is
forced by the ZVC when programming. A 16K straight module occupies the
address space of two adjacent ports, no matter which port it is plugged into.

If you consider ZEPROM as consisting of four separate memory cores of 4K
each, the module would appear in the following memory locations:

Page F Page F Core 3

PageE | Page E ——E(—)r;;__
Page D Page D Core 1

Pagec | PageC | Coreo
Page B Core 3 Page B

Page A -_E:;r;-z_— PageA |
Page 9 Core 1 Page 9

Page 8 __E(_)l;.;)-- pages |

ZEPROM in Ports 1 0r 2 ZEPROM in Ports 3 or 4

Bank-Switched 16K Module

In a bank switched module, only two of the four 4K cores (the primary banks) are
normally enabled (on-line) at any one time; the other two (secondary banks)
being disabled (off-line). The enabled and disabled cores can be interchanged
when needed under program control.

The advantage of this bank-switching facility to the user is that the module only
consumes the address space of one por, rather than the two of a straight 16K
module. n this way up to 4 ZEPROMSs can be plugged into an HP-41 to give a
total capability of 64K.

Itis important to note that if you swap the banks of a module in any one port then
that is the only module that is affected. Bank-switching instructions act only on
the module in which they reside.

6 © Zengrange Ltd - 1988

R AR R A AR A A AR _ e

~ Chapter 2: The ZEPROM Module

Page F Page F
PageE | PageE |
Page D Page D
PageC | PageC | secondary banks
Page B Page B Core 1 Core 3

____________ J U,
Page A secondary banks Page A Core 0) Core 2
Page 9 Core 1 Core 3 Page 9
Page 8 _E;;_t; - —(—:c:r;—z— Pages |

ZEPROM in Port 1 ZEPROM in Port 2

Page F Page F Core 1 Core 3

____________ d=p || rm———
Page E secondary banks Page E Core 0 Core 2
Page D Core 1 Core 3 Page D secondary banks
PageC | Coreo | | Core2 | Pagec ||
Page B Page B
PageA | PageA |
Page 9 Page 9
Pages | Pages |

ZEPROM in Port 3 ZEPROM in Port 4

Straight 8K Module

ZEPROM can also be programmed to emulate a hormal straight 8K module, such
as many of the application ROMs supplied by Hewlett-Packard. The straight 8K
module is in fact a special example of a bank-switched 16K module in which,
although configured as bank-switched, the programmed software never swaps
the banks. However, we recommend that the secondary banks are programmed

® Zengrange Lid - 1988 7

s

ZEPROM Module - Programmer's Manual

with the same code as their primaries, rather than being feft blank - just in case a
coding error ever causes the banks to switch. 1f you intend using this mode, you
should bear in mind that the ZEPROM module is supplied by us with the
PROGRAMMER ROM software already loaded into core 3.

Enabled banks (Durnmy banks)
Pageg | Coreft Care 3 copy of core 1
Page8 | Coreo Core 2copy of core ()

Bank-Switched 12K Module

In addition to the 16K bank-switched mode, ZEPROM is fully code-compatible
with Hewlett-Packard’s own 12K bank-switched ROM module, This means that
programs developed using ZEPROM can easily be transferred to an HP custom
ROM without moedification.

To explain the 12K bank-switched ROM format as used by Hewlett-Packard, let's
consider an HP Advantage ROM plugged intc Port 1. The following diagram
shows its configuration:

FEnabled banks Disabled bank

Page 9 | Advantage ROM 2p || «—» || Advantage ROM 2s

Page 8 | Advantage ROM 1

The lower half of the port is always occupied by ROM 1. However, the upper half
can be occupled by either ROM 2p (primary) or ROM 2s (secondary) depending
on which is required at that time. When power is first applied to the module,
RCOM 2p will reside in page 9 and ROM 2s is disabled. If you execute an
Advantage ROM function which requires access to code in ROM 2s then that
function will execute the machine code instruction to enable ROM 2s which will
then appear in page 9 and ROM 2p will in turn be disabled:

FEnabled banks Disabled bank

Page9 | Advantage ROM 25 |[«—» || Advantage ROM 2p

Page 8 | Advantage ROM 1

In showing an HP 12K ROM, you will notice we haven’'t shown a secondary bank
for ROM 1 in the lower page (page 8). This is because an HP module doesn't
contain memory at that location. Instead ROM 1 is non-switching and will always
be available, no matter whether bank ROM 2p or ROM 2s is currently enabled.

8 © Zengrange Ltd - 1988

~ Chapter 2: The ZEPROM Module

Because ZEPROM has four cores and both of its secondary banks always swap
together, we use a slightly different technique to program ZEPROM in 12K bank-
switched mode. This involves programming the secondary bank of the lower
page (Core 2) with the same code as in the primary bank {(Core 0). This means
the HP-41 always has access to the code, no matter which bank is enabled.

Enabled banks Disabled banks
Page9 | Core1 Core 3
-—p
Page8 | Core0 Core 2 copy of core 0

When software switches the ZEPRCM module by the ENBANK2 instruction, both
secondary banks will be enabled:

Enabled banks Disabled banks
Page9 | Core3 Core 1
o —
Page 8 | Core 2 copy of core 0 Core 0

The above example illustrates emulating a 12K ROM with the upper page being
switched (an HP Advantage ROM). However, ZEPROM can also emulate a 12K
bank-switched ROM with its lower page switching. In this case, core 3 wouid be
programmed to match core 1:

Enabled banks Disabled banks
Page9 | Core1 Core 3 copy of core 1
o -
Page8 | Core0 Core 2
® Zengrange Lid - 1538 9

i

ZEPROM Module - Programmer’s Manual ‘

Selecting the Best Configuration

The setting of a ZEPROM to straight or bank-switched configuration is controlled by the
upper two bits {bits @ and 8) of the word burnt into ZEPROM at address location xFFD in ‘
core i and core 3 of the module. When first plugged into the HP-41, these bits
determine whether the module is seen as straight or bank-switched. if the bits are zero

then the ZEPROM is configurad as a straight 16K module; if they are non-zero then the {
ZEPROM is bank-switching. This is procedure is similar to that used in HP custom
ROMs in that the upper two bits at address xFFD indicate if that page is bank-switched. {

There are three main factors to consider when deciding how to best configure your
ZEPROM: {

1. The total size of all your programs or data that you want to burn into it '

2. The configuration of the rest of your HP-41 system, i.e. the other modules
plugged in, and

3. How well you understand the techniques of bank-switching.

Software less than 8K

If the total size of all your program and data is lzss than 8K-bytes, then the simplest
solution is to configure the ZEPROM as a straight 8K module.

An 8K module has the advantage that it will only occupy the address space of the port
into which it is physically plugged and therefore does not conflict with other modules
that you might have plugged into adjacent ports. It will also mean that you don't have
to worry about incorporating any special bank-switching instructions and thus your
programs will not need to be modified in order to run from ZEPROM.

Note, however that in order to emulate a straight 8K module, you actually configure
ZEPROM as being bank-switched (with bit 8 of the data at addresses FFD in all pages
being set). This forces the module to occupy only 8K of address space (one port).
However, it is very advisable, though not obligatory, to also duplicate your entire 8K of
programmed data into the module’s secondary banks. In this way, if your software
does ever cause the banks to swap by mistake, there will be no effect.

In deciding to use ZEPROM in BK mode, you should bear in mind that you may have
problems if you later need to add a program to the ZEPROM. If there is not enough
room in the 8K, you may have to erase your ZEPROM, reconfigure it to a larger size,
and then reburn all your programs. Also bear in mind that ZEPROM is supplied with the
PROGRAMMER ROM software already burnt into core 3 and that this is lost in erasing.

Software between 8K and 12K

i you have, or envisage having, between 8K and 12K of programs and data to put into a
ZEPRCM then your options are limited to using either a 12K configuration, a 16K
straight or a 16K bank-switched configuration. However, if you wish to keep the
PROGRAMMER ROM in your ZEPROM module, then you cannot use the 12K option;
since it is incompatible with a 12K configuration. If you are intending to use other

10 © Zengrange Ltd - 1988

B

Chapter 2: The ZEPROM Module

burning methods and scftware, and so do not require the PROGRAMMER ROM, yolu
can erase the entire module and thus use the 12K configuration.

Using a 12K format has a slight advantage over the 16K bank-switched mode in that it is
slightly easier to develop bank-switching code. This is because there is a ‘permanent’
4K block that is always on-ine and as such you can always call, or return to that block
without having to consider which bank is enabled. Another advantage over the straight
16K mode is that it only occupies the address space of the port into which the module
is plugged and therefore does not affect the rest of your HP-41 systam.

Software between 12K and 16K

If you do not mind consuming two adjacent ports with ZEPROM, then the straight 16K is
the simplest format to use since there is no need to alter your software to incorporate
bank-switching and all programs or functions are always readily available.

Although a straight 16K mode does consume two ports, if you have either a Memory
module, Extended Memory Module, Timer ROM, Printer or HPIL module in the adjacent
port, there will be no conflict. Such modules are classified as ‘system’ moduies and
therefore do not occupy a port address. The ZEPROM module comes supplied in this
straight 16K mode and is also forced into it whilst programming is in progress by the
ZEPROM Voltage Converter programming fixture.

Up to 16K with all ports needed

The 16K bank-switched configuration is ideal it you have a lot of data to load into
ZEPROM, yet only want to use up the address space of one port. It is, however, by far
the most difficult to program for, as you must very carefully organise and plan your
code in advance. This is necessary to ensure that the correct module bank is always
enabled, and that the code in the other bank begins at the specific address where you
switched the banks. In addition to this, you will have to modify your existing programs
and functions to include the bank-switching instructions.

Before deciding to use a hank-switched configuration, make sure that you have a full
understanding of bank-switching and its consequences.

@ Zengrange Ltd - 1988 11

——‘

ZEPROM Module - Programmer’s Manual

12 Zengrange Ltd - 1988

Chapter 2: The ZEPROM Module

Chapter 3
Bank Switching
Introduction

Most computers have an address space in which they store their data and programs;
this space having a limit on the total number of bytes it may contain. One common
method to overcome this constraint is to arrange for multiple banks of memory to
appear in the same address locations, and then have some hardware arbitration
scheme which makes only a single bank available to the computer at any one time.
This process, known as 'bank switching’, allows a significant increase in memory
capacity with only a small increase in program complexity.

Benefits:

The principal benefit of bank-switching is the expansion of memory it offers;
instead of being limited to 32K of available port address space, by bank-switching
all plug-in modules, 64K becomes available. An additional benefit for the
commercial software developer is that of making programs and data stored in
maodules harder to 'crack’.

Disadvantages:

Because the HP-41's bank-switching scheme is an add-on to the memory
system, programming support for it in the operating system is nonexistent; you
have to do everything yourself. Even for the programmer working at machine
code level, this can lead to some fairly complex code if you don't plan things
carefully in advance. For the user code programmer, bank switching has only
now become possible with the advent of ZEPROM and the PROGRAMMER ROM.
However, although the PROGRAMMER ROM functions make user code bank
switching possible, its use does require careful planning and a good
understanding of the HP-41 and its ROM structure.

© Zengrange Lid - 1988 13

R DB

ZEPROM Module - Programmer’s Manual =~ ‘

Implementation on the HP-41

Cn the HF-41, bank-switching was an after-thought to the original system design. As

such, it does not integrate as smoothly into the system as one wouid perhaps like; for [
example, the operating system offers no support for bank-switching memory.
Nevertheless, where an application requires it, it does offer the ability to increase the
addressable memory by doubling the total amount of memory capable of being
connected to the machine (via its /O ports), from 32K to 64K.

The HP-41 has four 1/0 ports at its rear; each providing the addressing connections for

a plug-in module containing two pages of 4K-bytes each. It is normal to refer to these

as being the upper and lower pages, or by their positions in the HP-41 memory map '
(pages 8h to Fh). See Chapter 1, or the ZENROM Owner's Manual,

Port 1 Port 2
Upper Page {9-hex) Upper Page (B-hex) ‘
Lower Page (8-hex) Lower Page (A-hex)
1
Port 3 Port4
Upper Page (D-hex) Upper Page (F-hex)
Lower Page (C-hex) Lower Page (E-hex)

In a bank-switched module, either one or both of the two 4K pages visible to the HP-41
in each port can be made bank-switching. For a bank switched ROM, there will be both
a visible and a hidden bank for each single 4K page that allows switching. To make the
banks swap over, Hewlett-Packard defined two spare CPU instructions as ‘ENBANK1’
and ‘ENBANKZ2’ to enable bank 1 and bank 2 respectively. 1

Bank 1 in a bank-switching page is often referred to as the primary bank, and bank 2 the
secondary (or alternate) bank. Whenever a bank switching module is first plugged into
the HP-41, its primary banks will always be visible. When an ENBANK2 instruction is
issued by the module (not the HP-41 itself, which regards these instructions as 1
harmless no-ops), it hides its primary bank and enables the secondary banks. The

module remains this way until an ENBANK1 instruction is issued, or the module is ‘
removed from the HP-41 and then replaced.

In order to prevent all bank-switching modules from switching, the ENBANK1 and 1
ENBANKZ instructions have been implemented such that they are only acted upon by

the particular module that contains them. Whilst this causes some difficulties for the (
programmer, it does mean that all other modules ignore the instructions.

When writing bank-switching code for a particular module at an M-code level, you just |
put the ENBANKZ instruction in the code of that module, and when it executes, the
module’s secondary banks replace its primary banks {both 4K pages can swap). To
allow one module to ‘poke’ ancther module into showing its alternate banks, HP have
established a convention in which bank-switching instructions are placed at fixed
locations within each 4K bank-switching page. By simply jumping direct to these 1
locations, an M-code prograrmn can force another module to select a particular bank.

14 © Zengrange Ltd - 1988

e

~ Chapter 3: Bank Switching

Bank Switching of Machine Code

We recommend two methods of implementing bank switching of ZEPROMs that contain
mostly M-code functions and routines. One is ideal for situations where you have a few
very large M-code functions; the other is ideal for the case where you have a very large
number of smaller functions. As the latter is simpler to implement, we'll explain that first.

A Large Number of Small Functions

Consider the case where you have in excess of 200 short functions to put into a
ZEPROM. Supposing the four pages of a ZEPROM plugged into port 1 of the 41
were initialised using the PROGRAMMER ROM functions [INITPG] and [ADDMCF),
to contain 64 functions per page. adds the M-coded instructions to an
already initialised page. ZEPROM will subsequently look like this:

Primary Banks Secondary Banks
XROM 01 64 functions in page XROM 03 64 functions in page
-ROM-1 Page header -ROM-3 Page header
P PBOt } These functions PBO3 } These functions
A SBO1 } added by ADDMCF S5B03 } added by ADDMCF
G : : _ .
E
8 : :
bank switching } added by _ bank switching } added by
code } INITPG code } INITPG
RM1A Page trailer RM3A Page trailer
XROM 02 64 functions in page XROM 04 64 functions in page
-ROM-2 Page header -ROM-4 Page header
P PBO2 } These functions PBO4 } These functions
A $B02 } added by ADDMCF SB04 } added by ADDMCF
G : : :
E
9 : :
bank switching } added by bank switching } added by
code } INITPG code } INITPG
RM2A Page trailer RM4A Page trailer

You can then fill up each of the four pages with function entries and code; trying
as far as possible to keep the function code in the same page {and bank) as the

© Zengrange Ltd - 1988

S IN—LL—S—S————,

ZEPROMModuIe - _Pt_'_ogrammer’s Manuat . ‘

l
function entry itself. When you wish to execute a function in your ZEPROM, you
would perform the following steps from the keyboard or in a user code program: {
- Execute the primary or secondary bank enable instruction in the currently
enabled page, e.g. or ‘
- Execute the desired function by name
Example: {
Suppose your function called SOLVE resides in 'ROM-3 (page 8, alternate bank),
and the primary bank is currently enabled. The steps to execute it are as follows: ¢
- {
Key Sequences Description
(s](®)(e][1) Execute instruction to select ‘

the secondary bank of ZEPROM.

is used because, ROM-1 is 1
currently enabled.

The ZEPROM will switch banks, and l
enable the alternate bank.

(s]{o](L])[¥](E] Execute the M-coded function that |

you wish to use from that bank.

After executing, it will exit with the l
alternate bank still enabled. To

return to the primary bank, use [
ROM3'’s enable primary bank

function ([PBo3 .

In the case where you have only a few, very long functions to put into a ZEPROM, the |
recommended practice is slightly different.

A Small Number of Large Functions

Suppose that you have four M-coded functions, each of about 4K in length, to put
into a 16K-ZEPROM module plugged intc 1/0 port 1 of the HP-41. 1

Initialise both the primary banks in both pages (with as being bank-
switched, with three entries in gach FAT {for two functions and the header). |
Instead of initialising the two secondary banks with [INITPG), just use to
add the necessary bank switching code into both secondary banks and to set the
bank-switched bit at FFDh. As can be seen from the diagrams, only the two
primary banks now contain XBOM numbers, page headers, FATSs, etc.

Next add all the necessary bank-switching bytes {required by all bank-switching
ROM banks) to both primary and secondary banks. The module will now look
like the following: '

16 @ Zengrange Ltd - 1988
R

Chapter 3: Bank Switching

Primary Banks Secondary Banks

XROM 01 3 functions in page

P

A -ROM-1 Page header

G :

E

8 bank switching code 7 bank switching code
RM1A Page traiter :
XAOM 02 3 functions in page

P

A -ROM-2 Page header

G :

E

9 bank switching code bank switching code
RM2A Page trailer :

Instead of trying to spread the code for two functions over each bank, make the
execution code for one of the functions {preferably the first) in the first bank just
an enable secondary bank instruction. You can then foliow this with the second
function’s code in its entirety. The real execution code of the first function is
placed in the secondary bank. However, it must always start at one address after
that at which the enable secondary bank instruction is located in the primary
bank.

The reason for needing to align the code at corresponding locations in both
banks is because of the way bank-switching is achieved on the HP-41. With
more sophisticated computers, the computer can both bank-switch and begin
execution from a different point in the new bank. With the HP-41, however, it just
bank-switches and then continues execution from the address after the one it had
reached in the previous bank. This is a restriction that applies whenever you
switch banks in a running M-code function or user code program. To overcome
this you need to plan your code carefully.

In writing your function for the secondary bank, you should end it in a different
way. Normally, you would just use the M-cede RTN instruction. If you did this
with a bank-switching function, execution would halt with the secondary bank stil
enabled. Instead, you should replace the RTN instruction with a jump to the
ENBANK1 code in that page - normally at location xFC7h (where x is the
particular page number). This procedure will ensure that the primary bank is re-
enabled when execution of the page-switched function is over.

This procedure is perhaps better explained by the following diagrams. These
show only part of the module - the two banks of the lower page of port 1:

© Zengrange Lid - 19688

i

ZEPROM Module - Programmer’s Manual o i ¢

L
Primary Bank Secondary Bank !
XROM 01 3 funcrions in page e
-ROM-1 Page header ! Blank locations ‘
P FUNC1 ist function name :
A enable bank2 Switch over to bank2 1 :
G FUNC2 2nd function name » funct code } Executable code ¢
E func2 code } - } of the Ist function
- } Executable code - } (note this starts ‘
8 - } ofthe2nd - } one address after
- } function - } the enable bank2 ‘
- } - }instrzction in the
- } - } other bank)
end func2 code } jump to enable bank1 code L
bank switching code bank switching code 4
RM1A Page trailer :

As this shows, this practice does leave unused areas in the ROM's bank, but you
can always utilise them by having your code jump to those locations.

Let's now more closely examine the procedures involved in bank-switching of M-code
by means of practical examples.

Examples

As explained earlier, it is beneficial to be able to execute all the ROM's functions
without having to first enable the secondary bank. This entails grouping ail FAT
entries in the primary bank and putting the function's real executable code in the
secondary bank. To do this, each secondary bank routines needs a dummy
catalogue entry in the primary bank. Each of those entries points to a routine
containing the following code:

JHC +31 Used only for compatibility with HP’s ROMs
xAdr ENBRNKZ Enable secondary bank. Execution continues
from same location plus one in new bank.

Note: The JNC +81 instruction is only necessary if you are writing code that
may eventually be burned by Hewlett-Packard into a custom module.
This because of a hardware error in the chip used by MP. If you are
writing code specifically for ZEPROM, the instruction is not necessary,
but for compatibility we recommend including the JHC +81.

No other code for the functions is needed in the primary bank; since execution
will be in the secondary (alternate) bank.

Y VY Y Y Y Y W W S U T W S T Y

18 © Zengrange Ltd - 1988
s

Chapter 3: Bank Switching

The address of the line xRdr in the primary bank corresponds to one less than the
start of the execution code in the secondary bank. This is because the banks
switch between reading the ENBANKZ instruction in the primary ROM, and the
reading of the next instruction from the secondary ROM. The execution process
runs as follows, for simplicity, we have assumed that the primary bank is initially
enabled (the default state when the ROM is first plugged in):

Addr Primary code Secondary code

glae JHE 81 e

gloel ENBANKZ 777
[banks switch at this point]

218z Ist byte of target routine

811a 237 last byte of target code

a111 737 ®

giiz 77 ¥

8113 777 MCGOD &FCY 3-word jump to enable

the other bank

8FC7 ENBANK! EMBANK 1 enable other bank
[banks switch at this point]

aFcs RTH ETH

Note: In the above example, it is important note that the instruction at

address 8113h (NCGO) is a 3-word jump, If a 2-word jump was used
instead, the module containing this code would be port-dependent and
would only work if plugged into a particular port.

In this example, 777" means "don't care”, and the addresses are only examples.
in practice, the code is arranged such that all the EKBRHK2's are in a block,
aligned with a block of local jumps on the secondary ROM side to the target
routines, which may be just JNCs, or which may be three-word jumps {calls to
GOL@..GOL2 in the HP-41 operating system, followed by a single-byte offset). Note
that neither is a two-word jump, so it is not possible to interieave the JNCs and
three-word jumps in one bank with the JNC +31 & ENBANKZ combination in the
other without requiring padding bytes somewhere.

It is also usual to arrange ENBANK1 as a common exit routine to save having more
than one ENBANK! in the secondary ROM. This minimises the total number of
ENBRHK1 & ENBANKZ instructions that are required between the two ROMs, which,
in turn, minimises the effort needed to align code in the two switching banks.

An Example:

Suppose our ROM has three routines that need to be bank-switched, because
there is no room for them in the primary 4K bank. For this example, the primary
bank has been initialised with the catalogue (FAT) containing just ten entries
including those entries for our three routines called 'JOHN’, 'BILL" and 'DAVE'.

Primary Bank Code: The following code should be loaded inte the primary
bank of the page.

todohn B@B JNC +91d

© Zengrange Ltd - 1988 19

ZEPROM Module - Programmer’s Manual

8819
toBill
8aiB
taDave
891D

SB1E
801F
&pze
aezl
gaz2

8@z23
8824
BBZS
BAZE
BA27?

ae28
2829
&@2A
282B
anzc

184
Ben
184
@eB
128

86k
aa3
aeF
aan
3B3

@8t
gat
Bas
ARz
39B

Ba3
a16
991
aid

383

ENEAMKZ

JNC +ald
ENBANK2

JHC +@1d
ENBAHKZ

N

H

0

J

JHC todohn
L

L

1

B

JHE woBill
E

y

]

I

JHE tolave

Aligns with the line labelled ‘fmJohn’

Aligns with the line labelled ‘fmBill’

Aligns with the line labelled fmDave’

Catalogue entry far JOHN points here

Catalogue entry for BILL points here

Catalogue entry for DAVE points here

That's all that's needed in the primary bank.

In the secondary bank, the code which ‘accepts

+

control when it is passed in from the primary bank should lock as follows;

Secondary Bank Code:

fmJohn B7Z JHC John
8818 008 HOP

fmBil]l QB3 JINC Bill
891D BBd MOP

Loaded at 801Ah
Just padding. Never gets executed

Just padding. Never gets executed

No need to jump to routine ‘Dave’, because we can start it here

fmDave
BALF
gaze
gB21
8E22
ge23
20824
8025
BAZE
8B27

John
8029
2828
8628
2e2c
202D
202E
842F
8430

20

Zth
3C1
BEe
3BD
aic
g4
pel
a16
263
BR3

ZEq
3C1
2EA
38D
aic
@R
BAF
83
28E

DISOFF

*

HCRE ZCFa
*

NC K@ BYEF
D

A

Y

E

JHC Qut,
DIZOFF

*

HCKD 2CF8
*

NCXQ B7EF
N

H

0

J

Switch display off whilst updating
Clear & enable display

Send message to display

Jump to commaon exit routine
Switch disptay off whilst updating
Clear & enable display

Send message to display

© Zengrange Ltd - 1988

Chapter 3: Bank Switching

5831 @853 JHC Out Jump to common exit routine

BEill 2E® DISOFF Switch display off whilst updating

8833 3C1 =*

8834 BBO NCKQ 2CF@ Clear & enabie display

3833 3BD *

8036 P1C HCKQ @7EF Send message to display

2037 882 B

8038 @09 I

8839 @sC L

g@3n 28C L

Nut 38D * Start of common exit code
B@3C 81C MCXR @TEF Send message to display
8820 aze
893E @el
BA3F BBl
844 @BC
841 BBC
8042 965
8843 pe4
SE44 220 Needn't left-justify with this space here
2845 328 DISTOG Restore/turn on the display
2046 149 *

2847 B24 HCXR 8352 Disable display

3848 1F9 *

8049 Bac NCXQ @37E Set the message flag

304A 3AD * Re-enable primary banks, and exit
8845 @SC #*

8@4C 3C7 NCGO BFC7

M D

The address in both files can be practically anything you like, but the simpiest
place to put these bank-switching instructions is immediately following the
catalogue, which means you need to work out the catatogue size for the ROM to
figure out where to load the routines. 1In this example, we've assumed that the
catalogue has ten entries (including these three functions), so the catalogue size
is 2+10*2+2 [XROM + FCNS *entries + nulls], and so ends at 8017 (hex}, so we
have shown the example code loaded at 8018h in the primary bank. The code in
the secondary bank now has to be positioned alongside the code in the primary
bank, according to the alignment requirement specified in the code; hence, it
would be loaded at 80tAh.

This would then give code arranged as follows;

Addr Primary code Secondary code
program flow

BE18 JHC +81 s

gE19 ENBRHKZ LR 1 Farard

BB1A JHC +81 [> JHC Jdohn

BB1E ENEANKZ | . 1 NP

g81c JNC +81 Lemeeen > JHC EBill

801D EHBANKZ Py HOP

galE ?7? Loeoens » Dave code begins here

© Zengrange Lid - 1988 21

e

ZEPROM Module - Programmer’s Manual (

This procedure alsa copes with returning from the routine back to the primary
bank by means of a 3-word jump (HCG0 2FC7) which will always be ENEARK1 & RTH !
instructions in all bank switched pages.

Following the flow of control while executing ‘JOHN', the jump at 8018h jumps to ‘
the ENBRNK2 at 8019h, which causes a bank-switch to occur before the instruction
at B01Ah executes. This causes the JHC John to become visible as the next \

instruction, and execution continues with the remainder of the ‘JOHN’ code until
the jJump to 8FC7h causes the ENBRNK1 instruction to switch banks back again to

the primary set. This makes the RTH visible as the next (and final) instruction '
executed by the HP-41 as part of the ‘JOHN' code, and leaves the primary banks |
enabled. A similar thing will happen when 'BILL’ is executed. 'DAVE’ only differs 1
in that there is no jump on the secondary side and execution continues directly

with the DISOFF instruction. |
For many simple applications, this schame will suffice, although its use does

require careful planning. {

H your function should need to force a different module to switch its banks, you
can use the following subroutines. These select the primary [or secondaryj bank [
of a given ROM page. They do this by exploiting a feature of the Hewlett-Packard
bank-switching specification; which is that the four addresses from xFC7 through
xFCAh in any bank-switching page must contain the four instruction sequence:

xFL7 ENBANK1 |

xFC& RTM
xFCY EHBANKZ

FCA RTH \

This code is loaded at the same location in both the primary and secondary
banks which switch with one another. Being therefore always visible to the
HP-41, it can be used to force selection of either the primary or secondary banks
at any time. The following two subroutines, which expect to be called from
another piece of code, will force selection of the page specified by digit ‘6" of {
CPU register ‘'C'. In M-code programming, this is normally represented as ‘C[6] .

Note: these routines rely on the pages being bank-switched and having the '
bank-switch code at locations xFC7 through xFCA. In order to check if a
page is bank-switching, you should check that one of the top two bits of {

the word at location FFD in that page is set. In these example routines,
we have assumed the ROM is bank-switching, and therefcre haven't ‘
checked it.

BANK1N and BANK2N Routines

Input: C[86] -- page number for ROM to setect.

Output: Desired ROM with bank1 [bank2] enabled, C[&:3] is the I
execute address of routine called in selected ROM to
perform bank-switch. ‘

Uses: C[5:3]
Assumes: ROM page specified actually exists, and is bank-switching ‘

22 © Zengrange Ltd - 1988
o

WARNING: Do not GOTO (branch) to these routines - only call them!

Purpose: Bank1N forces the specified bank-switching ROM to have
its primary banks enabled.
BankzN farces the secondary bank to be enabied.
The call to the alternate bank is done by jumping to
address xFC7h in that ROM to enable its primary banks,
and xFCgh for the secondary banks when returning to the
caller for exit.

If you want to incorporate this code into some other routine, and can't cope with
the operating system overhead of the subroutine call, you will need to make you
owrn arrangements for pushing the appropriate return address onto the stack.

BANK 1N Code:
Bank IN B3C RCR 3 C[3] = = ROM page number
2 138 LDI
3 @838 COM 833 inverse of FC7
4 @33 JNC +84 jump to common code
BANK2N Code:
Bank2N 83C RCR 3 C[3] == page number
& 138 LDI
7 836 CON 836 inverse of FC9

At this point, C[3] contains the page address of the ROM which we want to
use, and C[X] the bit-wise inverse of the jump address.

§ 2A6 C=-C-1 ¥ find true address in that page
9 1EC RCR 11 rotate final address into C[6:3]
i@ 1E@ GTOC do the call

At this point the ENEARK! [EKERMKZ] instructions will have been processed, so the
primary [secondary] ROM bank will have reappeared, and the secondary
[primary] ROM bank will have disappeared. The ENBANKL [ENERHKZ] is followed at
xFCBh [xFCAh] by a RTH, which pops the return address of the function which
called this code,

© Zengrange Lid - 1588 23

=™

ZEPROM Module -VPVrpgrra{nrrr!er’s Manual T o ‘

Bank Switching of User Code Programs

Theoretically, bank-switching of user code programs is considerably more complicated
than performing bank-switching in M-code. The reason being that the means of \
swapping banks is really only available at a machine code level, and that there are no
user code equivalents to the ENBANK1 and ENBANK2 M-code instructions.

However, in designing ZEPROM and its associated products, the design team decided
that the ability to switch banks should also be available within user code pregrams. The {
PROGRAMMER ROM software, provided pre-programmed in one bank of ZEPRCM,
therefore supplies functions that aliow the user to accomplish this.

Because of the nature of bank-switching, as discussed earier in this chapter, bank-
switching instructions can ondy operate on the particular module in which they reside. i
For this reason, each page, and the switched banks within that page, must contain the
functions necessary to perform bank-switching. These functions are lecaded into an

initiatised page by executing [ADDUCF] and [ADDMCF) from the PROGRAMMER ROM. {
loads three special functions { BGTOxx }, [BXE@ad] and [BRTNxx); which are the \
bank-switching equivalent of the normal GTO, RTN and XEQ. [ADDMCF] loads the
functions and which allows enabling of the primary or secondary barks as
desired. In each case, the ¢ in the function’s name represents the XROM-ID of the {
page into which the function Is loaded. These unigue numbers are necessary as an
identification of the particutar page or bank in which the functions reside and thus .

provide a means of specifying which ZEPROM is to switch its banks. Although these
XROM-identities are used for all HP-41 plug-ins, they are normally seen only when you ‘
assign a module function to a key, or enter it in a program, then remove the module. !

Whenever a user code program is lcaded into a ZEPROM or ROM, all global alpha '
labels in that program are given an entry in the Function Address Table (FAT) for that
ROM. This means that all such labels will also take on an XROM number; this being a

combination of the ROM's XROM-ID and the FAT entry number within that ROM. l
Normally, if your program is to branch to an alpha label, you simply key in the
instruction, e.g. GT0 "ABC. When the program is run the 41 will search through CAT 1 1
followed by CAT 2 until it finds the label corresponding to the GTO. An XEQ is slightly
different in that, when the program is typed in, the functicn is loaded as either (

X¥ROM TREC, or sEQ "RBC depending upon whether or not the label was found in ROM.
When run, the program either searches for the XROM number or searches through

CAT 1 and CAT 2, label depending upon how the function was stored. f
If the target label of a GTO or XEQ is in a bank-switched ROM and that bank is not
selected {enabled) at the time of execution, then the label will not be found since the ‘
built-in GTO and XEQ functions cannot bank-switch. It is for this reason that the
PROGRAMMER ROM provides [BGTOuxx | and | BXEGxx | functions. However, since both {
functions expect an alpha label in Reg X, a restriction of six characters is placed on the
length of any such label. In operation, [BGTOxx] and [BXEGxx | switch banks and then (

execute either GTO IND X or XEQ IND X for that label. It is perhaps worth pointing out

that these functions could not be made prompting, as per the ordinary GTO and XEQ,

since the 41 operating system dictates that external functions which prompt for an {
argument must be non-programmable,

24 @© Zengrange Ltd - 1988
R

Chapter 3: Bank Switching

Because [BXEQxx | and [BGTOxx | cause the banks to swap before calling the label, a
special RTN function is also required that first swaps the banks and then performs the

RTN. This function is [BRTNxx .

© MmMoro

© morwv

Examples

Consider the following situation where a ZEPROM module is configured as 16K
bank-switched. Each page has previously been initialised with INITPG and

ADDUCF
Primary Banks
XROM 01
-ROM-1 Page header
BGTOO1 } These functions
BRTNO1 } added by ADDUCF

BXEQO1 }

bank switching } added by
code } INITPG

RM1A Fage trailer

XROM 02

-ROM-2 Page header
BGTO02 } These funciions
BRTN0O2 } added by ADDUCF

BXEQO2 }

bank switching } added by
code } INITPG
AM2A FPage wrailer

Secondary Banks

XROM 03

-ROM-3 Page header
BGTO03 } These functions
BRTNG3 } added by ADDUCF

BXEQO3 }

bank switching } added by
code } INITPG

RM3A Page trailer

XROM 04

-ROM-4 Page header
BGTO04 } These functions
BRTNO4 } added by ADDUCF

BXEQO04 1

bank switching } added by
code } INITPG
RM4A Puge trailer

Now suppose we ioad one user code program into each core; "FROG! into page 8
primary, "PROGZ intc page 9 primary, "PROG3 into page B secondary and 'PROG4
into page 9 secondary, The ZEPROM module will now appear as in the following

diagram:

@ Zengrange Ltd - 1948

25

RS

ZEPROM Module - Programmer's Manual

Primary Banks

Secondary Banks

XROM 01 XROM 03

-ROM-1 -ROM-3
P BGTO01 BGTO03
A BRTNO1 BRTNO3
G BXEQO1 BXEQO3
E "PROG1 } user code program "PROG3 } user code program
8 :

bank switching bank switching

code code

RM1A RM3A

XROM 02 XAOM 04

-ROM-2 -ROM-4
P BGTO02 BGTO04
A BRTNO2 BRTNO4
G BXEQO2 BXEQO4
E 'PROG2 } user code program *PROG4 } user code program
9 :

bank switching bank switching

code code
RM2A RM4A

A A A A AR AR A A

[, i (O (I, (O, (Y, B O

Let's suppose that we have written our programs in the following manner with
"PROGI calling both *PROGZ and 'FROGZ as subroutines. The code for TPRAIGT will
thus have the following structure:

LEBL "PROGL"

XER "PROG2" Call "PROGZ as normal sub-routine
"PROGI Load label of bank-switched routine
ASTO X Store it into Reg X

BREGE! Call "FROG3 as bank-switched

EKD

Notice that, in this instance, there is no need to call "PROGZ as bank-switching,
since we know that "PRGG2 must be in the currently selected bank because the
calling program is also in that bank. However, in order to call "PROG3, its label
must be loaded into Reg X and the bank-switching XEQ function ([BXEQO1)) used

26 © Zengrange Ltd - 1988

D N T D T A M

a

Chapter 3: Bank Switching

since the program resides in a different bank, It is particulary important to note
that the function used is and not [BxEGo3]. This is because you must
always use a bank-switching function resident in the currently enabled bank - the
target bank’s functions being effectively invisible until that bank is enabled.

The code for "FROG3, loaded in a secondary bank, would be written as follows:

LBL "PROG3" Natice the use of and noct
: to bank-switch RTN to the

: primary bank since secondary bank
ERTNGZ will be enabled at that time

Now let’s suppose that "FROG4 also needs to call "PROG3. If "PROGE is left as
above (with a ERTN@Z instruction at its tail), then a call by "FROG4 will return
execution to the wrong place since it will have swapped the banks over.

It is therefore necessary to establish a protocol by which a subroutine can
determine if it was called from the same or another bank. The simplest way to do
this, is by means of a flag:

LBL “PROGL"

XEQ "PRDGZ“ Call "PROGZ as normal sub-routine
"PROGI" Load LBL of switched routine

ASTO ¥ Store it into Reg X

5F Ba Set flag to indicate bank-switch call
BXEQOL Call "FROGE as bank-switched

END

LBL "PROG4"

CF @ Clear flag to indicate non-switched

XEQ "PROG4" Call "PROG4 as an ordinary XEQ
EHD

LBL "PROG3"

: Test flag to determine whether

FS? 98 called from another bank?

BRTN&3 Yes, then do a bank-switched RTN
RTH No, 50 do an ordinary RTN

In the preceding example, we have only used to add the user-code functions
BGTOxx), {BRTNxx | and [BXEQxx) in the switching banks. In cases where you intend
loading all your sub-routines into the secondary bank and will only call them via the

® Zengrange Ltd - 1988

ZEPROM Module - Programmer’s Manual e G

e
main programs in the primary bank, this will suffice. However, it is also possible that |
you may. for space cr other reasons, need to insert some main programs into the e
secondary bank. See WARNING below. Executing main programs in the secondary |
bank can be achieved by either of the following means: ’

1. Enabiing the page’s secondary bank with [SBxx }, then
Executing the desired program by name with XEQ, and finally -
Re-enabiing the primary bank with (PBxx] ([SBxx]and are added to
an Inltialised page by [ADDMCF |} ‘

2. Executing the desired program by name with [BXEQxx).

Suppose a program, called "FROG3, resides in ROM-3 (page 8, secondary bank) and the !
primary bank is currently enabled. You could execute it from the keyboard as follows:

.
Key Sequences Description §
XEQ (s](B][0])(1]j[ALPHA] Enables the secendary bank. Note:
is used because, ROM-1is "
currently enabled.
(r](r)(0]{G]{3)] Executes program in that bank and '
exits with the secondary bank still
enabled. ‘
(p1(B]){c]{a][aLPHA Re-enable the primary bank. Note:
PBo3 | is used because, ROM-3 is -
currently enabied. \
' Exercise extreme care when executing programs in other banks 1
H either from the keybcard or from another program. Before doing so,
Warning you rust be absolutely sure how that program is structured.
and shauld also only be used in a running program when the {
code in both primary and secondary banks of that page is exactly
identical (e.g. in emulating a 12K module) since otherwise the banks {
switch and the next program instruction is no longer available.
When either of the two methods discussed are executed from the keyboard, the called ¢
program will either terminate with the secondary bank enabled (if normal RTN/ENDs
were used) or swap back to the primary bank (if was used). \
It is executed within a running program, then the called program will either _
swap banks and correcty continue execution (if was used), or will stay in that "
bank, but return to an address within that bank that has totally unrelated code init (if a
normal RTN/END was used). The result of this is absolutely unpredictable. \
The need to use correct terminating returns is dictated by the HP-41 method of bank- _
switching. More sophisticated computers can both bank-switch and recommence q
execution from a different address, however, the HP-41 just bank-switches and blindly
continues execution from one address after that it had reached in the previous bank. {

To overcome this you need to plan your bank-switched programs very carefully.

28 © Zengrange Ltd - 1988
L e

Chapter 3: Bank Swi

Chapter 4

ZEPROM Voltage
Converter

The ZEPROM Voltage Converter, or ZVC, has been designed as a companion product
to ZEPROM and provides the user with an inexpensive, simple-to-use means of burning
(programming} ZEPROMs when used with software such as the PROGRAMMER ROM.

The ZVC is a single unit, bare board device protruding from the back of a standard
HP-41 medule housing. This housing allows the ZVC to be plugged directly into one of
the four 1/0 ports at the back of the HP-41. The contacts at the other end of the ZVC
are provided for plugging the ZEPROM module onto.

When plugged into the HP-41, the ZVC increases the 6V supply available from the HP-
41's batteries to the 12.5V needed to burn ZEPROM.

Switching ON & OFF

The ZVC contains a small vertically moving switch (31) next to the connector for
attaching a ZEPROM module. This switch, used in programming, has two purposes:
To activate the 12.5V programming voltage
To force the attached ZEPROM module into a straight 16K mode. This applies
even if that particular ZEPROM module has already been part-burnt and
configured as bank-switched, etc.. Forcing the ZEPROM into 16K mode is
necessary in order that the HP-41 can see all four 4K-cores in the module during
programming.

Programming
Switch

Set to OFF
Position

51

© Zengrange L1d - 1988 29

ZEPROM Module - Prograrnmerr’rsr Manual] e ‘

The programming switch is activated {turned ON), by pushing the switch actuator
downwards. To turn the switch OFF, lift the actuator upwards with a fingernail. The '
direction of movement to turn the switch ON is marked on one side of the switch body.

Plugging in

The ZVC plugs intc any of the HP-41's /O ports in the same manner as a normal {
module. The correct orientation, with the HP-41 resting on a table, is with the ZVC's
components facing uppermost - see diagram below. In this aorientation, the ZVC can be [

gently slid into the port.

- The HP-41 computer must be switched OFF before modules
are plugged into or removed from it. This also applies
whenever the ZVC device is inserted or removed, and when a {
ZEPROM module is attached to or removed from the ZVC.
Failure to do this may cause the computer to reset, causing a [
loss or corruption of data in memory.

- To insert or remove a ZVC, hold it by its edges between |
' thumb and forefinger. Avoid holding the device by its

|]
N ntacts or erneath.
Cautions contacts or und '

- The ZVC can only be inserted one way into an HP-41 port. f
any obstruction is felt, the orientation is most likely incorrect.
Never force the ZVC into a port as this can damage contacts l
in either or both devices.

. Protect the HP-41's ports from dust by keeping a port cap l
installed in any empty port. Do not place fingers, tools or
other foreign objects into the ports. Such action can cause
serious damage to port contacts and/or internal circuitry.

= ’ |

With the ZVC plugged into the HP-41, the ZEPROM module can be attached to the ZVC.

Before attaching a ZEPROM, ensure that the ZVC’s programming switch is set to the [
OFF position. When attaching a ZEPROM, it is critical that the module is correctly

attached. The module must be orientated such that the erasure window is ‘
uppermost.

30 © Zengrange Ltd - 1988
e

_ Chapter 4: ZEPROM Voltage Conryerter

When the ZEPROM module is attached to the ZVC, and the programming switch is set
to ON, the ZEPRCM module is forced into a straight 16K mode. In this mode, all four
4K cores in the ZEPROM can be programmed. However, because the module appears
as 16K, it will always consume the addressing space of two ports whilst it is being
programmed. For this reason, the user must ensure that the port adjacent to the ZVC
is empty, or contains only memory modules or system maodules such as HP-IL, printer,
Timer, etc. If this is not done, there will be an addressing conflict and data will not be
correctly verified after burning.

Whilst data is being burnt into a module, you should aveid handling the ZVC, module or
HP-41. If the PROGRAMMER ROM software is used, the HP-41's keyboard is disabled
during burning; however, this may not be the case with other controlling software.

Batteries

Because the HP-41's own batteries are used by the ZVC to generate a 12.5-volt burning
voltage needed to burn data into a ZEPROM module, it is essential that adequate
charge is available in the batteries whenever burning is commenced.

Unless you will only be burning very small amounts of data, we recommend that you
always start with a fresh set of batteries in your HP-41. When purchasing the batteries,
buy them from shops that have a high turnover of such cells. While your local corner
shop may be convenient, the batteries they stock may have been sitting on their shelves
for quite a while.

Although it may also be tempting to use Ni-Cd cells, in most cases our advice is, don’t!
The re-chargeable battery pack manufactured by HP may not have the capacity to burn
a 4K image into ZEPROM. This appties even if a mains recharger is connected,
because the recharger cannot compensate for the drain on the cells. It is possible that
using separate 'size N' Ni-Cd celis will suffice to power the burning of an image, but this
cannot be guaranteed. For these reasons, we strongly recommend using alkaline
batteries. With a fresh set of alkaline batteries, the user could expect to be able to burn
in excess of 512K of data into ZEPROM modules.

The programming switch on the ZVC activates the voltage conversion. When ON, the
12.5V burning voltage is continually being generated, although the highest current drain
only occurs when programming is actually taking place. To minimise the current drain

® Zengrange L1d - 19838

R R EEmmEmEmm——

-y

ZEPROM Modulg - Programmer’s Manual

a
from the cells, we recommend that you only turn the switch to ON just before beginning
to burm and then turn it OFF again immediately after finishing. With the switch set to "
OFF, you can access {read) the module plugged onto the ZVC as if it were plugged
directly into that port. The configuration that you have burnt into the module is also [~
effective in this condition. Note that when the programming switch is set to ON, the)
module always appears to the HP-41 as if it were a straight 16K module. F
. "
Care and Maintenance
’
The ZVC does not contain any user serviceable parts and should not require servicing
during normal or extended use. However, whilst not in use the user should keep the -
ZVC in the antistatic packaging in which it is supplied and protect it from physical -
damage. |
Whenever the ZVC is handled, the user should avoid touching any contacts, *
components or the underneath of the printed circuit board. Try to hold it by gripping .
the PCB edges between thumb and forefinger. Over a long span of time, It is possible .
that the ZVC's contacts, where the ZEPROM module is plugged onte it, may hecome
oxidised. If this should happen, very gently rub the contacts with a soft pencil eraser. !
Avoid using a hard, typewriter eraser as this can easily damage the contacts,
e
.
L.
L.
€
e
.
.
€
€

o &8 4B

32 @ Zengrange Ltd - 1988

L

~ Chapter 4; ZEPROM Voltage Converter

Chapter 5

Burning Methods

The ZEPROM module has been designed to be as flexible as possible within the
constraints of the HP-41 system.

Bumning (also called programming) of ZEPROMs, as with other EPROM type devices,
involves the use of a programming fixture, anto which the ZEPROM is piaced, and
suitabie software driving the fixture and controfting the burning process itself.

Burning Fixtures

In designing ZEPROM, the intention has been to provide solutions for differing markets:

. a cost effective sclution that could be used by the HP-41 user without
considerable technical expertise and investment in equipment. This is the
ZEPROM Voitage Converter (ZVC); a simple device that plugs directly into
ong of the four 1/O ports on the HP-41 and then allows the ZEFROM
module to be plugged onto it. To use the ZVC, ancillary software must be
used to control the burning process. The recommended software is the
PROGRAMMER ROM that is pre-programmed inta one ZEFROM core.

. a medium to high volume ZEPROM Gang Burner that allows up to eight
ZEPROMs to be burnt and tested simultanecusly. The device has built in
software and is intended for connection to a microcomputer via R5232C.
In addition, it can be used in a stand-alone mode to copy existing
modules. The unit is recommended for use with varicus HP-41 software
development systems available for most MS/PC-DOS desktop computers.

In addition to these fixtures designed and marketed by Zengrange Ltd, ancther soiution
is available from a third party source:

- The ZEPROM Programmer is available from Firmware Corporation, 605
NW 5th Street, Suite 2A,Corvallis, OR 97330, USA. This fixture is intended
for low to medium volume use, and can bumn two ZEPROMs
simultaneously. The Zeprom Programmer can be connected by a cable to
the HP-41, or via a R5232C connector, to a micro computer running
suitable data-communication software. This product also contains
additional RAM and controlling software allowing the user to build up and
test the complete image before burning. The unit is recommended for use
with a number of HP-41 Software Development Systems available for
MS-DOS computers.

© Zengrange Ltd - 1988 33

ZEPROM Module - I_'-_'r_gg__rg_mmer's Manual o

[
Controlling Software '
In additicn to dedicated software packaged inside some programming fixtures, the
following may be used for developing and burning ROM images into ZEPROM. '
Y
The PROGRAMMER ROM
The PROGRAMMER ROM is a companion product for the ZEPROM Voltage f
Converter. lis software provides complete control over the burning of both user
code (RPN) programs and M-Code (Machine language) functions into ZEPROM. i
The PROGRAMMER software is burnt into each ZEPROM module as part of the
extensive quality control procedures used during manufacture. This ensures that 1

each user can immediately begin burning ZEPROM, without needing to purchase
or write their own programming scoftware, and also ensures that the correct
ZEPRCM burning algorithm is used. An added innovation, is the provision of
functions allowing bank switching of user code programs. Until ZEPROM and the
PROGRAMMER ROM, this was not possible. Also included in the function set are
routines to copy code between an HP-IL mass storage device and ZEPROM.

Chapter 5 - The Programmer ROM, contains a complete description of ail
PROGRAMMER ROM functions.

HP-41 Software Development Systems

A number of HP-41 Software Development Systems have heen released as
complete development packages running on MS/PC-DOS and CP/M desktop
computers. Most of the packages provide the facilities to develop user code
and/or machine code routines in the format required by HP for burning into a
mask-pregrammed ROM. As ZEPROM is completely downwards compatible
with HP’s ROM formats, these SDS packages can be used to develop code for
and burm ZEPROM modules. These modules can then be used for field testing
before submitting to HP for ROM burning.

ZENROM-3B - The Programmer’'s Module

The ZENROM Programmer’s Module, another Zengrange product, opened up the
world of synthetic and machine code programming to the HP-41 user by
providing unique functions that permit direct access to the HP-41 operating
system.

Included in its function set is a machine code editor, MCED, that can be used to
transfer code from a Q-ROM (Quasi-ROM) device to ZEPROM or to burn directly
into a ZEPROM module. When using ZENRCM to burn a module, it is essential
that the correct burning algorithm is followed.

34 © Zengrange Ltd - 1988

I

Chapter 5: Burning Methods

Example using ZENROM with the ZVC

This example illustrates using ZENROM to write the single machine code word
3EO0h at location 8A60h. It assumes that you have already checked the HP-41's
batteries, plugged the ZVC into port 8 or 9, connected the ZEPROM onto the
2ZVC, and have pressed the burn switch to ON,

ZENROM functions can also be used to transfer blocks of code rather than single
words. When doeing this remember that you must verify correct burning, and
when correct, repeat the burn again twice more to ensure ZEPROM stays

programmed.
Key sequence & Description Resulting Display

Execute the MCED function:

(xea) (arpra) (w) () (£) (2) (AcPr) (LD 7]

MCED now waits for a command to be
entered. Use the goto function to enable
movement to an address:

ot

M (cro) [(FIR |
Key in the address 8A60h: I

EEEE) [FTH HEAD]
R/S [BRES 88]

The three 000h digits indicate that the
address 8A80h is currently blank.

Key in the word value that you wish to
burn at this address; i.e. 3ECh: — S
(3)(E)(e) [HR58 Q08 3-2]

/S BRI

Back step to the previous address in order
to check that the correct value was burnt:

B (es7) [BRE

Because EPROMSs need a longer burn
cycle than RAM, you may find that the
word has not been burnt. If this is the
case, re-key the word 3E0h by repeating
the iast two steps until the word is cortrect.

[

NN

@ Zengrange Lid - 1988 35

e ——————

ZEPROM Module - Programmer’s M

¢

Once cotrect, you must re-burn the word
twice more. Because EPROMs may revert L
if the burn cycie was not long enough, you
must do this to ensure that the word will {
remain programmed.
Key in the word value 3E0h again: — _ S ‘
() (E)(e] [HHEED 3-g ded

R/S [BRR {288 ___| ‘
Back step to the previous address. S — {
B s (BRED 958 |
Key in the waord value 3E0h again: - — S ‘
3E)) [BRES 38 A8 ‘

/s [BFG T ooe |

The word should now be programmed.

Other Software

Various software packages are available for writing code into Q-ROM or RAM

Storage devices. Whilst not intended for buming ZEPROMs, they can often be {
used for that purpose with the ZVC. In most instances, it is necessary 1o write

small user code routines using functions in the software. This is necessary

because programming an EPROM requires a longer write cycle.

In general, software that uses the machine code WMLDL (040h) instruction for
writing to Q-ROM davices, with the address in C[6:3] and the data in C[X], can be
used with ZEPROM. However, it should be noted that a special algorithm should
be used for programming the module as ZEPROM uses the Peripheral Flag 4
{accessed with the ?PF 4 (06Ch) instruction) to control burning. This algorithm is
discussed in Appendix A.

Reference should be made to the relevant manuals or product manufacturers for
turther details of the programming methods and software. A typical example of
this type of software is:

MLDL Operating System/David Assembler

The MLDL Operating System & David Assembler are products of the Dutch
company Eramco Systems BV (Loodsgracht 23, 1781 KM Den Helder, The
Netherlands). Both of these are machine code development utilities
intended for use with Eramco’s own RAM Storage Units (Q-ROMs). Many
of the functions provided in these software packages can be incorporated
into user code routines to control the burning of software into ZEPROM.

36 © Zengrange Ltd - 1988

e

Chapter 6: The Programmer ROM

Chapter 6

The Programmer ROM

The PROGRAMMER ROM software has been designed and especially written to provide
complete control over the burning of both User Code {Reverse Polish Notation)
programs and M-Code (Machine Code) functions into a ZEPROM. The software is
intended as a companion product to the ZEPROM Valtage Converter (ZVC). When
used together, they form a powerful, low-cost solution for low-volume burning of
ZEPROM Modules. The simple, user orientated design of the complete package also
brings the burning of ZEPROMSs well within the abifity of normal users who might want
to have their favourite RPN programs permanently available in a module.

The software contains an instruction set of special machine coded functions that
perform necessary housekeeping tasks and control burning at the byle, program, block
and ROM page level. To aid the non-technical user code programmer, these functions
have also been incorporated into an automated, prompting burn program. For
simplicity, the software is described in two sections:

- Instruction Set describes afl the low level functions giving ultimate control
over each stage of burning;

Utility Routines describes the user orientated routines that automate the
burning process by prompting for input of relevant arguments.

These software descriptions assume the yser understands the various HP-41 owner's
manuals, is proficient in user code programming and conversant with the general terms
and concepts of the HP-41 computer. To successfully use this software in user code
programs, the user should also understand how flag 25 can be used to affect trapping
and handling of burn and other errors.

For more detailed information about the 41's structure, ROM formats, machine code
and synthetic programming, we recommend reading the ZENROM Programmer’s
Maodule handbook - which is also avatlable from Zengrange Ltd.

' All copy, design, patent and ownership rights of this manual,

M together with its associated hardware, software, source code and
descriptions shall remain with Zengrange Ltd and others, The

© provision of the software, and inclusion of any source code in this
Copyright manual does not, and shall not, constitute its passing Into the public

domain. The user is permitted to use the software for purposes of
burning ZEPROM modules, but neither the software, listings nor
descriptions may be further distributed, modified or included in any
other commercial product without the prior written approval and
agreement of Zengrange Ltd.

© Zengrange Lid - 1988

I —————————————— =

ZEPROM Module -

' The PROGRAMMER ROM contains functions that facilitate the

- copying of ROM software. However, since software is covered by
copy, design or patent rights, it is illegal to make coples for

Caution distribution, duplication or modification unless permission has been
granted by the holder of those rights. Obtaining such permission is
the specific responsibility of the user.

In cases where a Zengrange product is used to infringe copy,
design or patent rights, the user shall bear the entire responsibility {
and assume all liability for infringement. Neither Zengrange Ltd, nor
its agents, shall be in any way liable for the user's actions.

The Instruction Set

The PROGRAMMER ROM Instruction Set incorporates all those functions necessary for
ultimate controt over the burning process. This may be necessary for reasons of
burning only a small number of bytes, or because the user wishes to bum ZEFROM ina
particular way. A complete understanding of the instruction set is not necessary for
users wishing to burn programs from the HP-41, or for copying modules or code from a
0Q-ROM/RAM storage device. However, we still recommend reading the complete
manual, as this will give a better understanding of the procedures involved.

Instruction set functions are described in alphabetical order. Unless stated otherwise,
functions can be executed from the keyboard, or under control of a running prograrm.

Keying in Arguments for Instructions

In general, instructions requiring the user to supply arguments (parameters) for
addresses, pages, number of bytes, etc., allow this to be done in two forms:

a floating point decimal value Decimal addresses range from 0 to 65535.
However, since locations below 32768 are
e.g. 40812, used by the HP-41 itself, valid input for all

burning operations is limited to between
32768 & 65535. Similarly, valid pages for
burning operations are from 8 to 15.

a hexadecimal alpha string Hexadecimal addresses range from 0 to
FFFFh, However, since locations below
e.g: 9F6C 8000h are used by the HP-41 itself, valid

input for all burn operations is limited to
between 8000h & FFFFh. Similarly, valid
pages for burning operations are 8h to Fh.

Where permitted, the user may enter values in either format depending upon
preference. Those functions that return a value to registers or the display, will
generally use the same format as that of the input. However, the incrementing
burn counter and burn error messages always display addresses in hexadecimal.

© Zengrange Ltd - 1988
R

Chapter 6: The Programmer ROM

Hexadecimal values can be keyed into the Alpha register and then stored into a
stack register by the function. E.g. would copy a string of up
to six characters from Alpha Into Reg X. Hexadecimal values can be entered in
sither upper or lower-case letters, e.g. 'gf5a’ or ‘9F6A’, with valid input being 0-9,
A-F and af. For clarity in this manual we have shown hexadecimal values in
uppercase, followed by the letter 'n'; e.g. ‘9F6AR’.

Two utility functions, [HEXDEC) and [DECHEX), have also been provided for
converting the Reg X content between the two formats.

Test Functions

In general, the test functions, those with names terminating in a ‘?, follow the
usual HP convention and perform tests in the same manner as standard HP-41

test functions such as [x=v7) etc. Different results are obtained

depending upon whether the function is executed from the keyboard, or from a
running program.

Under Keyboard Execution

When executed from the keyboard, these functions display a YES or NO
answer depending upon the ottcome of the test:

If test was TRUE, display: YES
If test was FALSE, display: NO

Under Program Control

Under program control there is no displayed result, but the program
instruction following the test will be executed or skipped depending upon
the test. The "DO IF TRUE" rule is followed by all these tests:

if test was TRUE: PERFORM the next program step.
ff test was FALSE:; SKIP the next program step.

Some functions may also modify the content of stack registers dependent upon
the outcome of the test.

Bank Switching Instructions

Special bank switching instructions are provided by the PROGRAMMER ROM to
allow the user to more fully utilise a bank-switched ZEPROM. These instructions
allow the user to branch to and execute user code subroutines in other banks,
and to swap the banks from the keyboard. The instructions, (BGTOxx), (BRTNxx),

BXEQxx |, | PBxx | and | SBxx |, are loaded into bank-switched ZEPROM banks by
the PROGRAMMER ROM functions [ADDUGF | and [ADDMCF). During loading, the
bank-switching instruction always take on the XROM identity of the ZEPROM
bank into which they are being loaded. E.g. if a bank Is initialised with an XROM

® Zengrange Ltd - 1988 39

e

ZEPROM Module - Programmer’s Manual

identity of 28, the functions would appear as [BGTO28), [BRTN28 | [BXEQ28)

PB28 | and [SB28 |

The reasan for this adoption of the XROM identity is that such functions can only
operate on and within the particular bank in which they reside. Because each
ROM or ZEPROM page connected to the 41 must have a unique XROM identity,
the instruction itself must possess that same XROM identity. In describing the
functions in this manual, we have referred to them as (BGTOxx], [BRTNxx]
(BXEQxx }, [PBxx] and [SBxx |

When writing user code programs for ZEPROM (that will call subroutines in other
banks of a bank-switched ZEPROM), the user must ensure that the instruction
has the correct XROM identity; this always being that of the ZEPROM bank into
which the program is to be loaded. For example, if a program in one bank
(XROM 28} is to execute a subroutine in a switched bank (XROM 15}, the
programs would be written as follows:

- A A 4 M O OO A

\
Main Program program Sub-Program
(in bank of XROM 28) flow (in bank of XROM 15} C
+LBL “MAIN"
: l
“EUE" Name of sub-prog » +LBL "SUB" Entry from main \
AsTo ¥ Store name in Reg X : prog in other bank
BREAZE Enabte other bank : (
: Return from sub- “ :
program 1 :
BRTH1S Return to main 1
: prog in other bank
{
{
Burn Instructions and Output Formats ‘
All PROGRAMMER ROM instructions to burn data into ZEPROM pages have a
common display and output format. During burning, the display will show one of \
the following message sequences:
Successful Burn Unsuccessful Burn {
[BN TNG D | [RUEN TG D | '
followed by: followed by:
[By o BTk] [BRI R P | '
a TONE 7 is also sounded to a TONE 0 is also sounded to {
indicate completion. indicate the error.

40 © Zengrange Lid - 1988
R

Chapter 6: The Programmer ROM

Errors during burning operations generally occur when the PROGRAMMER ROM
reads back and compares the information that it has just tried to burn into
ZEPROM. If the data is not identical, the PROGRAMMER ROM considers this to
be a burn error and so aborts burning. In most instances, such burn errors are
caused by low HP-41 batteries, attempting to burn into a non-ZEPROM module
page or an already burnt page, or not having the ZVC programming switch set to
the ON position.

The PROGRAMMER ROM's burn instructions fall into two groups:

Burning User Code Programs

provides the necessary control to burn user code programs
from main memory into a ZEPROM page. During burning, stack registers
are restored or modified as follows:

During user code burning: Reg X: contains the address of the
first line of code burnt.

User code burn succeeded: On completion, stack registers are
restored to their original content.
Reg X: page number to burn into.

Alpha: name of program to burn.

Burn operation failed: Reg X: replaced by the burn fallure
address. This is the address at
which the data it tried to burn was
verified incorrectly.

Reg L: contains the address of the
first line of code burnt.

Alpha: name of main memory
program to be burnt into ZEPRCOM.

If an error should occur whilst burning a user code program, it is essential
that the user does not just re-try using BURNUC | If restarted, [BURNUG

will insert the new image after that of the aborted attempt. To prevent this,
a instruction has been provided for recovering from user code
burn errors. Please note that must not be used in other
instances.

As input requires: Reg X: address of the first line of
the program code burnt. This is the

start of the program that

was burning when error occurred.

Alpha: name of program

failed to completely burn.

Because the burn error moves the start address to Reg L, the
user must use LASTX to recall this to Reg X before using {REBURN)

© Zengrange Lid - 1988 41

RS

ZEPROM Module - Programmer’s Manual

42

L

All Other Burning Operations

Various other Instructions are provided in the PROGRAMMER ROM to
control the burning of ZEPROMSs at the page, block and word level. The
input to these Instructions varies according to the number of parameters
required.

The stack registers are restored or modified by the instructions as follows:

Burn operation succeeded: All stack registers: data is
unchanged. The exact data content
depends upon the actual operation
currently being performed.

Burn operation failed: Reg X: replaced by the burn failure
address . This is the address at
which the data it tried to burn was
verified incorrectly.

Reg L: replaced by the original
content of Reg X at the start of the
operation.

Other registers: unchanged.

In the event of an error terminating the burning process, e.g. because of
low batteries, the operation can usually be retried using the same data.
However, because the value originally in Reg X will have been moved to
Reg L, the user must recall this to Reg X before re-trying the instruction.
Because these operations return the burn failure address to Reg X, this
can be used with a suitable editor, such as ZENROM's MCED, to examine
that address location in the ZEPROM page.

® Zengrange Ltd - 1988

Function Description index

Function XROM ID Description Page No
ADDBSW 03,01 Add bank-switching code to initialised page 44
ADDMCF 09,02 Add M-code bank-switching functions45
ADDUCF 09,03 Add user code bank-switching functions...46
BGTOxx User code bank-switching GTO47
BLANK? 09,04 Test if the page in Reg X is blank 49
BNKSW? 09,05 Test if page in Reg X is bank-switched ..., 50
BRTNxx User code bank-switching RTN...............coooooiiei 52
BURNUC 08,06 Burn user code program from RAM or ROM.........oooo . 54
BURNWD 09,07 Burn word in Reg X into address in Reg Y ..., 56
BXEQhx User code bank-switching XEQ................................ 57
CHKSUM 09,08 Compute & return checksum for specified page................. 59
COMPUC 09,09 Compile user code program in main memoryc........... 60
COPYPG 09,10 Copy entire 4K image between pages X & Y........................ 62
CPXYZ 09,11 Copy data as specified in Regs X.Y.Z............... e 63
DECHEX 09,12 Convert decimal value in Reg X into hexadecimal 64
ENABLEP 09,13 Enable primary bank of ROM page in Reg X.............oooooe.... 65
ENABLES 09,14 Enable secondary bank of ROM page inReg X 66
FRSPC? 09,15 Address and amount of free space of page inReg X........... 67
HEXDEC 08,16 Convert hexadecimal string into decimal number............... 68
ILBURN 09,25 Burn page using image from IL mass storage file 69
ILSAVE 09,26 Save ZEPROM page image into HP-IL mass storage file.....71
INITPG 09,17 Initialise a ZEPROM Page......ccooovovoviveeeeeeevv e 73
PBOS 09,22 Enable primary bank of Programmer ROM module............ 75
PBxx Enable primary bank of ROM with XROM-id of xx............... 76
PGX=Y? 09,23 Compare two 4K ROM pages for equalitycc.co....... 77
PRGMLN 09,24 Return program length and number of LBLs. .79
READWD 09,25 Read word from ROM page inReg X....oc.cocooooeeeooooe, 81
REBURN 09,26 Recover from error in burning user code program 82
RRBURN 09,27 Burn ZENROM ROMREG + format data into ZEPROM......... 84
5B09 09,28 Enable secondary bank of Programmer ROM module......... 86
SBxx Enable secondary bank of ROM with XROM-id of xo¢........... 87
© Zengrange Ltd - 1988 43

ZEPROM Module - Programmer’s Manual

ADDBSW

Add bank-switching code to initialised page

XROM 09,01

Purpose Makes a blank or previously initialised page into bank switching. The
function sets the bank switching bit at page location FFDh and adds the
necessary bank switching code in the locations FC7h to FCAh - these
being the locations reserved for that purpose by Hewlett-Packard.

(Cautions] [ADDBSW) requires that locations FC7h to FCAh and FFDh are currently
unused. If subsequently intending to add the M-code bank switching
functions [PBxx | and (SBxx] (added with [ADDMCF) and/or the user code
functions [BGTOxx], [BRTNxx] and [BXEQxx | (added with [ADDUCF)), then
the page locations FCBh through FF2h should also be unused.

Input The user must supply a value for the following argument:

Reg X rarger-page Target page specified either as a
floating point value, ora
hexadecimal string.

QOutput Stack registers are unchanged unless an error occurs during burning. See

Errors

page 40 for details of standard outputs following hurn errors.

Refer to the HP-41 Owner's Manuals for details of standard messages.

[Ir‘;:’r’.:”‘ I L, ::r}qu:E] An invalid page was specified.
[L-J.: T, WL G] Specified ROM page has already
Pt 4o AWINA St been initialised as being bank-

switched.

The page locations FC7h to FCAh
and FFDh have already been used.

[Example]

(ADDBSW) adds just the essential bank-switching code to a blank page, or

44

one previously initialised with as being not bank-switched. It can
therefore be used in setting up a bank-switched ZEPROM.

When initialising ZEPROM as a bank-switched module, all banks must be
initialised as being bank-switched. Because it is not always practical to
initialise all pages at once, can be used to add the necessary
switching code into the other pages, until you are ready to all
remaining banks with XROM-id, header, FAT, etc.. See also

As described on page 16, can be used to add the necessary
switching code into a blank alternate bank where a small number of large
M-code functions are to be inserted into ZEPROM. 1n this way, valuable
space in the secondary bank is not consumed by the XROM-id, header,
FAT, etc..

© Zengrange Lid - 1988

E 1%

"]

A . B r. B r. B r N r N . r N

r 0

. e aan &, & |

R R R RRRRRRRRRRRS=RRmRR

Chapter 6: The Programmer ROM

ADDMCF Add M-code bank-switching functions
XROM 09,02 to initialised page

Purpose] Adds the machine coded bank switching functions and into a
page previously initialised as being bank-switched. The two instructions
are loaded into the specified page at locations FESh through FF2h and
their names entered into the FAT. These instructions permit the user to
switch between primary and secondary banks as required. During
loading, these instructions always take on the XROM identity of that bank.
E.g. # a bank is inftialised with an XROM of 28, the functions would appear
as and [sBzs] See page 39 for a more detailed description of this
procedure.

(Cautions] [ADDMCF] requires that locations FESh to FF2h are currently unused. #
subsequently intending to add the user code instructions [BGTOxx]
BRTNxx | and [BXEQxx) with [ADDUCF), then the page locations FCBh
through FE8h should also be unused.
Note that ADDUCF must be used to insert the bank-switching
functions into both banks of that page. Failure to do so will mean that a
particular bank can be enabled, but not disabled.

Input The user must supply a value for the following argument:
Reg X: rarget-page Target page specified either as a
floating point value, or a
hexadecimal string.

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the FP-41 Owner’s Manuals for details of standard messages.

¥ gt T N e An invalid page was specified.
PRI pagewassp
Ln TR NE AT 'n] The page specified is not bank-
Pt oy L O O B A e Y SWltChed

v B T > T TN There are not enough spare FAT
[FHT DERFL D | entries remaining.

TriT Tigr L. TEaL T The page must be initialised before
HUSEEIGEM functions can be added into it,

© Zengrange Lid - 1988 45

ZEPROM Module - Programmer’s Manual

L
ADDUCF Add user code bank-switching instructions L
XROM 09,03 into initialised page |
Purpose Adds the user code bank-switching functions , and \
into a page previously initialised as being bank-switched. The
three instructions are loaded into the specified page at locations FCBh |
through FEBh and their names entered into the FAT. These tuncticns 1
permit the user to perform a GTO, XEQ and RTN between running user
code programs in different banks of a switched ZEPROM. During loading [
the instructions always take on the XROM identity of that bank. E.g. if a
bank is initialised with an XROM of 28, the functions would appear as \
(BGTO28), (BRTN28] and (BXEG28] See page 39 for a more detailed
description of this procedure.
{Cautions] [ADDUCF] requires that locations FCBh to FE8h are currently unused. if ‘
subsequently intending to add the M-code instructions [PBxx], and
into the bank with (ADDMCF), then the locations FESh through FF2h should {
also be unused.
Note that ADDUCF must be used to insert the bank-switching {
functions into both banks of that page. Failure to do so will mean that a
particular bank can be enabled, but not disabled. \
“Input The user must supply a value for the following argument:
Reg X: rtarget-puge Target page specified either as a '
floating point value, ora
hexadecimal string. \
"Output Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs follawing burn errors. [
Errors Refer to the HP-£1 Chwner's Manuals for details of standard messages.
¥ T An invali ffied. l
|IH|’ HLIB ’._JHLN._-_I n invalid page was specified
I RITTY LT T nl The page specified is not bank- f
IEIRK) T TS N [t switched.
I LT Tty I There are not enough spare FAT \
PV Lt LR bated entries Temaining.
l TeiT T LT g TJ The page must be initialised before (
FSA A N AN ARN, functions can be added into it.
|
l'
46 © Zengrangs Ltd - 1988

R RRrRRErrvBvBBBBB===D=RRrv=rv=vrR==RR=TrRRrrR=R=rrrRrmRmRm=mppRmmRRRARR e

Chapter 6: The Programmer ROM

BGTOxx User code bank-switching GTO instruction
in ROM with XROM-id of xx

Perform a bank-switched GTO instruction to a user code program or sub-
routine in an aiternate bank.
When the HP-41 encounters a normal GTO instruction in a running
program, it searches both RAM and ROM for the specified LBL and then
transfers execution to that program. However, with bank switched ROMs,
the 41 cannot see programs in alternate banks unless those banks are first
enabled. For this reason a special GTO function has been included to
perform the bank switching. The function, [BGTOxx], being loaded into a
switched bank by [appucF). During loading the instruction always takes
on the XROM identity of that bank. See page 39 for a fuller explanation.

Action When is encountered in a running program, in place of the
normal GTO instruction, the HP-41 switches banks in that page and uses a

GTO IND X sequence to search for and branch to the program whose
name the user has stored as an alpha string in Reg X.

This instruction should be used with exireme care as no error
checking can be performed by the function. Users should ensure that
the specified global LBL actually exists in the alternate bank and that the
alternate bank routine has been written for bank-switched usage. For
example, unless a is used to replace a terminating RTN, the
program will terminate with the alternate bank still enabled.

Because ZEPROM always switches both banks of both pages at the same
time, the subroutine can reside in either page, but must be in the alternate
bank and in the same ROM.

In writing programs to branch to routines in another bank, the user must
replace GTOs with instructions wherever bank-switching is
required and ensure that the XROM identity; is used.

Because takes its LBL as an alpha string from Reg X, a maximum
of 6 characters can be used for the label.

Input The user must supply a value for the following argument:

Reg X: alpha L.BL The global alpha LBL to be called
stored as alpha string. Maximum
string length is 6 characters.

Output Stack remains unchanged.

Reg X: alpha LBL The global alpha LEL to be called
stored as alpha string. Maximum
string length is 6 characters.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

v A non-existent gfobal alpha LBL was
. specified in Reg X,

XTI
yup_1} Wi

T
‘

+

L]
L

¥
-t

w T
LY

)
"

@ Zengrange Ltd - 1988 47

ZEPROM Module - Programmer's Manual = oo G

e
Example] This example illustrates the use of to branch execution of a
program running in the primary bank to a subroutine in the secondary e
bank. The primary bank has been initialised with the XROM identity 21 and
the secondary bank with XROM 31. e
Primary bank code (XROM 21) !‘
+LBL *PROGL" Main program in psimary bank. !
“PROG2" Name of program to execute e
ASTO ¥ Load alpha string into Reg X
EGT0Z21 Go to the label in the other bank
: Program counter is left here after !
returning from secondary bank
L
Secondary bank code (XROM 31) .
L
+LEL PROGZ Program in secondary bank
L ; [
BRTHZ1 End subroutine in secondary bank, ‘
swap back to primary bank 4
\
L
\

40 4 a2 A =B 4B == e

48 © Zengrange Ltd - 1988
e

Chapter 6: The Programmer ROM

BLANK? Testif the page in Reg X is blank
XROM 09,04

Checks every location in the 4K page specified in Reg X and verifies that it
is blank. The function behaves as a normal HP-41 test function.
Input The user must supply a value for the following argument:
Reg X: targer-page Page to verify specified as a floating
point value, or hexadecimal string.

{ Output The function's action varles depending upon it being executed from the
keyboard, or under program control. See Page 39 for details of the
general format of comparison tests.

Under Keyboard Execution: Displays a YES or NO answer,
Reg X: unchanged (rarget-page)
Page is blank (TRUE) Displays 'YES' answer.
Page is not blank (FALSE) Displays ‘NO’ answer.
Under Program Control: Doesn't display an answer, rather

executes or skips the next program
instruction depending upon the
result. Follows ‘DO IF TRUE' rule;

Page is blank (TRUE) Executes the next program step.
Reg X: unchanged (arger-page)

Page is not blank (FALSE) Skips the next program step.
Reg X: unchanged (target-page)

(Errors Refer to the HP-41 Owner’s Manuals for details of standard messages.

Tl T % OOEe An invalid page was specified.
T BT f‘{y_rr'_‘

(Example] This exampie uses to creates in Alpha a string of hexadecimal
characters representing all blank pages found between 8h and Fh.

d1¢LEL “ELRHKS" Program name

a2 ria Clear alpha ready for list

B3 8.@13 Load ISG centrol number (8-15)
a4+LEL @9 Start of ISG loop

45 BLANK? Is this page blank ?

B4 KEQ 81 Yes, call 'append’ subroutine
87 IS5 X Increment page number

a3 GT0 62 Repeat to check next page

a9 RTN RTN when all pages checked
18+LEL &1 Start of ‘append’ subroutine

11 DECHEX Comnvert page number into hex
12 ARCL X Append page number to Alpha
13 %<y L Restore ISG control to Reg X
14 KTH End of subroutine

@ Zengrange Ltd - 1988

e —— e

ZEPROM Module - Programmer's Manual » !

{
BNKSW? Test if page in Reg X is bank-switched 1
XROM 09,05
l
Purpose Tests to see if the page specified in Reg X is bank-switched. The bank- [
switching protocol developed by Hewlett-Packard requires that a bank-
switched page has a non-zero value in the most significant two bits of the
word at page location FFDh. therefore checks this location and ‘
returns an indicator value to Reg X. Because ZEPROM uses a superset of
HP’s protocol, is able to distinguish between pages in an HP {
ROM, and primary and secondary banks of a ZEPROM. With HP switched
banks, the value returned is -1'. For ZEPROMSs, a value of “+17 or ‘+2' is r
returned indicating primary (bank 1) or secondary (bank 2) respectively,
Input The user must supply a value for the following argument; [
Reg X: target-page Page specified as a floating point
value, or a hexadecimal string. (
{ Oulput The function’s action depends upon keyboard or program execution. See
Page 39 for details of the general format of comparison tests. ‘
Under Keyboard Execution: Displays a YES or NO answer.

Reg X: is replaced by the bank

switched status value indicator

Reg L: contains the target page
originally in Reg X.

Page is switched (TRUE) Displays "YES' answer.
Reg X: contains either:
-t = HP primary/secondary bank
+1 = ZEPROM primary bank
+2 = ZEPROM secondary bank

Page not switched {FALSE) Displays ‘'NO’ answer.
Reg X: contains the value ‘0"

Under Program Control: Doesn't display an answer, rather
executes or skips the next program
step depending upen the result.
Reg X: is replaced by the bank
switched status indicator in FFDh.
Reg L: contains the target page
originally in Reg X.

" Y YT U S W Y N

Page is switched {TRUE) Performs the next program step.
Reg X: contains either:
-1 = HP primary/secondary bank
+1 = ZEPROM primary bank
+2 = ZEPROM secondary bank

FPage not switched (FALSE) Skips the next program step.
Reg X: contains the value ‘0

F Y Y -~ yr N - ay

50 © Zengrange Lid - 1988

imer ROM

Errors Refer to the HP-41 Owner's Manuals for details of standard messages.

}jqr [I An invalid page was specified.

This example uses to determine if the page specified in Reg X is
a bank-switched ZEPROM page. If unswitched, or in an HP bank-switched

ROM, it displays a message and exits. |f a bank-switched ZEPROM page,
the enabled and disabled banks are swapped over. The program expects
the number of the page to be tested in Reg X.

B1+LEL “SHPENK" Program: Swap ZEPROM banks.
Expects the page # in Reg X

A2 BRKSH? Is page bank-switched?

@3 GTO aa Yes, so go check what type

B4 "NOT SWITCHED™ No, so load error message, then

85 GTO 99 Go to display routine

BoeLBL @@ Check bank switched type

a7 ¥»87? Is page a ZEPROM? (value=1 or 2)

83 GT0 A3 Yes, so go swap banks

89 "HPF SWITCHED" No, s¢ load "HP" message

18¢LBL 99 Display routine entry point

11 RYIEW View message in Alpha register

12 RTH Exit

13+LEL 83 ROM is ZEPROM & bank-switched

14 X L Put page # in Reg X and current
bank in Reg L

15 GTO IND L Branch depending upon currently
enabled bank

16+LEL 81 Primary bank currently enabled

17 ENRBLES So enable secondary bank

18 RTH Exit

139¢LEL B2 Secondary bank currently enabled

28 ENAELEP S0 enable primary bank

21 RTH Exit

© Zengrange Lid - 1988

e ———r

ZEPROM Module - Programmer's Manual =~ S ¢

BRTNxXx User code bank-switching RTN instruction .
in ROM with XROM-id of xx

(Purpose] Perform a bank-switched RTN instruction to a user code program or stib-
routine in an alternate bank.

A 48 A

[Theory When the HP-41 encounters a normal RTN instruction in a running
program, it takes the next pending return address and transfers execution
to that address. However, if called as a sub-routine by a program in
another bank of a bank-switched ROM, that address will be incorrect
because it resides in a different bank. For this reason a special Retumn
instruction, [BRTNxx], has been provided to perform the bank switching.
During loading with [ADDUCF), the function always takes on that bank's
XROM identity. See page 39 for a full explanation of the procedure, |

BATNxx) instructions should replace RTNs wherever bank switching is \
required. However, if the routine is to be called by programs within that]
bank and from other banks, then the user must ensure that the correct L
type of return is used. The most suitable method of doing this is to set or
clear a flag depending upon the calling program. By testing the flag, either '
a RTN or can be executed. [BRTNxx] should also be used to
precede the normal END if that instruction is also to bank-switch execution
back to a cailing program. .

Action When [BRTNxx] is used in place of the normal RTN instruction, the banks ,
are switched and then execution continues from the next pending RTN L
address. M no return is pending, execution will halt after the banks have
been swapped. C

N A

(Cautions] This instruction should be used with extreme care. Because no efror
checking can be performed, users must ensure that BRTNxx | i$ only Q
used when it is necessary to return control to ancther bank. If
incorrectly used (instead of a RTN), the banks will swap, and program
execution will continue from the next address on the return stack. This
could contain user or machine code, 5o results are totally unpredictable!

(Input] None.

A oy

{ Output Nane. -
Etrors | Refer 1o the HP-41 Owner’s Munuuis for details of standard messages.
Example | This illustrates the use of [BRTNxx | to bank-switch return from a sub-routine L
in another bank. The routine also checks to determine whether it was
called from the same bank; in which case a normal RTN is used. The i

primary bank has been initialised with the XROM identity 21 and the
secondary bank with XRCM 31.

r 3 A~ - .

52 © Zengrange Ltd - 1988

Primary bank code (XROM 21)

+LEL “PROG1" Main program in primary bank,
"PROGI™ Load alpha LBL
ASTO X Load as alpha string into Reg X
SF @ Set flag = IS a bank-switched cali
BXER2E Call sub-routine label specified
ENT End of main program

Secondary bank code (XROM 31)

+LBL PROG2 Program in secondary bank
CF a Clear flag = 1S NOT bank-switched
XEQ "PROGI™ Calf subroutine in this bank
END End main program in this bank
+.BL “PROGI~ : Start of subroutine
*FS @ Called by another bank?
BRTH31 Yes, do switched retumn to primary
RTH No, do an ordinary return

© Zengrange Ltd - 1988

R ——————

ZEPROM Modu_!e____ I'-__'___rqg_rammer’eranual

. s T, |

BURNUC Burn user code program from RAM or ROM
XROM 09,06

(Purpose] Takes a user code (RPN) program from main memory, another plug-in
module, or a Q-ROM/RAM Storage Device and burns it into the ZEPROM
page specified in Reg X. The function requires a program name in Alpha
and searches sequentially through RAM followed by plug-in's, and uses
the first program it finds that contains a global alpha LBL of that name. if
alpha is empty, takes the program to which the program pointer
is currently located; provided that it contains has at least one global alpha
LBL.
requires that the program to be loaded has already been

packed. If not already packed, use PACK or press (-] [1] before

A s B T M

executing [BURNUG] If the program came from RAM [BURNUC) will [.
compile it (to link XEQs and GTOs with their labels) before burning the
program into the specified page. Programs taken from ROM are deemed G
to already be compiled, so does not do so. When the program
is loaded, a FAT entry is made for every global LBL in the program. _
If burn errors occur due to low batteries, etc., the burn failure address is -
retumed to Reg X. The instruction can be used to recover and
complete the burn operation, but the user must recall the burn starting G
address to Reg X from LASTX. See page 41 regarding use of [REBURN).
Encugh spare FAT entries must exist for every global alpha label in the é
program to be burnt.
does not search for program fites in Extended Memory. —
If your program contains synthetic instructions (and intentional nulls) you =
may not want it to be packed. In this case you must not use [BURNUC). _
Instead, execute to ascertain the amount and address of free -
space in a specified page, then execute the [REBURN | instruction to burn
the program into the page. [REBURN) is used in this case to bypass the é
compilation and packed status checks in [BURNUC).
The user must supply values for the following arguments: -
Reg X: target-page Page specified as either a floating
point value, or a hexadecimal string, G
Alpha: program-LBL Maximum 7 character global alpha
LBL. If blank takes program to é
which the pointer is positioned.
(Cutput Stack registers are unchanged unless a burn error occurs. See page 40 -
for standard outputs. in the case of burn errors, registers are modified to:
Burn operation failed: Reg X: replaced by the burn failure é

address (address at which the data
was verified incorrectly).

Reg L: contains the address of the
first line of code burnt.

Alpha: program-name being burnt.

N 4

Fi

54 & Zengrange Lid - 1988
TS

..., Chapter 6: The Programmer ROM

Errors See the HP-41 Owner’s Manuals for standard messag will also
[compuc]

return messages in case of compilation errors. See [COMPUC | for detalls.

+ wWiEh A Tl An invalid e was specified.
[IMGHL T PREE] pag P
W = The specified user code program
eOT PACHET P prog

has not been packed.

I A burn error occurred at address
indicated by ‘nunn’. Commoniy

caused by specifying an empty or

non-ZEPROM destination page.

l T gy - I Low battery terminated burning at
SSANEUARIRIAIAIAIA the address ‘nnnn’. Check, replace
the batteries and then [REBURN)
'ERT] T ot b ik The program LBLin Alpha exceeds
l!_ I{r_ Ertrf ey |

7 characters.

Yl E T T J The program LBL in Alpha is that of
! a machine code function in ROM or

in the HP-41 operating system.

I Not enough spare FAT entries for
the number of gtobal alpha LBLs in

specified program. Change some

to local LBLs.

TR IR] Not enough free space is left to load

LI the program specified in Reg X.

¥ I A non-existent global alpha LBL was

: specified in Alpha.

© Zengrange Ltd - 1988 35

ZEPROM Module - Programmer's Manual

BURNWD

XROM 09,07

{input]

Output

Burn word in Reg X into address in Reg Y

Burns an individual 10-bit HP-41 word specified in Reg X into the 16-bit
ROM page address that is specified in Reg Y.
The input required for [BURNWD] is compatible with the output of

so that [BURNWD | can be used to burn a checksum into the page after all

other data has been burned.

The user must supply values for the following arguments;

Reg Y. target-address

Reg X: 1&-bit-word

Target address input as a floating
point value, or hexadecimal string.

Word to burn input as a floating
point value, or hexadecimal string.

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Errors Refer to the HP-41 Owner’s Manuals for details of standard messages.
= = An invalid page was specified.

P AL TT PAGE | page s sp

l T riis q. T T -,! T T] A negative or other invalid address
ATer P 4 Al EAE LA value was specified in Reg Y.

Check that valid and positive
hexadecimal characters were used.

I IR A T YT LY J The checksum value in Reg X
LSS S A AU exceeds '3FFh’ (1023).

[T YT T I A negative or other invalid data
EEALEAISS S N AR value was specified in Reg X.
YT T IR A burn error occurred at the page

| ﬂfnru [N R F A T T] address "nann’.

IRV S AN Low bhattery terminated burning at

I’- rivd APt C i] address location 'nnnn’. Check and

replace batteries.

[Exampte] [BURNWD]is used to burn a computed page checksum into location FFFh.
The checksum is computed by {CHKSUM], which returns a checksum and
its address to Reg X & Reg Y respectively. Program expects a page
number in Reg X and exits with the checksum read by in Reg X.

B14LBL “BRHSUM Burn computed page checksum.
Expects page number in Reg X

@2 CHKSUH Get checksum & address into X & Y

A3 BURKWD Burn that value into ROM page

&4 RDN Move address to Reg X

G4 RERDUD Read word at that address in ROM

a4 RTH Exit

56 © Zengrange Lid - 1988

-~ A& B M L] Fs | Ay

r N

ry 9 y 9 e A

e

Chapter 6. The _Pl_'_ogramr_ngr ROM

BXEQxx User code bank-switching XEQ instruction

Purpose

[autrions

[Elpul
Errors

in ROM with XROM-id of xx

Perform a bank-switched executs (XEQ) instruction to a user code
program or subroutine in ancther bank

When the HP-41 encounters a normal XEQ instruction in a ranning
program, it searches both RAM and ROM for the specified LBL and then
transters execution to that program. However, with bank switched ROMs,
the 41 cannat see programs in alternate ROM banks unless those banks
are first enabled. For this reason, a special Execute instruction, BXEQnx |,
being provided to perorm the bank switching. During loading into a
switched bank by (ADDUCF], the instruction always takes on the XROM
identity of that bank. See page 39 for a fuller explanation.

Whenever [BXEGxx] is encountered in place of a normal XEQ instruction,
the HP-41 saves the RTN address in the current bank, switches ROM
banks and uses the XEQ IND X sequence to search for and execute the
function whose name the user has stored as an alpha string in Reg X.

With the program name as an alpha string in Reg X, it may also be used
from the keyboard to execute a program in the alternate bank.

This instruction should be used with extreme care as no error
checking can be performed by (BXEQxx]. Users must ensure that the
called LBL actually exists in the alternate bank and that the called routine
has been written for bank switching. Wherever the cailed routine returns to
the calling routine, the RTN must be replaced with a (BRTNxx] If a normal
RTN or END is used instead, the 41 will not swap banks, but simply use the
next return stack address and continue execution in the current bank.
Depending upon the particular ROM, this address may contain user or
machine code, so the result is totally unpredictable,

Because ZEPROM always switches both banks of both pages at the same
time, the called sub-routine can reside in either page, but must be in the
alternate bank and in the same ROM.

In writing programs to call subroutines in another bank, the user must
replace XEQs with instructions wherever bank switching is
required and ensure that the correct XROM identity is used.

Because [BxEGxx) takes its LBL as an alpha string from Reg X, a maximum
of 6 characters can be used for the alpha label.

The user must supply a vatue for the following argument:

Reg X: aipha LBL The global alpha LBL to be called
stored as an alpha string.
Maximum string length is &
characters.

None.

Refer to the HP-47 Owner’s Muanuals for details of standard messages.
[n AN, va T CTLhT] A non-existent giobal alpha LBL was
P o g TY P e specified in Heg X

© Zengrange Ltd - 1988 57

R ——————————

ZEPROM Module - Programmer's Manual e

Exampie This illustrates how to call a sub-routine in either the primary or secondary
bank of the medule. The primary bank is currently enabled and has an
identity XROM of 21. Note that for the error trapping, via flag 25, to work
correctly, the program expects the primary bank routine to leave flag 25

. Y Y . Y

set.
. .
Primary bank code {(XRCM 21)
B1+LBL “FHIREG" Program: Find & Execute. Expects
program name to be in alpha
B2 RASTO X Store program name in Reg X .
B3 SF 25 Ignore error if occurs
B4 REG IMD X Try to find LBL In this bank {NB. the .
routine should leave Flag 25 set) L.
85 7FS 25 Was LBL found (F-25 still set ?)
@46 RTH Yes, thus do normal RTN to caller L
87 BXE®Z21 No, so swap banks and search for it
in other bank. Hait if not found
a3 RTH Sub-routine found and executed !
e
e
!'
!
e
L
'
i
.
!
"
Y
F
£

58 © Zengrange Ltd - 1988
T eeeeTETETLELELESSS.———————————————

Chapter 6: The Programmer ROM

CHKSUM Compute & return checksum
XROM 09,08 for specified page

Purpose Computes a checksum for any HP-41 page specified in Reg X. After
calculation, that checksum along with its address are returned into Reg X
and Reg Y respectively ready for burning into the page with @Rywn .
(input The user must supply a value for the following argument:
Reg X: target-page Target page specified as a floating
point value, or hexadecimal string.
Valid pages are 0 to Fh, ¢ to 15.

{ Qutput For a valid page number:
Reg¥: checksum-address Checksum address in either floating
point or hexadecimal string format.

Reg X: page checksum Checksum in either floating point or
hexadecimal string format.

Regl: tarpet-page Target page specified as a floating
point value, or hexadecimal string,

For an invalid page number:

Reg X: targer-page Target page specified as a floating
point value, or hexadecimal string.

[Errors Refer to the HP-41 Owner’s Manuals for details of standard messages.

= Wi InE v An invalid page was specified.
I HE T FREE] pag P

-

Example] Uses 1o calculate the checksum of the page specified in Reg X

and then verifies that this is the same as that already burnt into the page.

A1+LEL "WERSLNH® Program: Verify page checksum
82 CHKSUM Get checksum & address

B3 KON Move address to Reg X

A4 READWD Read that address in the ROM
B3 Ky Move actual checksum back to Y
86 RDN X=actual, Y =correct checksum
B¢ -5pon - Load default “good” message

B3 Hey? Is actual checksum bad ?

#3 “BAD - Yes, 5o load "bad” message
1A+LEL At Display entry point

11 "FCHESUM Append "checksum” to message
12 AVIEN Show message to user

13 RTH End of routine

® Zengrange Ltd - 1988 59

e ——

ZEPROM Module - Programmer’s Manua_l N N ‘

COMPUC Compile user code program .
XROM 09,09 in main memory

Purpose Compiles and links all local and numeric GTO and XEQ instructions to their
corresponding LBLs in the user code program specified in the Alpha
register. By compiling programs, the effective execution speed is
increased hecause the HP-41 needs to perform less label searching.

Theory Whenever a program in RAM is run for the first time, the HP-41 has to find
all LBLs in the program by searching:
Far numeric labels (0 to $9), or local alpha labels (A to J, a to e),
the HP-41 attaches the actual GTO/XEQ jump distance to that LBL
and therefore does not need to search again.
For global alpha labels such as "AB99", the HP-41 must search alf
alpha LBLs in program memory and plug-in’s to find that LBL every
time the program is run. Searching always begins at the fast LBL in
memory and continues upwards to the first corresponding LBL is
found.
ROM programs, however, must always be compiled, because the HP-41
cannot search ROM for numeric LBLs over 14 or any local alpha LBLs. If a
program was not compiled before burning into ROM, the HP-41 wiii crash!

. o r N . A A -

[Action) (compuc] searches sequentially through all programs in main memory for
the first program containing the program LBL specified in the Alpha
register. If no program LBL was specified, compites the ‘
pragram to which the program pointer is currently positioned.

COMPUC | requires that the program is already packed {removing null |

bytes). Use PACK or press {1](:] to pack the program.
Compilation aborts with a "NONEXISTENT" message # the sought local or
numeric LBL is not available. At the same time the decimal value of that
LBL is returned to Reg X.

Cautions Programs for loading into ZEPROM must always be compiled - see
Theory | above, expects the program to reside in main memory.
If the program is subsequently to be loaded into ZEPROM, it must contain

at least one global alpha LBL in order to appear in the FAT of that page.

The user should supply a value for the following argument:

Alpha: program-LBL Globat alpha LBL in the user code
pragram to be compiled. If left
blank, takes the program
in which the pointer is positioned.

! Qutput Registers are unchanged unless a compile error oceurs.
Alpha: program-LBL Giobal alpha LBL within program
being compiled, or blank if no LBL
was specified.

Regl: previous-Reg-X-value Previous value moved from Reg X.

r 9 A y 9 y N N A . y 9 s

60 © Zengrange Lid - 1988
L

The Programmer ROM

Decimal value of nonexistent local
alpha or numeric LBL. These values
are shown in the following table:

Reg X: LBL value

LBL 60 LBL o1 LBL 02 LBL 03
) 01 02 03
LBL. 100 LBL 101 LBLA LBLB
100 101 102 103
LBLC LBLD LBLE LBLF
104 105 108 107
LBL G LBLH LBL{ LBL J
108 109 110 111
LBLT LBLZ LBLY LBL X
112 13 114 115
LBL L LBLM LBL N LBL O
118 117 118 119
LBL P LBLQ LBL+ {(R) LBL a
120 121 122 123
LBL b LBLc LBLd LBLe
124 128 126 127

{N.B. Labels 100, 101, T, Z Y, X, [, M, N, O, P, @, F (R} can only be created
by means of synthetic programming techniques (S.P. 1)

Numeric and Local Alpha Label Values

{decimal values returned by to Reg X

Refer to the FHP-41 Owner's Manuals for details of standard messages.

A non-existent giobal alpha LBL was

specified in Alpha.

The program contains a GTO or

XEQ to a non-existent local LBL.

] The specified user code program

has not been packed.

7 The program LBL in Alpha is that of
a machine code function in ROM or

in the HP-41 operating system.

© Zengrange Lid - 1988

e ————— g

ZEPROM Module - Programmer’s Manual S

COPYPG

Copy entire 4K image between pages X & Y

XROM 09,10

(Purpose

_Catition s

Output

Errors

62

Copies a compfete 4K ROM image from an origin page specified in Reg Y
into a destination page specified in Reg X. This function is useful for
copying a compiete block of code in a Q-ROM or RAM Storage Device, or
for duplicating existing ROMs.

Because software is covered by copy, design or patent rights, it is
illegal to make copies for distribution, duplication or modification
unless permission has been granted by the holder of those rights.
Obtaining such permission is the specific and sole responsibility of the
user. In all cases where a Zengrange product is used to infringe such
rights, the user shall bear the entire responsibility and assume all liability
for infringement. Neither Zengrange Ltd, nor its agents, shall be in any
way iiable for the user's actions.

is not able to detect the case where the pages specified in both
Rg X & Y are those of an empty port. Because the burnt and read data are
blank, will believe that data was burnt correctly.

The user must supply values for the following arguments:

RegY: origin-page Origin page specified either as a
floating point value, or a
hexadecimal string,

Target page specified either as a
floating point value, or a
hexadecimal string.

Reg X: destination-pages

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner’s Manuais for details of standard messages.

[ThiiLgr T 7 [T T I An invalid page was specified.

A rwy Fep 4 At LY N

! T it T T4 v a7 The origin and destination are
DAL TD KV | identical

[= A low battery has caused buming to

ATt AT I

terminate at the address location
indicated by 'nnan’. Check &
replace batteries.

A burn error occurred at the
address indicated by ‘nnnn’. This is
often caused by specifying a blank
or non-ZEPROM destination page.

I |

© Zengrange Ltd - 1988

. T)

L1 A kD B . R . B i B . 1 ", . B B . B L1 . B

o A 4 A

Chapter 6: The Programmer ROM

CPXYZ

Copy data as specified in Regs X,Y,Z

XROM 09,11
Takes the number of data bytes specified in Reg X from the origin address

© Zengrange Ltd - 1988

.

specified in Reg Z and copies it into the destination address specified in
Reg Y. The maximum number of data bytes that can be specified is 4096
this being an entire 4K ROM page.

Because software is covered by copy, design or patent rights, it is
illegal 1o make copies for distribution, duplication or modification
unless permission has been granted by the holder of those rights.
Obtaining such permission is the specific and sole responsibility of the
user. In all cases where a Zengrange product is used to infringe such
rights, the user shall bear the entire responsibility and assume af liability
for infringement. Neither Zengrange Ltd, nor its agents, shall be in any
way liable for the user’'s actions.

The user must supply values for the following arguments;

Reg X: Number of bytes to copy beginning
from the origin address. Can be
specified as a floating point value,
or a hexadecimal string. Maximum
size is 4096 bytes (1000h).

number-of-bytes

Reg Y: Target address specified as floating

point value, or hexadecimal string.

target-address

Reg Z: Qrigin address specified as floating

point value, or hexadecimal string.

origin-address

Stack registers are unchanged unless an error occurs during burning. See
page 40 for details of standard outputs following burn errors.

Hefer to the HP-41 Owner’s Manuals for details of standard messages.

ThiliL
FRR I N

Yy T ¥ q
b4 df -

= An invalid page was specified.
1 iy |

-
—_

The origin and destination are
identical.

The byte counter in Reg X exceeds
4096 (1000h} or is negative.

A low battery has caused burning to
terminate at the address location
indicated by ‘mnnn’. Check &
replace batteries.

A burn error occurred at the
address indicated by ‘nann’. Thisis
often caused by specifying a blank
or non-ZEPROM destination page.

ZEPROM Module - Programme

{
DECHEX convert decimal value in Reg X into hexadecimal (
XROM 09,12 '
{
Converts the decimal address or word value stored in Reg X into §
hexadecimal format. The function takes the absolute integer portion of the
number, and checks that it is a valid HP-41 ROM address or word, then ‘
converts it into the equivalent hexadecimal alpha string. The original value |
is saved to LASTX,
The user must supply a value for the following argument: |
Reg X: decimal-number (nnnnn) Only the absolute integer portion of |
the nurber is used. DECHEX will \
convert numbers from 0 to 65535
('oh’ to ‘FFFFh'). ‘
For a valid decimal number:
Reg X: hexadecimal-siring (hhih) The equivalent hexadecimal alpha ‘
string ‘'0h’ to 'FFFFR
Reg L. decimal-number (nnnnn) The criginal decimal number in Reg '
Xis saved to LASTX.
. \
For an invalid decimal number: (Registers are not changed)
Reg X: decimal-number (nnnnn) The original number nnnan. '
Refer to the HHP-41 Owner's Manuals for details of standard messages.
l TalrLgl T T T YiEy | A negative or other invalid address '
ERALBLALIN W AP FSiA value was specified in Reg X.
It TILIT] T T The value in Reg X was already an \
If‘f;_a' r‘”“f _f_n" i }'{ I Alpha vaiue.
[n‘u 7T R The value in Reg X to be converted |
At 4 rt FTE e A |

exceeds 65535 ('FFFFR').

This example shows the key sequence needed to convert a decimal ¢
number of 1247 into a hexadecimal number.

!
Key Sequences Description
1
(1)) Input the decimal number into the X
register. E
(0)(E)(c)(H](e])(x] Executethe DEC to HEX function to
(ALPHA] convert the value. .
, . \
l (e] Display shows the hexadecimal
Al equivalent, which has been stored .
into Reg X as an alpha string. !
{
{

64 ®© Zengrange Ltd - 1988

e

Chapters: T

he Programmer ROM

ENAB LEP Enable primary bank of ROM
XROM 09,13 whose page is in Reg X

Purpose ENABLEP | takes a ROM page number from Reg X and swaps the banks in
that bank-switched ROM page such that the primary bank (bank 1) is
enabled and the secondary bank (bank 2) is disabled. This function,
together with [ENABLES), permits the User to swap between the two banks

of any bank-switched ROM plugged into the HP-41.

This prograrm is provided specifically for use whilst programming ZEPROM
modules. With the aid of this function, users can control the bank-
switching of any module currently plugged into the HP-41. This may prove
useful with ZENROM's MCED function for examining and debugging code

that you have already burnt into switched banks.

Cautions] The instruction only acts upon the particular ROM module
whose page number has been specified in Reg X. However, because of
the way the module operates, both primary pages in that module are

enabled at the same time.

The user must supply a value for the following argument:

Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string.

None.

Refer to the HP-41 Owner’s Manuals for details of standard messages.

» I Ind Aninvalid page was specified.
| INVHL T T FAGE rvalid page was specifi
t:&"; T T TP ¥ Tndh(The page in the ROM specified in

AR LSRN A Reg X is not bank switching.

© Zengrange Ltd - 1988

.

ZEPROM Module - Progr_am___mer’s Manual o o 3 _ ‘

ENABLES Enable secondary bank of ROM
XROM 09,14 whose page is in Reg X

r'’n

Purpose | [ENABLES | takes a ROM page number from Reg X and swaps the banks in
that bank-switched ROM page such that the secondary bank {(bank 2) is
enabled and the primary bank {bank 1) is disabled. This function, together

A -

with [ENABLEP), permits the user to swap between the two banks of any .
bank-switched ROM plugged into the HP-41.
This program is provided specifically for use whilst programming ZEPROM !

modules. With the aid of this function, users can control the bank-
switching of any module cumently plugged into the HP-41. This may prove -
useful with ZENROM’s MGED function for examining and debugging code .
that you have already burnt into switched banks.

(Cautions] The [ENABLES] instruction only acts upon the particular ROM module e
whose page number has been specified in Reg X. However, because of

the way the module operates, both secondary pages in that module are i
enabled at the same time.
(Input | The user must supply a value for the following argument; .
Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string. i
None.)
(Errors Refer to the HP-41 Owner's Manuals for details of standard messages. e
T e An invali ified. :
IINL g TT :_JH’.‘.‘::I n invalid page was specifi .
t; Y (T T T The page in the ROM specified in !
LY SR LA Reg X is not bank switching.
e
e
.
.
.
.
.
[
66 © Zengrange Lid - 1988 e

Chapter 6: The Programmer ROM

FRSPC? Determine address and amount of free space
XROM 09,15 of page in Reg X

Calculate the free (Unused) space remaining between the FAT and the
beginning of the bank-switching code/normal interrupts. If the specified
page contains free space, its starting address Is placed into Reg Y, and the
number of free bytes and remaining FAT entries is placed into Reg X.

[Cautions] [FRSPC?] cannot check whether or not the specified page contains a plug-
in module, or if that module is a ZEPROM.

Input The user must supply a value for the following argument:
Reg X: targer-page Target page specified as a floating
point value, ot hexadecimal string.

Output depends upon whether it was executed from the keyboard, or
under program control. See page 39 for full details of comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.

Has free space (TRUE} Displays 'YES™ answer.
Reg Y: free space starting address
in floating point or hexadecimal.
Reg X: free bytes (nnnn) and
remaining FAT entries ({ff) in format
of a floating point value ‘nrnn . fff
Reg L: target page saved from Reg X

No free space (FALSE) Displays 'NO' answer .
Reg X: remains unchanged {page).
Under Program Control: Doesn't display an answer, rather

executes or skips the next program
instruction depending upen the
result. Follows ‘DO IF TRUE rule:

Has free space (TRUE) Perform the next program step.
Reg Y: free space starting address
in floating point or hexadecimai.
Reg X: free bytes (#nnn) and
remaining FAT entries {fff) in format
of a floating point value ‘nnnn . fff°
Reg L: target page saved from Reg X

No free space (FALSE) Skips the next program step.

Reg X: unchanged (target page).

Refer to the HP-41 Owner's Manuals for details of standard messages,

I wivTellnt An invalid e was specified.
[NALTT PRGE] page was sp

© Zengrange Lid - 1988 67

I —————

Y

ZEPROM Module -

LB

HEXDEC Convert hexadecimal string
XROM 09,16 _ into decimal number

LB

Converts a hexadecimal alpha string stored in Reg X into its fioating point
decimal integer equivalent. The function accepts an alpha string of up to 4
characters, checks that it is a valid HP-41 ROM address or word, then
converts it. The original value is saved to the LASTX register.

. 1, i : 1

The user must supply a value far the following argument:

Reg X: hexadecimal-string {hhhh) A hexadecimal string of maximum 4
characters of value '0h’ to 'FFFFh'.

A

For a valid hexadecimal string:

Reg X: decimal-number (nnnnn) The equivalent decimal integer é
value 0 to 65535.
RegL: hexadecimal-string (hhhh) The original hexadecimal alpha i
string in Reg X is saved to LASTX.
For an invalid hexadecimal string: (Registers are not changed) é
Reg X: hexadecimai-string (hhthh) The original hexadecimal string,
Refer to the HP-41 Owner's Manuals for details of standard messages. .
Tairiigt ¥ 9 LF TS A negative or other invalid address -
Lite A, T3 HIIR value was specified in Reg X. .
Yirg T g gL Reg X contains a decimal value. -
[HTH ERRELR. Store as an alpha string. e
FOIT e Er e The value in Reg X to be converted
LT Sk RANGE | o Conds Freen (65535). e
This example shows the key sequences needed to convert a hexadecimal .
value of 4DCh into a decimal number.
Key Sequences Description e
ALPHA Input the hexadecimal number into _
B0 the alpha register. Then store that "
. ASTO Q @ into Reg X as an alpha string.
.
(m](e])(x])(0](E) Execute the HEX to DEC function to
ALPHA convert the value. [
T dLJtd FRTATAIA Display shows the number]
RN | converted into decimal. [
(3
&
-

© Zengrange Lid - 1988

ILBURN ' Burn page using ROM image from
XROM 09,7 .. - . HP-ILmass storage file

Retrieves the named file containing an entire 4K ZEPROM page image
from HP-IL mass storage medium and burns that image direct into the
specified ZEPROM page. The function will work with any HP-41 LIF
(Logical Interchange Format) medium such as cassette or 31" micro-disc.

(Theory (ILBURN] expects that specified mass storage file contains an HP-41
ROM image in the Eramco compressed 640 register/20 record format.
This is the format that has been adopted as a de facto standard by most
Machine Language Development Laboratory (MLDL) operating systems,
e.g. the SAVEROM function in the Eramco MLDL operating system. This
format has been chosen because it provides both maximum compression
and compatibility with already established products.

Cautlons ILBURN | requires that the HP-41 has been correctly set up ready for
burning of a ZEPROM module, with a ZEPROM Voltage Converter and a
ZEPROM connected and the ZVC's programming switch set to the ON
position. It also requires that an HP-Il. module and mass storage drive are
connected and turned-on.
will only search the directory of the currently SELECTed HP-IL
drive. If more than one exists, the user should SELECT the intended drive
before executing the function.

Input The user must supply values for the following arguments:
Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string.

Alpha: mass-storage-file-name Valid mass storage file name of
maximum 7 characters.

Qutput Stack registers are unchanged unless an error ocours during burning. See
page 40 for details of outputs during burning. In the event of a burn failure
the stack registers are modified as follows,

Burn failed: Alpha: unchanged (file name)
Reg X: burn failure address in
hexadecimal format.

Reg L: Target pagebeing bumt.

Refer to the HP-41 & HP-IL. Owner’s Manuals for details of standard HP-41
and HP-IL messages.

Q”;‘F”- T P, -q An invalid page was specified.

T ‘I A non existent file name was
L. specified

© Zengrange Ltd - 1988 69

R R

ZEPROM Module - Programmer's Manual

Wil LJf T No HP-IL module is connected to
[N ML | the HP-41.
= =T - Alow h i
[r'_ T AT T frrie] ow battery has caused burning to

terminate at the address location
indicated by ‘nnnn’. Check &

M M MW A

replace batteries. i
IV LYY IR A burn error occurred at address
LBFN = FE D rararan] indicated by ‘nnnn’. This is often -
caused by specifying a blank or €
non-ZEPROM destination page. i
Example | This example uses to burn 4 ZEPROM pages with images stored e
as files on the currently SELECTed HP-IL mass storage device. It assumes -
that the ZVC and ZEPROM module are plugged-in with the programming -
switch already set to ON and that the HP-IL and mass storage device are
connected and turned-on. The mass storage files to be loaded are called: !
JieQ, filet, file2, file3. It also expects the first page number (in decimal
format) to be in Reg X and takes the base part of the file nhame from Alpha =
and appends ‘0,1,2,3" in turn.. e
B1+LBL “EURN1AK Expects Reg X: base page number e
Alpha: “file" (basis of filename})
82 FIX B Ensure ARCL is only integer part .
83 CF 29 without a decimaf point.
84 .883 Load control number for ISG locp -
85 RASTO 2 Store filename in Reg Z. €
Be+LEL B8 ;
87 INT compute next page number .
88 CLA Clear Alpha for fitename building
B9 ARCL Z Recall base filename to alpha !
14 ARCL X Append next page number to alpha
11 X<y Swap next page & base page -
12 RCL L Recall counter €
13 RIN Reg X=base page, Reg T= counter
14 + Add base to next page number e
15 ILBURN Burn the image into ZEPROM bank
16 RT Base pageto Y & counter to X -~
17 ISG X Increment loop control number .
18 GTC &8 L.oop back to get other pages .
13 RTH Done all four pages -
-
L
-
-
-

70 © Zengrange Ltd - 1988

Chapter 6: The Programmer ROM

ILSAVE Save ZEPROM page image into
XROM 09,18 HP-IL mass storage file

Saves the entire 4K ZEPROM page specified in Reg X into an HP-IL mass
storage medium file. The function will wark with any HP-41 LIF (Logical
Interchange Format} medium such as cassette or 3%" micro-disc.

saves the specffied page into a mass storage file In the Eramco

compressed 640 register/20 record format. This is the format that was
adopted as a de facto standard by most Machine Language Development
Laboratory {MLDL) operating systems, e.g. the GETROM function in the
Eramco MLDL operating system. This format has been chosen because it
provides both maximum compression and compatibifity with already
established products.

The data is written to the curently selected mass storage device present
on HP-IL, and if more than one device exists the intended device can be
specified by the SELECT function in the HP-IL module. expects
that the HP-IL mass storage medium {(micro-disc, cassette, etc.) has
already been initialised by the NEWM Instruction, has a free catalogue
entry and enough free space for a file of 5120-bytes (640 registers,).

The user must supply values for the following arguments:
Reg X: target-page Target page specified as a floating
point value, or a hexadecimal string.

Alpha: mass-storage-file-name Valid mass storage file name of
maximum 7 characters.

Registers remain unchanged.

Refer to the FIP-41 & HP-IL Cwner's Manuals for details of standard HP-41
and HP-IL messages.

T v Tl An invalid s specified.
(TN AL T PAGE] page was specilied
il L4 T No HP-IL module is connected to
[l HPTL | the HP-41.

This example uses to save an entire straight 16K ZEPROM into

four 4K image files on the currently SELECTed HP-IL mass storage device,
't assumes that ZEPROM module is plugged-in and that the HP-IL and
mass storage device are connected and turned-on. The mass storage files
will be saved as: FILEQ, FILE1, FILEZ, FILE3. It expects the first page
number {decimal format) to be in Reg X and takes the base part of the file
name from Alpha.

© Zengrange Ltd - 1988 71

R ——— S

ZEPROM Module - Programmer’s Manual ‘

e
@LeLBL ~BURN1EK Expects Reg X: base page number L
: T Alpha: File® (basis of flename)
S B2FIN® Ensure ARCL is only integer part .
B2 CF 29 SR without a decimal point.
84 .883° : Load control number for ISG loop
85 ASTe Z. S Store filename in Reg Z. i
"BESLRL BO.. . -
B7 INT S compute next page number !
B8 CLR.. - i Clear Alpha for filename building
- @9 fRCL 2 Recall base filename to alpha
18 ARCL ¥ Lo Append next page number to alpha e
11 8H s Swap next page & base page]
2Rl L oo Recall counter L
12 RDN S Reg X=base page, Reg T= counter
14 + o Add base to next page number !
13 ILSAVE o Save the image onto mass storage
S olE Rt S Base page to Y & counter to X)
17 ISG°¥ : Increment loop control number L.
18 GTD ge : Loop back to get other pages
19 RTN R Done all four pages .
€
.
L.
L.
.
.
.
.
e
.
.
6

72 © Zengrange Ltd - 1988
S .

Chapter 6: Tng Programmer ROM

INITPG . initialise a ZEPROM Page
XROM 09,21 :

Initialises (formats) a ZEPROM page specified by the value in Reg Y.
Arguments for bank switching, the XROM number and maximum number
of Function Address Table (FAT) entries are taken from Reg X, while the
ROM-header and trailer information are taken from Alpha.

If a negative XROM-id is specified, INITPG will set up the page by loading
the necessary switching code at location xFC7h through xFCAh and set
the switched status bit at location xFFDh,

Before initialisig the page checks the page location x000h to

determine whether or not the specified page is blank. If location 0000h is
non-zero, then terminates.

Cautions | The argument for FAT entries should be the maximum number of functions
and programs that you will be putting into that page plus one for the
header, if desired.

Because the HP-41 cannot perform a CAT 2 on a page with blank FAT
entries, as the FAT chain and links are incomplete, do not perform a CAT 2
on that page until the FAT is completely filled with functions/programs. If
a CAT 2 is performed with blank entries, the HP-41 may crash,

if any ZEPROM page is initiatised as being bank-switched, then all banks
of all pages in that ZEPROM must be bank-switching. This applies
whichever bank-switched configuration is being used. After initialising the
first page in a ZEPROM, use to just add the switching code into
all other banks untit you are ready to those banks with XROM
numbers, headers, FATs, etc..

The user must supply values for the following arguments:

RegY: target-page Target page specified as a floating
point value, or a hexadecimal string.

Reg X: XROM . functions A floating point number in the
format ‘nr. fff where:
nn' is an XROM-id number from 01
to 31. A negative XROM-id
indicates that the page is to be
bank-switched.

¥ is a value between 0 & 64
indicating the maximum FAT entries

desired. If ‘0 is specified,

defaults to 64 entries.

@ Zengrange Ltd - 1988 73

ZEPROM Moduile - Programmer’s Manual S

Output
Errors

Examp_lé—‘

Alpha: hkeader , trailer

Two alpha strings separated by a
comma. The header can be up to 11
characters but the trailer must be 4
characters. Valid characters are
those of byte values of 20h to 5Fh.
True page headers should be of 8
or more characters if they are to
appearin a 41CX CAT 2. Normally
have a '-" as their first character.

Stack registers are unchanged unless an error occurs during burning - See
page 40 for details of standard outputs following burn errors.

Refer to the HP-41 Owner's Manuals for details of standard messages.

Page specified in Reg Y is not blank
at location xQ00h. If it contains
data, the page is considered invalid.

A low battery has caused burning to
terminate at the address location
indicated by ‘nnnn’. Check &
replace batteries.

A burn error occurred at the
address indicated by ‘nann’. Thisis
often caused by specifying a blank
or non-ZEPROM destination page.
Reg X contains an invalid value for
either XROM-id or number of
functions for the FAT.

This example Hlustrates the key sequences used to initialise page 8 of
ZEPROM with an XROM-id of 31 and a FAT of 25 entries. In addition, a
header of -MYROM 1A and trailer of MR1A are burnt into the page.

Key Sequences

Description

ALPHA | -MYROM1A MR1A

EIHO0EE)

ALPHA JINITPG [ALPHA

74

Input the page-header , trailer into
the alpha register.

input the target-page number and
duplicate it into Reg Y.

Input the XROM number , number of
functions into Reg X.

Execuite the function

© Zengrange Ltd - 1988

r. N N N N

r r N A

- A 4. B

- A

T N - °

PB09

~ Chapter6: The Programmer ROM

Enable primary bank ot

XROM 09,22 Programmer ROM module

Purpose

Disables the secondary bank (bank 2) and enables the primary bank
(bank 1) of the PROGRAMMER ROM module. This function, together with
[SB0s), enables users to switch between the banks of the PROGRAMMER
ROM if this module has been made bank switching by the user.

Because HP-41 bank-switching has been implemented such that only the
particular module containing the bank-switching instruction will obey it
each bank of each page in a bank-switching must contain the bank-
switching functions. As a user may have more than one ZEPROM module
plugged in at any time, and each of these functions must have a unigue
XROM-id to avoid confusion between them, the functions all adopt the
XROM-id of the page into which they are loaded. The general form of
these functions is and [sBxx |, see separate entries. When loaded
into an initialised page by [ADDMCF | the functions take on the XROM-id of
that page. Therefore, in the PROGRAMMER ROM (XROM-id of 09}, these
functions appear as and [sBog).

These functions have been provided in the PROGRAMMER ROM in case a
user decides to make that module bank-switching, and thus allow the user
to switch between the primary and secondary banks.

See additional explanation about bank-switching functions on page 39.

Input None.
Output None.
Errors None.
® Zengrange Ltd - 1988 75

ZEPROM Module - Programmer’s Manual _ _

PBxx Enable primary bank of ROM
with XROM-id of xx

', . . B |3

‘Purpose | Disables the secondary bank (bank 2) and enables the primary bank é
(bank 1) of the bank-switched ROM page whose XROM-id number is
specified in Reg X. This function, together with [$Bxx], enables users to
switch between the two banks of any particular bank-switched ROM as e
desired. .
| Theory Because HP-41 bank-switching has been implemented such that only the e
particular module containing the bank-switching instruction will obey i, _
each bank of each page in a bank-switching must contain the bank- .
switching functions. As a user may have more than one ZEPROM module
plugged in at any time, and each of these functions must have a unique !
XROM-id to avoid confusion between them, the functions all adopt the
XROM-id of the page into which they are loaded. When loaded into an _
initialised page by the functions take on the XROM-id of that -
page. Therefore, in a ROM page of XROM-id of 28), these functions
appear as [PB28] and $B28) -
See additional explanation about bank-switching functions on page 39.
input | None. é
Output] None. .
(&mors) None. e
e
L
-
.
-
-
-
-

o T -

76 © Zengrange Ltd - 1988
TGS

Chapter 6: The Programmer ROM

PGX =Y? Compare two 4K ROM pages for equality
XROM 09,23

Performs a comparison of the ROM page specified by Reg X against the
master specified in Reg Y. If both images are not identical, then the
location address of the first mismatched code is returned to Reg X.

The user must supply values for the following arguments:

Reg Y. First-page Master 4K-page specified as floating
point value, or hexadecimal string.

Reg X: Second-page 4K-page to be verified specified as
either & floating point value, or
hexadecimal string.

Output Varies according to whether the function was executed from the keyhoard,
or under program control. See Page 38 for details of the general format of
comparison tests.

Under Keyboard Execution: Displays a YES or NO answer.

Pages identical (TRUE) Displays ‘YES' answer.
Reg X & Y remain unchanged.

Pages not identical (FALSE) Displays 'NO’ answer
Reg Y: unchanged (Jst-page).
Reg X: address of first mismatched
code. Address is either floating
point or hexadecimal string
depending upon original value in X,
Reg L: Verified page. Original page
number moved from Reg X.

Under Program Control; Doesn't display an answer, rather
executes or skips the next program
instruction depending upon the
result. Follows ‘DO IF TRUE® rule.

Pages identical (TRUE) Performs the next program step.
Reg X & Y remain unchanged.

Pages not identical (FALSE) Skips the next program step.
Reg Y: unchanged (Master-page).
Reg X: address of first mismatched
code. Address is either floating
point or hexadecimal string
depending upon original value in X,
Reg L: Verified page. Original page
number moved from Reg X.

© Zengrange Ltd - 1388

.

ZEPROM Module - Programmer’s Manual

s T P DG A

"Errors) Refer to the FIP-41 Owner's Manuals for details of standard messages.
[I % ’L-J”.- I E }-J::”E”L:' | An invalid page was specified.
TRl T T v The origin and destination are
[Arww ©r_ 4odr nT] identical -
’ -
[Example This example compares a 16K straight {non-bank-switched} ZEPROM in)
) port 1 or 2 with another straight 16K ZEPROM module in port 3 or 4. -
B1#+LEL "CMPZEF Compare two ZEPROMs -
g 12,1 Load port 3 & 4 control number
(page 12 to 15). Test set so that —
‘skip’ will never happen -
B3 8.811 Load port 1 & 2 control number
(pages 8to 11) é
a4+LEL 26 Start comparison loop
A5 PGR=Y? Test equivalence of pages o
A& GTO A1 These two pages are equal -
87 "PAGE - Pages are not equal. Load start of
error message -
85 DECHEX Convert page number to hex for
appending 1o alpha string .
4% ARCL ¥ Append first page number to alpha -
16 "kz Append the ‘not equals’ sign
11 By Get other page number to Reg X G
12 DECHEX Convert to hexadecimal
13 ARCL Y Append it to alpha _
14 6T0 02 Go to message view routine €
154LBL 81 Pages tested equal so far
16 156 ¥ Increment page number of second
ZEPROM module
17 156 8 Increment page number of first
ZEPROM module. Skip next
step if done.
18 GTG #e Not finished yet, so loop back

78

19 "ZEPROMS RRE =
2B+LBL B2

21 RVIEN

22 RTH

All done. All pages are the same
Display message routine
Display message in alpha

© Zengrange Ltd - 1988

T N . H H Hh 6H &, T °

_Chapter 6: The Programmer ROM

PRGMLN Return program length and number of LBLs
XROM 09,24

Calculates the length of the user code program specified in the Alpha
register and returns the number of bytes and FAT entries needed for that
program to be stored in a ZEPROM page. This information can
subsequently be compared with the output of [FRSPC?] to determine
whether or not adequate space and free FAT entries remain for that
program to be loaded into.

The Alpha register may contain the name of any global alpha label in the
intended program, or if blank [PRGMLN | takes the current program.

(Cautions] [PRGMLN] calculates the length of the specified program, irrespective of
whether or not that program is currently packed. To determine the length
of a program that will be loaded with BURNL{Q‘ the program should be
PACKed before executing [PRGMLN).

Input The user must supply values for the following arguments:
Alpha: program-name An alpha string containing the
program’s name or any global atpha
LBL within that program. If blank
the current pragram is to be used).

Register X is modified as fallows:
Reg X: bbbbb . ccc A floating point number in the

format ‘bbhbbb. ccc’ where;
‘bbbbb’ is the number of bytes in a
ROM page required to insert the
program, and
‘cce’ is the number of FAT entries
required for all glohal alpha LBLs in
the program.

{ Errors Refer to the HP-41 Owners Manuals for details of standard messages.

L“ i T TR T A non-existent global alpha LBL was

L LR T i S Sy BB i I O]] specified

1 Mo T ‘I The program LBL in Alpha is that of
PRl e a machine code function in ROM or

in the HP-41 operating system.
A YT F e The program LBL in Alpha exceeds
LR T LT | 7 characters.

©@ Zengrange Ltd - 1988

R

ZEPROM Module - Programmer’s M

Q
Example] This example uses to compute the size and FAT entries of a
program named in Alpha, then uses to check whether or not L
enough free space and FAT entries remain in the ROM page specified in
Reg X. C
B1+LBL "LENSFC" Compute length/FAT entries for i
program in Alpha and check
available space/FAT in ROM
page specified in Reg X. i
82 PRGMLH Get program length & FAT entries
(RegX = byvtes FAT entries)
82 INT Take number of bytes (integer} ‘
84 LASTH Recall the value
@5 FRC Take number of FAT entries needed -
86 RCL 2 Recall the page number
E7 FRSPC? Room left ? (Reg X = bytes.FAT;
Reg Y = start address) i
ag X<y Swap start address to Reg X
89 RDN Roll down (Reg X = byfesfreeFAT C
18 FRC Number of free FAT entries
i1 LRSTH Recall last value
12 INT Number of free bytes remaining '
2 Rt Reg Y =free space; Req X=prog length j
14 “NO ROGOM- Load "no room” message L
15 Xry? Program length > space ?
16 GTO 81 Yes, so go tell him “no room” “
17 RIH Roll stack down
18 RDH Reg Y = labels, Reg X = freeFAT .
19 "FRT OYERFLOW® Load "overflow" message L
26 R{Y? LBLs required less than freeFAT?
21 "SPACE N FG" Yes, so load “space” message !
22 #LEL 81
23 AVIEM Go show him the result A
24 RTH Terminate .
L
L.
.
.
L.

80

© Zengrange Ltd - 1988

r. A 2

Chapter 6: The Programmer ROM

READWD Read word from ROM page in Reg X
XROM 09,25

Purpose Reads (recalls} the content of the word at any HP-41 ROM page address
(specified in Reg X) and returns that word value to Reg X.

The user must supply a value for the target address in floating point
decimal or hexadecimal format. Note that accepts all valid
HP-41 addresses trom 0000h to FFFFh (0 to 65535) and therefore can be
used to read words in HP-41 system addresses in addition to the four 1/0
ports. E.g: using 73F2h (29682) causes read of word at address 3F2h in
the HP-IL/Mass Storage ROM, if the HP-IL module is plugged into HP-41,
Reg X: tarper-address 16-bit target address specified in

ficating point, or hexadecimal.

The data word read by [READWD] is retumned in the same format as that
used for the originai input of the target address and therefore can be
floating point decimal or hexadecimal.

Valid Address: Reg Y: targer-address from Reg X.
Reg X: Word read from address.

invalid Address: Reg X: target-address as input.
Refer to the HP-41 Owners Manuals for details of standard messages.

TR0t T T 1y T A negative or other invalid address
Ii’ o A g il M 1”."—| value was specified in Reg X.
Check that positive and /or valid
positive characters were used.

L.-“ TN N] The value in Reg X to be converted
S, Y ALLLSA exceeds ‘FFFFh’ (65535),

Example] Uses in verifying the checksum currently burnt in the ROM page
specified in Reg X against that calculated for the page by [CHKSUM |

GieLBL “VERSUM" Program: Verify page checksum
G2 CHKSUM Get checksum & address
A3 K{oy Mave address to Reg X
44 READWD Read that address in the RCM
B5 WY Move actual checksum back to X
86 RDH X=actuai, Y =correct checksum
87 -Gogon - Load default "good” message
B8 ¥xY? Is actual checksum NOT ok?
89 “EAD * Yes, s0 replace with "bad" message
18 "HCZHKSUH Append "checksum" to message
11 RYIEW Show message to user
12 RTH End of routine
© Zengrange Ltd - 1988 81

R ——————.

ZEPROM _qu_ule - Programm |_"s____ h__!__la_nual

REBURN Recover from error during burning of
XROM 09,26 user code program
Allows the user to overcome burn errors occurring whilst buming a user

Cautions

| lnput

Output

82

code program into a ROM page with [BURNUC)

During burning with (BURNUC), the address at which the function began
burning the program is stored into Reg X. If a burn error occurs, the burn
failure address is returned to Reg X and the start address of the program is
moved to Reg L. It is essential that a user does not just re-try using
(BURNUC], since this will insert a new, duplicate image after that of the
aborted attempt. To prevent this, use the instruction. To use
(REBURN), use LASTX to recall to Reg X the address of the first line of code
burnt during the aborted attempt . The program name should still be in
Alpha.

checks the program data already burnt into the ROM page and
then continues burning the remainder of the program. However, it does
not perform any checks for a packed and compiled program, so it is
essential that the program is not edited before is used. A
"synthetics" programmer may therefore also use [REBURN] to load an
uncompited and /or unpacked program into ZEPROM.

This function is really intended only for use in recovering from
efrors and cannot be used to recover from errors occurring during other
burn operations. tn most instances, other aborted functions can just be
restarted.

The user must supply values for the following arguments:

Reg X: start-address Address at which program started
burning during aborted attempt with

(BURNUC). Either floating point

value, cr a hexadecimali string.

Alpha: program-name Name of user code program being
burnt.

Stack registers are unchanged unless an error occurs during burning - See
page 40 for details of standard outputs following burn errors,

Refer to the HP-41 Owner’s Manuals for details of standard messages.

¥ o wIw A An invalid e was specified.
(TN RO T T PRGE] pag P

I Y v A burn error occurred at address
l—l".' AT Alal NS I indicated by ‘nrrr’. Commonly

caused by specifying an empty or
non-ZEFROM destination page.
LT Low battery terminated burning at
ARIRYAL Tﬁ'"—l the address 'nnnn’. Check, replace

the batteries and then [REBURN J.

© Zengrange Ltd - 1988

y N y 9 r N

. Y . Y Y Y Y Y NS

[T Ba i Tn] P The:lsrogram LBL in Alpha exceeds
= == 7 characters.

=T YL ¥ b] The program LBL in Alpha is that of
AT L A a machine code function in ROM or

in the HP-41 operating system.

Y] -;}-3}-_. r-',. ,] Not enough spare FAT entries for

MLORALAE N L] the number of global alpha LBLs in

specified program. Change some

to local LBLs.
,: T IrIriee —l Not encugh free space is left to load
LA TR the program specified in Reg X.
FITTR T ToTE T] A non-existent global alpha LBL was
- = == specified in Alpha.
© Zengrange Ltd - 1988 83

e
RRBURN Burn ZENROM ROMREG + formatted data :
XROM 09,27 trom RAM into ZEPROM page
¢
Burns data that has been copied from a Q-ROM device into main memory -
registers by the ZENROM module’s Machine Code Editor (MCED). e
takes data from main memory registers according to the format .
of data input by the user. This allows the user to specify registers by their X
number, e.g. Req:050, or by referencing an absolute memory address in
the HP-41's main and extended memory. !
This function has been provided primarily for ZENROM users. For more
information on the ROMREG + format, see the ZENROM Owner's Manual. '
In developing M-code programs or functions using a ZENROM module
and a Q-ROM, MCED can be used to save (SVE) or restore {(GET) M-code
data in a compressed format in normal HP-41 memory registers. This data ‘
format, known as ‘ROMREG+’ format, is a superset of the ROMREG _
format used by many other M-code development packages and is based L
around storing five 10-bit ROM-words into each data register.
Caution Although the older ROMREG format only stored multiples of five ROM- L
words into each data register, this restriction does not apply to the
ROMREG + format used by ZENROM. ROMREG + format therefore avoids '
the difficulties encountered where the last register of ROMREG data
contains unwanted words. Because of the ROMREG format, these
unwanted words are also transferred intc ZEPROM during burning with i
(RRBURN)
Extended memory registers can only be accessed in the absolute memary 1
addressing mode. In register mode, a starting address input in floating
point decimal, access is restricted to main memory registers. |
The user must supply values for the following arguments. The format of
the starting address input into Reg Z will determine whether absofute ,
(hexadecimal input) or register (floating point decimal) addressing is used. ‘
Absolute Memory Addressing: Hexadecimal input into Reg Z ‘
RegZ: Ist-register-address Address of the first register to be [
burnt specified as a hexadecimal
string. ‘
Reg¥: Number-of-registers Quantity of registers specified as a
floating point decimal number. i
Reg X: target-address ZEPROM module target address
specified as a floating point decimal ‘
number or hexadecimal string.
Data Register Addressing: Floating point input in Reg Z. §
i

84 @ Zengrange L1d - 1588

R

Reg Z: Ist-register-number

RegY: Number-of-registers

Reg X: target-address

Number of the first register to be
hurnt specified as a floating point
decimal value. E.g. Reg017

Number of registers specified as a
floating point decimal number.

ZEPROM module target address
specified as a floating point decimal
number or hexadecimal string.

Stack registers are unchanged unless an error occurs during burning - See
page 40 for details of standard outputs foilowing burn errors.

Refer to the HP-41 Owners Manuais for details of standard messages.

[ThHL T T FITH
[Tr0F 0 T I RES |

AHT Treer

Specified address is negative or
ctherwise invalid. Check that valid
hexadecimal characters were used.
Specified register is outside the
current SIZE setting.

A low battery has caused burning to
terminate at the address focation
indicated by ‘nnnn'. Check &
replace batteries.

A burn error occurred at the
address indicated by ‘nnnn’. This is
often caused by specifying a blank
or non-ZEPROM destination page.
Specified data register contains
data not in ROMREG + or ROMREG
format.

A specified data register was nhot
found during burning.

The decimal value input exceeds
65535,

@©@ Zengrange Lid - 1988

85

ZEPROM Module - Programmer’s Manual) o G

e
SB09 Enable secondary bank of "
XROM 09,28 Programmer ROM module
e
Disables the primary bank (bank 1) and enables the secondary bank -
(bank 2) of the PROGRAMMER ROM module. This function, together with .
(PBog) enables users to switch between the banks of the PROGRAMMER _‘
ROM if this moduie has been made bank switching by the user. ¥
Because HP-41 bank-switching has been implemented such that onby the
particular module containing the bank-switching instruction will obey it, .
each bank of each page in a bank-switching must contain the bank-
switching functions. As a user may have more than one ZEPROM module !
plugged in at any time, and each of these functions must have a unique
XROM-id to avoid confusion between them, the functions all adopt the
XROM-id of the page into which they are loaded. The general form of ‘
these functions is and [sBux), see separate entries. When loaded
into an initialised page by the functions take on the XROM-id of «
that page. Therefore, in the PROGRAMMER ROM (XROM-id of 08}, these
functions appear as and (sBog . !

These functions have been provided in the PROGRAMMER ROM in case a

user decides to make that module bank-switching, and thus allow the user ‘
to switch between the primary and secondary banks. L
See additional explanation about bank-switching functions on page 39.

None. |

Output None.

e

Errors None.

86 © Zengrange Ltd - 1988

e

g)l_'_l_a_pter 6: The F_’_rc_»grarnm_e(ROM

SBxx Enable secondary bank of ROM
with XROM-id of xx

Purpose Disables the primary bank (bank 1) and enables the secondary bank
(bank 2) of the bank switched ROM page whose XROM-id number is
specified in Reg X. This function, together with {PBxx), enables users to
switch between the two banks of any particular bank-switched ROM as
desired.

Theory Because HP-41 bank-switching has been implemented such that only the
particular modute containing the bank-switching instruction will obey it,
each bank of each page in a bank-switching must contain the bank.
switching functions. As a user may have more than one ZEPROM module
plugged in at any time, and each of these functions must have a unigue
XROM-id to avoid confusion between them, the functions all adopt the
XROM-id of the page into which they are loaded. When loaded into an
initialised page by the functions take on the XROM.-id of that
page. Therefore, in a ROM page of XROM-id of 28), these functions

appear as and [SBzs .

See additional explanation about bank-switching functions on page 39.

None.

None.

None.

© Zengrange Ltd - 1988 87

R

ZEPROM Module - Programmer’s Man

UCBURN

XROM 09,29

User Code Utility Program

Purpose Provides an automated, prompting routine for non-technical users to allow
inftialising and burning of user code program(s) into a ZEPRCM page.
Note that programs cannot be retrieved from extended memory or mass
storage and that input of all values is in floating point decimal.

Step Display

Key Sequences & Comments

88

Ensure the ZvC and ZEPROM are
properly connected and the ZVC is
switched ON. In addition, ensure
the HP-41 has a fresh set of alkaline
batteries, and that the programs to
be copied are in main memory.

To start the "UCBURN utility:

(3G) (ALPHA) UCBURN [ALPHA)

Input page number you want the
programs loaded into. Remember
ZEPROM is forced into 16K mode.

8 [r/s]

If the page specified has already
been initialised then goto step 10.

Routine prompts for all initialisation
parameters. If any other pages in
ZEPROM are already initialised as
bank-switched, then goto step 5. (In
such cases new page automatically
made bank-switching).

If module is to be bank-switching,
input 1, otherwise input 0.

0

Header name (if required). Should

be at least 8 characters long to
show up ina CAT 2 on an HP-41CX.

-MY ROM 1A

Page trailer (if required). Should be
exactly 4 characters in length.

MY1A

© Zengrange Ltd - 1988

s 1 "]]

n N

r N A

r N

N r N A A -

AR

r. o A r

R RRSRB=BB_BDD_=_=__DRRR=E R R e _ _ — —_ /e e

__Chapter 6: The Programmer ROM

WD) l XROM number for page. Should be
' unique to your HP-41 configuration:
i.e. not used by any other module.

21 (75

8 T T 7 l Add number of m-code functicns to

. LIS LI R L number of global alpha labels in
your programs to give total number
of labels. Remember that once
initialised, this cannot be changed!
If unsure of exact number, it is best
to over-estimate! Don't add entries
for the header or bank-switching
functions that will be automatically
loaded, since they are added by the
program.

40 (R/3)

Program initailising page with FAT,
XROM-id (plus header & trailer if
specified). Functions PBxx, SBxx,
BGTOxx, BXEQxx & BRTNxx are
also loaded if bank-switching.

(o]
b
£
=
~r
..
-
¥
T
‘.o"'
LI]
')
-
b}
~
Y
-
i
-

.l

wIL "UCBURN ready to load user code

LI LSS programs. input name (global alpha
label) of program to load. Specified
program is compiled and burned.

PROGH

= - The program is how being loaded
11, [HLRNTNG Trnmm] Jhe brogam e now being

10. [FROG

-

KAy ' If more programs to burn, repeat
LR from step 10 until either all your
programs are burned or you need
to copy in more from mass storage.
Once finished, respond to the
PROG NAME? prompt by pressing

without any input. This wil
terminate the program.

R/S

12.

ol

—

[
-
=
Fe

Sub-routines:

"UCBURN utility has 2 subroutines, "INIT and " INITP, used to initialise ZEPROM pages.
in essence they cover step 2 through step 9 of the above example, except that "INIT is
intended for calling from the keyboard and " INITP to be called from ancther program.

© Zengrange Ltd - 1988

ZEPROM Module - Programmer's Manual

Register & Flag usage:

"UCBURN and the "INIT and " INITP subroutines use 6 registers and two flags:

Register 00: Page number
Register 01: XROM number
Register 02: Number of labels

Register 03: Header {leading chars.)

Flag 19: set if INITP called,
cleared if INIT

Flag 20: set if bank-switching,
cleared if not

Register 04: Header (trailing chars.)

Reqgister 05: Trailer

Error Messages:

TriCar i T | iy i
|1li‘rLJi_|‘i J ;_u‘i‘ rl
T TR W Dv
|4ur l"fr_ M I“{_u.nJl
Tapislgs T ¥ wiCgrAL
FRAL ’"‘r_., 4 1: ;Jr‘{: ”‘_‘

W HHT e

BRN BRI v

Input was required at the prompt. The program
re-prompts for input.

Page number specified was invalid. The
program re-prompts for correct input.

"INIT only. The page number specified is not
blank. Program re-prompts for ancther page.
Incorrect or no input at the WANT BANKSW?
prompt. Program re-prompts for correct input.
The page header entered was toc long (max 11
chars). Program re-prompts for correct input.
Program name was more than 7 characters
long. Re-prompts for correct input.

The trailer entered was not exactly 4 characters
long. Program re-prompts for correct input,
The XROM ID entered was not in the range 1 to
31. The program re-prompts for correct input.
Either: number of labels input was 0, or number
input added to header & bank-switch functions
(if specified) is greater than 64. Re-prompts.
Program not found. Name either wrong, or not
in main memory. Re-prompts for input. If
necessary, copy in from mass storage & restart.
Page has not encugh space to burn program.
Abort, use new page, or load smaller programs.
Not encugh free FAT entries left for program.
Remove a few global labels or abort and restart
specifying a new page. Re-prompts for input.
Battery too low to continue burning. Replace

batteries and use the to finish off

burning this program. Then restart "UCBURN.

Error in burning program. Check for wrong
page number input. Restart with correct page.

© Zengrange Lid - 1988

"t s B A

- % W N W+ B

T . N

L . PR MO N

¥,

| Data

Appendix A; Technica

Appendix A

Technical Data

Programming ZEPROM

in commaon with other HP-41 add-on memory devices, such as Q-ROMs, the ZEPROM
module uses the WMLDL (040h) opcode as its write instruction. However, it should be
noted that programming a ZEPROM Iacation correctly is not as simple as programming
a location in a Q-ROM device. A Q-ROM is essentially a RAM based device, and as
such, only requires a very short programming cycle - in fact just one write instruction
will correctly program a RAM location. However, EPROM type devices are different in
that they require both a long write cycle and a much higher than normal voltage for
programming.

Programming Voltage

The necessary programming voltage {12.5V) is generally supplied by the programming
fixture. In the case of the ZEPROM Valtage Caonverter this voltage is generated from the
HP-41's own &-volt batteries and supplied to the module when the ZVC's programming
switch is set to the ON pasition. Whenever this programming voltage is applied to the
ZEPROM module, the configuration bits programmed into the chip are ignored and the
module is forced into a straight 16K mode. This ensures that all four cores are available
while programming takes place.

Programming Cycie

Whenever the WMLDL instruction is issued on the 41 bus the ZEPROM module
compares the address stored in C[6:3] (which is obtained from the DATA line) with its
own address space. If the address to be programmed is within the ZEPROMs address
space, then the ZEPROM starts its programming cycle. During a programming cycle
the ZEPROM module goes off-ine, (i.e. it does not respond to any instructions from the
bus} and it sets the HP-41's peripheral flag 4 to indicate it has entered this state. The
chip has to go off-line to ensure that the address Ioaded on the EPROMs address lines
does not alter during the write cycle. The ZEPROM module stays offline for a total of
16 HP-41 instruction cycles (typically 25ms). Once the cycle is completed, the
ZEPROM comes back on-line and peripheral flag 4 is reset.

© Zengrange Ltd - 1988 o

ZEPROM Module - Programmer’s Manual

As with most EPRCM devices there is a recommended ‘Intelligent’ or 'Quickburm’
algorithm for programming the device; this algorithm requires that each location is
programmed until the data read back from that location is the same as the data written.
Then, in order to prevent ‘hit drop-out’ after the programming voltage has been [
removed, the location should be programmed twice more. Naturally, should the
ZEPROM module fail to program correctly within a given number of tries then the

programming cperation should be aborted. !
To illustrate the typical implementation of this algorithm, we have shown it in the i
following pseudo-code:
Reset retry counter |
DO
Load address and data
Start write cycle (WMLDL) \
DO
UNTIL peripheral flag 4 clear |
END
Increment retry counter
Read data from address {
UNTIL
data read = data written OR retry counter = 32
END !
IF data read = data written {

THEN burn successful
ELSE burn faiture

Programming Restrictions

Because the ZEPROM module is taken off-line during the programming cycle it would
be impossible for the module to program itself since the instructions following a WMLDL
would not be seen. Therefore, if the WMLDL instruction is issued from the same [
ZEPROM module as that being programmed, the ZEPROM will ignore the write
instruction. The PROGRAMMER ROM circumvents this restriction by making an
operating system call to initiate the write cycle.

HP-ROM Compatibility .

The configuration of HP roms differs slightly from the configuration of a ZEPRCM. An
HP rom comprises just three 4K cores (total 12K) whereas the ZEPROM has four (total

16K).
With an HP ROM, each 4K core in the ROM has the following configuration options:

T

92 © Zengrange Ltd - 1988
TGS

. Appendix A: Technical Data

Enabled or Disabled

Hard addressed Port addressed

Address Lower page T Upper page

Permanent / Primary Bank / Secondary Bank

The options for HP ROMs are further explained as follows:
. If a core is disabled, it is not seen by the HP-41.
. If a core is hard configured, a configuration address must supplied.

- If the core is port configured, it must be configured for the upper or lower
page in that port's address space.

- Each core, whether hard or soft configured, can also appear as:

Permanent Bank Always present to the HP-41
Primary Bank Present at power-up and enabled with ENBANK1:
disabled with ENBANK2
Secondary Bank Not present at power-up but enabled with ENBANK2;
disabled with ENBANK1
Note, however, that the ENBANKx instruction only affects the module in which it
is executed, but affects all cores in that ROM.

For ZEPROM, the situation is different, This is mainly because ZEPROM must emulate
a number of different possibilities and must also be capable of being reconfigured under
software contral. HP’s ROMs, being mask programmed ROMs rather than EPROMs,
are hard configured and can never be changed.

- ZEPROM cannot have disabled cores: all cores being always enabled.
However, it is possible to simulate disabling certain cores by configuring
the zeprom as being bank-switched and then duplicating the data content
of cores. See chapter 2, page 8 for details.

* ZEPROM cannot be hard addressed; its address always being dependant
upon the port into which it is plugged. See Chapter 7, page 1 & 2 for
diagrams illustrating port addressing. The position of each core within a
port (i.e. in it’s upper or lower page) is determined by the core number;
cores 0 and 2 being the two lower pages and cores 1 and 3 being the two
upper pages. This is not a restriction on the configuration of ZEPROM, but
just means that the user must program the required data into the correct
core,

- ZEPROM can emulate an HP ROM's permanent core by duplication of the
primary bank code into the secondary bank. The selection of a bank being
primary (Bank 1) or secondary (Bank 2) Is controlled by the core number -
cores 0 and 1 being primary banks, cores 2 and 3 being secondary banks.

© Zengrange Lid - 1988

R R EEEEE————.

ZEPROM Module - Programmer's Manual

L
In fact, the only configuration option directly offered by ZEPROM is a |
choice between a straight 16K configuration and a 16K bank-switched L.
configuration. All other configurations, e.g. straight 8K, 12K bank-
switched, are emulated by dupticating selected cores. ¢
The following table illustrates how these various HP configurations can be
emulated with ZEPROM: v
- .
HP-ROM Core Configurations Emulation with ZEPROM
Enabled. Port addressed, Upper Page. Permanent Core 1 duplicated into core 3 !
Enabled, Port addressed, Upper Page, Primary Bank (1) Core 1 .
Enabled, Port addressed, Upper Page, Secondary Bank (2) Core 3 !
Enabled, Port addressed, Lower Page, Permanent Core 0 duplicated into core 2
Enabled, Port addressed, Lower Page, Primary Bank (1} Core 0 !
Enabted, Port addressed, Lower Page, Secondary Bank (2} Core 2
e
The ZEPROM hardware initially determines if the configuration is bank-switched or [
straight from the two mast significant bits of data at address location £FFD in core 1. If
both bits are clear, then the module is considered as straight 16K. If either or both bits .

are set, then the module is considered as being bank-switched. In a bank-switched
configuration then either one or both of the two most significant bits of the data at ‘
address xFFD in core 3 should also be set. If this is not done, then ZEPROM will be [
able to seiect the secondary bank, but will not be able to return to the primary bank.

The use of the most significant bits of address xFFD complies with the bank-switching
convention established by Hewlett-Packard; in which any bank switching page will have
the most significant bit of the data at address xFFD in that page, set. Remember .
however that ZEPROM only references the bits in core 1 (and core 3) to determine if the
entire ZEPROM is bank switching. The PROGRAMMER ROM software also uses an

[
extension of the HP convention to determine if a page is bank-switched and also which '
page is currently selected:
&
Data Word at xFFD Meaning of bits !
bit-9 bit-8
0 0 Page not bank-switched b
0 1 Bank-switched, primary bank
1 0 Bank-switched, indeterminate bank (HF) .
1 1 Bank-switched, secondary bank
.
The ZEPROM module is 100% code compatible with HP ROMs, This means that all .

user or M-code designed to run in an HP ROM will also run on ZEPROM. However,
users should be aware of a slight incompatibility problem in the reverse direction.
Because of a flaw in the chip currently being used by HP, all bank-switching instructions

94 © Zengrange Ltd - 1988

___Appeqdix A: Techn___ical Data

(ENBANK1 and ENBANK2) must be preceded by an instruction in which the most
significant bit is clear. The simplest way to do this is to precede the ENBANK1 or 2 with
a JNC +1 (003h} instruction. This restriction does not apply to the ZEPROM chip and
code written specifically for ZEPROM can omit the JMC 41,

Erasing ZEPROM

The ZEPROM module can be erased by exposing the EPROM chip, via the window in
the top of the module casing, to an intense ultra-violet (UV) light source. A dosage of
15W-seconds/cm’ is required to completely erase the module. This dosage can be
obtained by exposure to g UV lamp of wavelength 2537 Angstroms (A} with an intensity
of 12000 pW/m’ for 15 1o 20 minutes. During erasure, all filters should be removed
from the UV source and the ZEPROM module should be positioned about 2.5cm from
the source. Naote, however, that EPROMSs can also be erased by light sources having

' Ultra violet light and UV-Etasers ean be hazardous if not used strictly
- in accordance with the manutacturer's instructions. During erasure,
Warning afl necessary precautions should be taken.

Electrical Information

The following current drain data has been established by direct measurements on an
HP-41. Due to manufacturing tolerances in the HP-41, ZEPROM and ZVC, slight
variances may be obtained in individual circumstances. All vatues Quoted are typical.

ZEPROM Module

Sleep state JuA
Run mode 2.5mA

ZEPROM Voltage Converter

Programming switch OFF 0
Pregramming switch ON 4.9mA

ZVC & ZEPROM - Programming

Average 14.6mA
Peaks 15.1mA
(Note: the HP-41 consumes an additional 10 to 15mA in run mode)

@ Zengrange Lid - 1588 95

I,

Ay

ZEPROM Module - Programmers Manual s s s

-

Copyright & using ZEPROM -

All copy, design, patent and ownership rights of this manual, its associated products, |

software, source code and descriptions shall remain with Zengrange Lid and others, -
The provision of the software, and inclusion of any source code in this manual does naot,

and shall not, constitute its passing into the public domain. The User is permitted to -

use the software for purposes of burning ZEPROM modules, but neither the software, e

listings nor descriptions may be further distributed, modified or included in any other N

commercial products without the prior written approval and agreement of Zengrange. -

' The PROGRAMMER ROM contains functions that facilitate the .

= copying of ROM software. However, since software is covered by -
copy, design or patent rights, it is illegal to make copies for

Caution distribution, duplication or modification unless permission has been .
granted by the holder of those rights. Obtaining such permission is

the specific responsibility of the user. i
In all cases where a Zengrange product is used to infringe copy,

design or patent rights, the user shall bear the entire responsibility -

and assume all liability for infringement. Neither Zengrange Ltd, nor e

its agents, shall be in any way liable for the user's actions.)

.

e

v

€

¢

.

.

.

.

e

e

L . 1Y

g6 © Zengrange Lid - 1588
R

Appendix B

]

Appendix B: Annotated Listings

Annotated Listings

All listings in this manual are the copyright of Zengrange Lid. The user's attention
is drawn to the copyright notice in Appendix A.

Utility Routines (RPN)

"UCBURN provides for initialising and subsequently loading user code programs into a
ZEPROM page. See Chapter 5 for explanation. The program also includes synthetic
instructions (STO M, etc) and synthetic text, which is shown in hexadecimal format.

A1+LEL "UCEURM-

@z

KROH "INITP"

B3+ BL 12

a4
a3
86
a7

"PROG HAME-
#EQ 87

FCc? 22

RTH

RCL M
#=Y?
RTH
KOy
RCL N
n=y?
G70 13

16+LBL 14

17
18
19
28

XEQ 15
“FNAME "
XEQ 18
&T0 12

2i+LBL 13

22
23
24
2%
Zb
2

SF 25
PRGHMLH
F§? 25
GTO 13
“NONEXTSTENT"
GTO 14

28+LBL 13
23
38
31
iz
33
34

INT
LASTX
FRC
RCL @@
FRSFC?
GTO 13

© Zengrange Lid - 1988

Entry point for loading user code programs
Go initialise page if necessary

Get name of program to burn

Load "preg name® message

Go get Alpha input from user

Did we get any input?

No, so terminate the program

Load zero into Reg X

Was there any Alpha input {prog name) ?

No, so terminate program

Get zero into Reg X

Did the user goof and input more than
7 characters for the program name 7

Length okay, so go process it

Error in program name returned

Go get "invalid” message

Append "name"

Go show the user

Go and retry to get a valid program name

Got the program name

Trap any PRGMLN errors

Get program length & FAT entries (RegX = byles.FAT entries)
Did PRGMLN cause an error ?

No, s0 program length is in Reg X

Yes, program not found, or M-code function

Go tell user about error

Program length in Reg X

Take number of bytes {integer)

Recall the value

Take number of FAT entries needed (fraction)
Recall the page number

Any room left ?

Yes, Reg X=bytes.FAT; Reg Y =start agdress

R o n———IL—S—S—SS——I—m———,

ZEPROM Module - Programmer’s Manual

I5+LBL 11!
Ik WO ROONC
37 GTO 14

I2+LBL 13

39 KOV

48 RIN

41 FRC

42 LASTX
3 INHT

44 RT

45 K37
46 GTO {1
47 RIM

48 EDH

49 KOV

TR HE=YT

51 G70 13

52 "FAT OYERFLOW

J3+LEL 14
34 XEQ 18
55 GTO 12

SheLBL {3
57 ECL @@
58 CF 29
59 BURNUC
£@8 GT0 12

E1¢LBL “INIT®
£2 CF 1%
£3 GTO 88

B4+LEL "IHITE"
&3 5F 19

BA+LBL 96
&7 "PRGE"
63 XEQ @3
£3 F57 22
78 "FPRGE”
71 FC? 25
72 570 14
73 5T0 A9
74 BLRNE?
73 GT0 13

76 "PG HOT BLAHE"

77 RCL 9@
78 FS?C 19
79 RTH

3@ GTD 14

g1e¢LBL 13
82 FS? 25
83 GT0 13
B4+LBL 14
BS XEQ 18
36 GTO 98

gr+LBL 13

98

No rcom left in page
Load "no room” message
Go teil user there's no room at the inn

Page has some free space available

Swap starting address of free space to Reg X
Roli stack down (RegX= bytes FAT entries)
Number of free FAT entries {fraction)

Recall last value

Number of free bytes remaining (integer)

Reg ¥ = free space, Reg X = program length
Is program greater than free space ?

Yes, s0 go tell user of error

Roll stack down

Reg ¥ = number of labels, Reg X = freeFAT
Swap them over

|s number of LBLs required less or equal 1o free FAT entries?
Yes, s0 go process it

No, so load "overflow” message

FAT overflow routine
Go tell user he's overweight
Then go back to the beginning & get new pregram name

Valid program name & free space, so proceed
Recall page number

Clear error flag to allow abort on error

Burn the program inte ZEFROM

Done so get next program

Set up/initialise page routine
Mot cailed from another program, so clear INITP tlag
Go append " number” to message

Entry point if calling this programmatically
Called programmatically, so set INITF fiag

Get page number and check if blank

Load “page* message to alpha

Go append " number” to it & get input

Test again if input made

Append "page” to invalid message

Errer flag still clear 7

Yes, so go tell user about error

Store the page number into Reg 00

Check that the page is blank, validate input.
Invalid input or cur page is blank.

Load "nen-blank page” message

Recall page number

Did we call this via " INITP from another program ?
Yes, s0 assume page already initialised.

Go show error message to user

Detect blank page or invalid input
Error flag set ?

Tell the user about it
Goa show him the message
Then go get another page number

& Zengrange Ltd - 1988

s

Appepdig& g:_Annotated Listingg

88 CF 28 Clear bank-swilched flag
89 RCL &g Recall page number
98 1f.8B7 Set up DSE loop counter
1 Ay Is page number less than/equal to Reg X ?
92 15.811 Yes, then replace DSE loop counter in Reg X
93I+LEL &5 Na
94 BHKSW? Any of the pages bank-switched?
35 GTO 13 Yes, so they all will be.
95 LASTX Recail page number
97 DSE X Check loop counter
9§ GTO B85 Not yet equal, so loop back
I9+LBL A6 Determine whether bank-switching wanted
18@ "WRNT BAMKSW® Load “do you want bank-switching" message
181 XEQ @9 Go get input - needs either 0 or 1
182 "INFUT B OR 1" Tell him we want "1' for bank-switched, otherwise ‘0"
183 FC7 25 Test error flag Is it still clear ?
184 GT0 14 Yes, Go telt user about it
185 E input value of 1 for testing
186 (Y Swap input and 1 around
187 X{=%? Is bank-switching input less than ar equal to 1 ?
188 GTO 13
189+LBL 14 Tell user about it
118 XEG L& Go show him the message
111 GT0 A& Go repeat the bank-switching question
{12eLEL 132 Set up bank-switching fiag & minimum FAT entries
113 R#8? Is bank-switching input nan-zero ?
114 SF 29 Yes, 50 381 bank-switching flag
115 X422 Is bank-switching input non-zerg ?
116 6 Yes, so set minimum FAT entries for bank-switched page
117 ST0 @z Store temporarily in Reg:02
118+LEL At Page header routine
119 "HERDER" Load "page header’ message
120 XED @7 Go prompt for alpha input
121 FC? 23 Is input flag clear ? {no alpha input?)
122 GTO 12
123 CL¥ Reg:X = 0 & clisable stack lift
124 F4: 7F @8 @A AQ Append three null
125 RCL 0 }
126 X¥Y? } Was the alpha input greater than 11 characters ?
127 GT0 14 Yes, 50 go tell user of error
128 F3: 7F 0@ 88 @@ AQ Append four more nulls
129 ¥ 0 }
138 =¢{> N } Restaore alpha register 1o its original conterst
131 STO M }
132 GT0 13 Ge store the header message in Reg:03 & Reg:04
133+LBL 14 Bad "page header” routine
124 XEQ 13 Go load “invalid” message
{35 "FHIR" Append "header" to it
136 XEQ 18 (Go show him the message
137 G70 @1 Then go ask him for the page header again
138¢LBL 13 Store headers routine
139 ASTO B3 Store first § characters of header in Reg:03
148 ASHF Shift Alpha by 6 characters to the right
141 ASTO A4 Store the last part of the header in Reg:04

© Zengrange Ltd - 1588

ZEPHOM Module - Programmer's Manual e ‘

142 ISG 82 Assume SKIP past LBL 02

143+LEL 82 Get trailer routine ‘
144 “TRAILER" Load "page trailer message

145 XEQ B7 Go prompt for alpha input '
14¢ FC? 23 Did he input anything ?

147 GT0 13 Yes, 50 store it in Reg:05

143 CL¥ No, so clear Reg:X [
149 F4: 7F 88 @6 ue Append three nulls

159 RCL N 1

151 K#Y? } Was aipha input greater thap 4 characters |
132 GTO 14 Yes, so go tell user about error

153 F2: 7F o8 Append another null

194 RCL N } '
155 R®=v? } Was alpha input less than 4 characters

136 GTO 14 Yes, 50 go tell user about error

157 F4: 7F 89 @8 BB Append three maore nulls

158 CLX }

1539 (> K } Restore alpha register to its original content

168 STO M }

161 GTO 13 Go store the trailer to Reg:05

lez+LBL 14 Invalid trailer routine

163 KER 15 Go load "invalid” message

1E4 "FTRLR" Append "trailer” to it

165 XEQ 18 Go show him the message

{66 GT0 B2 Then go ask him for the page trailer again

167+LBL 13 Store trailer inta Reg:C5

168 RSTD B5

{63+LEL 83 Get XROM number routine

78 "RROM" Load "xrom" message

171 XEQ @2 Go append "number 7" & get numeric input from user

ir2 F§57 22 Did he input anything ?

173 "FXROM" Append * xrom” 1o invalid message in alpha

174 X#4@? is it non-zero ?

175 FC? 23 Error flag still elear ?

176 GTO 14 Go tell user about it

177 32 Load maximum XROM-iD number

178 X2 Was his input less than 32 ?

179 GTO 13 Yeas, so proceed

188+LBL 14 Go tell usaer XROM too big

181 XEQ 1B Go show him the message

182 G70 @3 Then go ask him to pick another number

1834LEL 13 Store XROM-ID) rautine

184 KOY Recall XROM to Reg:X

183 570 a1 Store XROM-1D into Reg:01

136+LBL @4 Get maximum number of FAT entries required

187 "NO OF LEBLS " Load "how many FAT entries wanted" message

188 XEQ B9 Go get numeric input

189 FS? 22 Did user input anything ?

198 "FLBLS" Append "labels” fo invalid message

191 X#87? Is the input non-zero ?

192 FC? 25 Error flag still clear ?

192 GTD 14 Go tell user about it

194 RCL @2 Recall minimum number of FAT entries (§ if bank-switched)
195 + Add minimum FAT to required number

© Zengrange Ltd - 1988

e

Appendix B: Annotated Listings

196 65 Load maximum possible FAT size

187 ¥>Y7? Is required value less than maximum 7
198 GTO 13 Yes, 80 continue

199+LBL 14 Te#l user about error

288 XEQ 1@ Show him the message

281 GTO 04 Then go ask him tor number of FAT entries again
Z282+1BL 13 Procass number of FAT entries

283 RO Recall FAT entries to Reg:X

284 570 @z Store it intc Reg:02

285 CLR Blank alpha ready for input

286 RRCL B3 Recall first part of header

287 RRCL @4 Recall second part of header

288 "k, Append "comma”

289 ARCL @5 Recall trailer

218 RCL @4 Recall page number

211 RCL a1 Recall XROM number

212 RCL B2 Recall number of FAT entries required
213 E3 Load 1000

214 /7 Divide FAT entries by 1000

215 + Add to XROM-ID to give "xrom fat”

216 F57 20 Is this a bank-switched page 7

217 CHS Yes, so change the XROM sign to negative
218 CF 25 Clear error flag to allow abort on error
219 INITFG Now initialise the page

228 FC?C 24 Is bank-switched flag clear (and clear it} ?
221 RTH Yes (page is not bank-switched), so return
222 RCL @8 Recall page number

223 ADDUCF Now add the user code bank-switching stuff
224 ADIMCF Followed by the m-code bank-switching stuff
225 RTH Then return

226+LBL B7 Alpha input routine

227 “F 7" Append "question mark"

228 CF 23 Clear alpha input flag

229 RON Turn on Alpha ready for input

238 PROMFT Get input from user

231 AOFF Turn off Alpha

232 FC? 23 Didn't input anything ?

233 CLR No input, so clear atpha

234 RTR

235+LBL @8

236 "F NUMEEER" Append "number” fo message

237+LEL @9 Numeric input routine

238 "B Append "question mark” to message

239 CLST Clear the stack registers

248 CF 22 Chear flag to test for numeric input

241 PROWFT Stop for user to key in numeric value

242 "INPUT REQ" B~ Load message telling user "input really is necessary”
243 FS5? 22 Was there input ?

244 XEQ 135 Yes, so go load “invalid* message

245 CF 25 Clear error flag to allow abort on error
246 F3? 22 Was there really any input 7

247 E<@? ‘Yes, o test whether input was negative
248 RTN

249 [INT Take integer of input

298 LASTX Recall the input value to Reg X

@ Zengrange Lid - 1988 101

zgpnoM __M__pc_!u_le - F_'rqg_rammer’s Manual

251 RW=Y? Was input value an integer 7

252 5F 25 Set error trap flag

253 RTH

234¢LEL 15 Invalid input message message routine
235 "INVRLID - Load "invalid” part of error message
256 RTH Go back to append the rest
257+LBL 189 Display routine

225 HYIEW Display message for the user to see
23% TONE @ Then wake him up

268 PSE Pause far him to see message

261 EHD

Bank Switching Code

The following listings detail the bank-switching code provided in the PROGRAMMER
ROM. Note, however, that the functions assume the XROM number of the particular
page into which they are loaded; e.¢g. XROM 08,

102

Functions Description

[B6TOxx | Bank-switched GTO from User-code.
(BRTHNxx | Bank-switched RTN from User-code.
(BxEGxx] Bank-switched XEQ from User-code.
Enable primary bank of XROM xx.
(sBxx) Enable secondary bank of XROM xx.

Bank-switching code

This cede is added into ZEPROM when the bank is initialised as being bank-
switched with [INITPG], or when later changed to bank-switching with { ADDBSW
and provides the low level ability to swap banks in that ROM page.
$LOAD AT FL7#
pFC7 1AA ENEAHKI

xFC3 ZE@ RTH
rFES 1eb EHEAMEZ

xFCA 3EB KTH

Functions for bank-switching in User code

The functions [BGTOxx], [BRTNxx] and [BXEQxx] perform bank-switching from
within user-code programs. These functions are added into ZEPROM by the
instructions. Note that they assume the XROM number of the particular
page into which they are loaded; in this case, XROM 09.

xFCE BB9 9
xFCC 838 @
xFCD B6F 0
xFCE 814 T
xFCF 887 G

© Zengrange Ltd - 1988

M A B

-, 4@ wm & = = 44 = °4 ®=®w® Mm% A 4 4+ ®° AW, W W

Fa I8

_Appendix B: Annotated Listings

xFDa AG2 B

BCTOEY 129 LD This is the post-fix byte for 'GTO IND X'
xFDZ 473 COH B73h
¥FD3 883 JHC 3odoit

xFI4 BE3
xFD5 838
xFI6 #1l
«FI7 @a%
xFDg @18
xFD9 892 B

BREQ@S 138 LDI This is the post-fix byte for "XEQ IND X
xFIB BF3 COM aF 3h

godoit 358 &87=C This is where "XGI' expects it's argument.
xFDD 198 EHEAHEL Swop banks (re-burnt as ENBANKZ for lawer page)
xFIE 31D #* KGI Arrive here from same function, other bank,
xFIF B892 HCGO 24C7h Exit to mainframe, GTO or XEQ - IND X.

=0

o ul A I o]

%FE@ AR
*FE1 B38
xFE2 PBE
xFE3 @14
*FE4 812
*FED @82
BRTHGY 16A

xFE7 @8@D
xFES B9t

HEAHK1 Swop banks (re-burnt as ENBANK2 for lower page)
XRTH
CGr 2783h Exit 10 mainframe, RTN to calling User-code.

Z ¥ Mo WM - =T & w0

M-code bank-switching functions

The functions, and [SBxx), enable either the primary or secondary bank of
the page of XROM-ID xx. These functions are added into ZEPROM by the

instructions. Note, however, that the functions assume the XROM
number of the particular page into which they are loaded; in this case, XROM (9.
Similar functions [ENABLEP] & [ENABLES } are used in the PROGRAMMER ROM to
switch between primary and secondary banks of that ROM.

«FE9 889 9

xFER 838

B
xFER B@2 B
xFEC @818 P

#FED B@3 UNC rFC?

xFEE BE9
xFEF @34
xFFa aee
xFFL 212

[ipa s o I V]

xFF2 883 JKC rFC3

© Zengrange Lid - 1988 103

RN

oy

ZEPROM Module - Programmer’s Manual

’
Appendix C .
L
w ty & Servici
arranty & Servicing ,._
"
Limited Warranty L
Zengrange products have been developed and manufactured to high standards. !
Products carry a limited warranty effective from the date of original purchase.
Zeprom Voltage Converter: \
Warranted against defects in materials and workmanship affecting _
electronic and mechanical performance for 90 days. L
ZEPROM Module:
Warranted against defects in materials and workmanship affecting '
electronic and mechanical performance of the module casing, connector _
and associated logic circuitry for 80 days. q
The ZEPROM module is supplied fully tested, with the PROGRAMMER
ROM software ready programmed into one bank. On receipt, the module L
should be tested in an HP-41, and if it appears to be defective, returned
immediately to Zengrange Ltd, or their focal agent, for a free-of-charge
replacement. However, once a ZEPROM module has been erased, or any ¢
location in the module has been programmed, neither Zengrange Ltd nor
its agents, can accept any further responsibility due to the introduction of 4
procedures totally beyond our control.
A ZEPROM module will normally be capable of being programmed and \
erased more than 100 times, but because these processes are outside our
control, this cannot be guaranteed. The expected life far exceeds the E
frequency of reprogramming expected or intended for this type of device. .
If given as a gift, the product warranty is transferred to a new owner for the remainder of ‘
that period, provided that proof of purchase date is supplied. During the warranty, we
will repair or, at our option, replace a defective product, provided it is returned, shipping)
prepaid, together with proof of purchase to an official service representative. L
Products are sold on the basis of specifications as at manufacture. There shall be no -
obligation to modify or update a product ence manufactured. .
Consumer Transactions in the United Kingdom .
This warranty shall not affect the statutory rights of a consumer whose rights as ‘
Buyer and the obligations of Seller are determined by statute.
"
""" e

104 © Zengrange Ltd - 1958
R

. Appendix C: Warranty & Servicing

Warranty Restrictions

This warranty does not, and shall not apply if a product has been damaged by
accident, misuse, modification, or service by unauthorised persons or
organisations. No other expressed or implied warranty is or shall have been
given. The repair, or replacement of the product is your exclusive remedy.
Under no circumstances shall our liability extend to consequentia! or incidental
damages, no matter how caused, nor shall it exceed the catalogue or sale price
of the product at the time of sale. Under no circumstances shall any liability
attach to us for loss or corruption of program or data material stored in any
computer using our products,

Shipping for Service

During normal, or extended use, these Zengrange products will not require any
maintenance. There are no user serviceable pars inside the ZEPROM module, nor in
the ZVC device.

Because many factors could affect the performance of your product, including fiat
batteries, software corruption or the particular configuration or way in which you are
using it, we recommend that you make contact with us by telephcne or letter before
returning & product. In this way we can help isolate any difficulties that do not require
the return of a product.

In the unlikely event that the product proves to be defective, return it, postage prepaid,
to:

Zengrange Ltd., Telephone:

Greenfield Road, National: Leeds {0532) 483048
Leeds, W.Yorks, International: + 44 532 489048
England,

LS9 8DB.

or to other official, local service representatives.

When returning products, be sure to include the following:

- A copy of your sales receipt, or other proof of purchase - if the warranty
period has not expired.

= Adescription of the problem, detailing the circumstances of when and how
the problem occurs.

. Details of your particular computer system - including serial number,
memory configuration, ROMs plugged in, etc.

Whether or not a product is still under the warranty, it is the responsibility of the owner
to ensure that the device is securely packaged to prevent damage in transit (which is
not covered by our warranty) and that shipping costs to ourselves are paid.

@ Zengrange Ltd - 1988 105

i A

2EPROM Module - Programmer's Manual e onmms

-
Technical Assistance _
-
The operating instructions in this manual are supplied with the assumption that the user
has a working knowledge of the concepts, terminology, technology and equipment E
used. Whilst we are happy to advise on general suitability and usage of our products,
the multitude of programs that could be used on our products makes it impossible for -~
us to provide detailed technical assistance except where it relates to our own product -
design. Any information given, not directly relating to our products, shall be used X
entirely at the recipient’s own risk. -
-
POTENTIAL FOR -
(For U.S.A. only) *
.
The ZVC and HP-41 generate and use radio frequency energy and, if not installed and)
used properly, that is, in strict accordance with the manufacturer’s instructions, may .
cause interference to radio and television reception. It has been type tested and found
to comply with the limits for a Class B computing device in accordance with the -
specifications in subpart J of part 15 of FCC Rules, which are designed to provide e
reasonable protection against such interference in a residential installation. Howaever, .
there is no guarantee that interference will not occur in a particular installation. If your .
product does cause interference to radio or television reception, you are encouraged to
try to correct the interference by one or mare of the following measures: !‘
. Reorientate the receiving antenna. i
. Relocate the computer with respect to the receiver. e
. Move the computer away from the receiver. !‘
! necessary, you should consult your dealer or an experienced radio/television
technician for additional suggestions. You may find the following booklet prepared by !’
the Federal Communication Commission helpful: How to Identify and Resolve Radio &
TV interference Problems. This booklet is available from the U.S. Government Printing -
Office, Washington, D.C. 20402, Stock No. 004-000-00345-4. .
.
v
v

% A r N

106 © Zengrange Ltd - 1988

R

Appendix D: Glossg_;ry

Glossary

Address ...HP-41 memory location.

AFgument ..., Input value required from the user. E.g. number of page tc burn.

ASCIL . American Standard Code for Information Interchange (pronounced:
As'kee). Standardised codes for letters, numbers and symbols.

Backup ..o Aspare copy of data kept in case the original is lost/damaged.

Bank.......ii, 4K memory block residing within module page. In a Bank-switched
module, 4K blocks can be switched on and off-line as needed.

Bank-switching....................... Process by which blocks of RAM or ROM are moved intc and out of

the 41's addressing space as they are needed. Allows effective
expansion of computer memory. See Primary & Secondary banks.

...Binary Digit. The Boclean values representing '0' or '1".

Burning............., Process of programming data into an EPROM device.

Byte Basic unit of measure for computer memory or disc capacity.
Usually one ASCIl character takes up one byte (8-bits) of memory.

Configuration ... Organisation or set up of memory or peripherals.

{007 OO A 4K block of memaory in ZEPROM or HP-ROM module.

Crash ... Trauma suffered by the HP-41 resuiting in temperary loss of contrel

and/or data held in memory. May be caused by keying in wrong
input fin writing M-code), wrongly burning code to interrupt
locations in ZEPROM, from static-discharge, etc.

Avalue or selection made by the program in lieu of operator input.

Alist (catalogue) of files on a disc or cassette tape.

Erasable & Programmable Read Only Memory. Integrated Gircuit
{re)programmable with software for insertion into an HP-41 port.

Fille . A collection of related information, such as a program stored on
cassette or disc.

Filename...............ccoooonionn Unique name given to a file saved on cassette or disc.

Function Address Table............... FAT. List of pointers to functions/programs in a ROM.

Hardwareo..ccooooooovvronnnn. Electronic equipment {disc drives, display, etc) making up a
computer.

Hewlett-Packard interface Loop. System for interconnecting low,
battery powered devices such as disc drives or displays an HP-41.

L/OPorts ..., Slots at the rear of HP-41 into which modules and other actessories
are plugged.

@ Zengrange Ltd - 1988 107

ZEPROM Module - Programmer’s Manual

Toitiadise ..o Process a ZEPROM to allow data/programs to be stored. Until
initialised ZEPROM doesn't contain data necessary to be
recognised by HP-41. Also applied to cassette/disc media.

Kilobyte oo, ThOusand bytes (actually 1024 bytes). Also known as ‘Kb’ or K

Label e LBL. Pointin a program to which the 41 can branch to.

Machine Code ..o The native, low-level language of the HP-41's processor (CPU).

Main Memory.............ooooeene. The @rea of the HP-d41 memory used for register and program
storage.

Mass storage medium ... A cassette or disc used in an HP-IL device such as a Cassette or
Disc drive.. Also called & flexible, floppy or micre-disc or diskette.

Memory Cores. ... See Core.

Module.....oooooooooe . Plug-in case containing RAM or ROM chip for connecting to HP-41.

Off-bine. . Disabled (invisible} to the HP-41. Data cannct be accessed until

device or memory is cnce again On-line. See On-line.

On-line Enabled (visible} to the HP-41. Data can only be accessed from

Onine storage. See Off-line.

Qperating System.................. Software built into the HP-41 thai controls operation.

Page header....................Identitying ROM name normally stored at the start of a ROM page.
Page trailer...... .o 4-character revision code stored at the end of all ROM cores.
Parameter.........onns Input value required from the user. E.g. number of page to burn.
Primary bank................. 4K-bank in a bank-switched page that is enabled by the HP-41 by

default. See Secondary bank.

...Quasi-AOM device, alsa called RAM Storage Unit. Large, battery
backed-up RAM expansions that simulate 41 ROMs. Can be used
to develop M-Code.

RAM ... e —— Random Access Memory. {More correctly: Read & Write Memory.)
Integrated circuits (chips) making up a computer's volatile memory.

ROM . i Read Only Memory. Non-volatile chip programmed with software
for insertion into an HP-41 port

. Alternative 4K-bank in a bank-switched page that is can be
swapped {(enabled) in place of Primary bank as desired.

Secondary bank

Software.... Programs used by the HP-41. E£.g. Zenrom, Advantage, Maths Pac.

Synthetic Programming... Technigue for creating user code instructions unintended by HP
and which the user cannot key-in directly.

User Code...o Programs written using Reverse Polish Notation (RPN) instructions.

Utility [T An extra program, supplied with an application, but separate from
it, that provides extensions to the application.

WO oo Logical grouping of bits. In the case of the HP-41, a word is 10 bits.

XROM number..............coooe........ An identifying number assigned to a ROM page.

108 © Zengrange Ltd - 1988

e

L

Index

INDEX

A

About this Manual......cenn e v
Add bank-switching code .. JTSURTIVR. &
Add M-code bank- swnchlng FUNCHONS v 45
Add user coded bank-switching instructicns....46
ADDBSW. ..o A
ADDMCEF.... 39, 45
ADDUCF39, 46

Algorithm, fer burning ZEPROM ...
ALPHA DATA error

Annotated listings ..
bank-switching (M-code functions) .
bank-switching (user-code functions).... 102
bank-switching code ...

Arguments, keying in

B

Bank-switching on HP-41 ... 14

Bank-switching
adding M-code functions
adding switching code to page .,
adding user-code instructions .
Large number of small functions
listings of code ..
listings of M- code functmns
listings of user-code functions....
M-code
setting status bits ...
small number of large functions.
special functions
testing if page is...................e
user code
GTO instruction (BGTOxx)..
RTN instruction (BRTNxx}...
XEQ instruction (BXEQxx) ..
user code programs. ..

Banks, enabling

Batteries
Alkaline 3
drain during burning .. .31
types to use ...
BGTOxx

...55, 56, 62, 63, 68, 74,
82, 85,90

BRTMXX. ..o 39, 46, 52

@ Zengrange Lid - 1988

Burning
block copying data .. .63
display during40, 42

errors during
fixtures for...
methods of .
multiple ZEFROMs
ROMREG + formatted data .. 84
single words.........
software options...
taking page from HP-IL mass storage ..
user code programs .41, 54
loading with " UCBURN .
user code,error recovery during .
with PROGRAMMER ROM & ZVC ..
ZENROM & the ZVC, using ..
Faliel
BURNUC
BURNWD

c

Care and maintenance of ZVC
Cautions, plugging in a ZVC
Checksum, computing for page ..
CHKSUM.......
Comparing pages for equality ..

Comparison tests
from the keyboard
under program control...

Compatibility with HP-ROMs
Compiling user code programs
Computing checksumns
Connecting a module to ZVC...
COMBALS.....o.oveiier ittt iii
Canversion, decimal into hexadecimal ...
Conversion, hexadecimal intc decimal ...
Copy 4K IMAGE ..o
Copying blocks of data ..
COPYPG

Current drain

109

ZEPROM Module - Programmer's Manual

D

Decimal into hexadecimal conversicn.
DO IF TRUE rule..

E

Electrical information
Emulating HP-ROMs..
ENABLEP...
ENABLES...
Enabling banks
Erasing ZEPROM....
Error messages

Floating point decimal..........c.coevnirinnens
Free space in ROM page.
FRSPC?.....
Function Address Table (see: FAT)..
Function descriptions, Pregrammer ROM........ 43

G

Global alpha labels
Glossary

H

Header, page
Hexadecimal alpha strings..

Hexadecimal into decimal conversion ...

HP-IL, burn file from mass storage...
HP-IL, saving image to mass storage............... 71

HP-ROMs
compatibility...
format of.........

170 ports.
ILBURN...
Index to functions descriptions..
Initialise a ZEFROM Page
TINIT & TINITP o
INITRG
INITPG FIRST error,
interrupt vectors...
INtroduction...........oc e v
INPUT O OR 1 error
INPUT REQ'D error
INVALID ADDR error.
INVALID BCTR error.... 63
INVALID DATA error56
INVALID HDR errar .90

90

90

..56,64,68 81,85

INVALID LBLS BITOT. ...,
INVALID NAME &r1or

INVALID PAGE error.....44 - 46, 49, 51, 55, 56, 59,
62,83, 65-67,69,71,74,78, 82,80

INVALID REG BrFfOm....cconiviireetivcer e
INVALID TRLR error ...
INVALID XROM error
INVALID X=Y error
INVALID Y = Z 81100 oo seneirens

ALPHA DATA,
BRN ERR: nnnn.......... 55, 56, 62, 63, 69, 74,
82, 85, 90
DATA ERROR 68, 74, 85
FAT OVERFLOW.
INITPG FIRST
INPUT O OR 1
INPUT REQ'D..
INVALID ADDR.
INVALID BCTR
INVALID DATA..
INVALID HDR ..
INVALID LBLS..
INVALID NAME .
INVALID PAGE 44 - 46, 49, 51, 55, 56, 58,
62, B3, 65 - 67, 69, 71,74, 78, 82, 850
INVALID REGB5
INVALID TRLR.. a0
INVALID XROM90
INVALID X=Y 78
INVALID Y =Z 1 63
LBL TOC LONG.. 55, 79, B2
LOW BAT: nnnn.. .55, 56, 62, 63, 69, 74,
82, 85, 50
M-CODE LBL55,61,79, 82
NO HPIL i 69, 71
NQOROOM44, 55 82, 90
NONEXISTENT47.55,57,61,69,79,
82, 85, 90
NOT PACKED
NOT SWITCHED. .45, 46, 65, 66
OUT OF RANGE 56, 64, 68, 81, 85
PG IS BANKSW. . .
PG NOT BLANK..
Error recovery in burning user code82
F
FAT OVERFLOW &rror, 45, 46, 55, 82, 90
FAT
free space.. .67
location ... 3
number of entries... .3, 67,7379
Firmware Corp., Zeprom Programmer 33
110

© Zengrange Ltd - 1988

: D B A

. % % B *®

i

r

1 N

v P P W

| A

[i

Fi

T .

L
Labals

FAT entries in ROM ..

global alpha....

local alpha ...

numeric........ ...60
LBL TOO LONG error. .55, 79, 82

Loading user code programs with * UCBURN..97
Local alpha labels
LOW BAT: nnnn error

.55, 56, 62, 63, 69, 74,

82, 85,90
M

M-code bank-switching {see: Bank-switching)

M-CODE LBL &rfor ..o 55, 6%, 79, 82
Mass storage, burning image from................ 69
Mass storage, saving image to
MCED, burning ZEPRCOM with ZENROM...... ...
Memory Map..........o e 2

NO HPIL error

NO ROOM error44, 55, B2, 90

NONEXISTENT error.........., 47, 55, 57, 61, 69, 79,
82, 85,90

NOT PACKED error

NOT SWITCHED errar....

Numaerniciabels ...l 680

o)

QUT OF RANGE Brfof ... 56, 64, 68, 81,85

P

Page

checksum

comparing for equality..
copying entire.............
initialising with header

& trailer .

Permanent Bank ...
PG IS BANKSW BITONc..oovvieeeiecereee s 44
PG NOT BLANK error..

Physical description, ZEPROM ... 5

Physical description, ZVC..
Plugging in a ZVC
Ports, Input & Output (see; {/0 ports)
PRGMLN...
Primary bank, enable...

©® Zengrange Ltd - 1988

Program length in ROM ..o, 79
PROGRAMMER ROM
burning with ...
function index.
instruction set ...
utility routines
XROM-identities .
Programmers (see: Burning, fixtures for)
Programming switch (ZVC).........oevev el 28
Pregramming
aigorithm ..

cycle......
restrictions

voltage...

Q

Q-ROM [Quasi-RCM) device...........cc.c....... 34, 36

R

Radio & TV interference
Read word from ROM page.....
READWD ...
REBURN .
ROM format ...

ROM page, burn image from mass storage.....69
ROM page, saving image to mass storage71

ROMREG + formatted data, burning into
ZEPROM.....coooiiii e

ROMSs, copying with ZEFROM ...
RRBURN..

S

...39, 45, B7

Secondary bank, enable .66, 86, 87, 93
Selecting the best configuration...................... 70
Servicing

shipping for

Zengrange Ltd, address of.

Software development systems.................. 33, 34

Software
burning ZEPROMSs ...
1o control ZVG

Status bits, settings for bank-switched.
Straight 16K mode...
Structure of HP-41 ROMs ..
Switching ZVCON & OFF ..o,

111

ZEPHOM Modul

T

Technical assistance. ... 106
Technical data....
Test functions..
Test if ROM page is bank-switched ...
Test if ROM page is blank ..

Trailer, page .
TV & radio interference..........oovrcevveenenennenns 108
U
TUCBURN c...oooo e 88 - 90, 97
User code
bank-switching . 102
functions... 39

GTO instruction (BGTOxx).
RTN instruction (BRTNxx}..
XEQ instruction {BXEQxx) .
burning programs
compiling programs...
error recovery in burning ..
FAT entries required in ROM ..
program langth in ROM
utility routine, listings ...,

UV-light, erasing ZEPROM with ...

Vv

Voltage Converter (see: ZVC)

w

Warranty
restrictions .
ZEPROM.

WMLDL, using to write 1o ZEPROM ...

X

XROM-dentity.......ccocovieiiiiic s 2,39,73
PROGRAMMER ROM functions 43

F4

using to burn ZEPRCM.
ZENROM ROMREG + data, burning of.
ZEPROM configurations..................
Bank-switched 12K module....
Bank-switched 16X module....
selecting the best.... ..
Straight 16K module ..
Straight 8K module ...
ZEPROM Gang Burner, Zengrange Lid...
ZEPROM module, physical deseription...

112

F_'_rq_g_ra_mmer’s Manuralr

ZEPROM Prograrmmer, Firmware Corp............ 33
ZEPROM, erasing ..

2VC...
attaching a module.
burning with ZENRO
care and maintenance cf..
controlling software
handling ...
plugging in, cautions about,
programming switch..
switching ON & OFF ..
using with PROGRAMMER RCM

© Zengrange Ltd - 1988

Py P P %

e & ® = % @ M+ N TR (N, 1O (O S SO N

N

t M

TN

e

