ERAMCO SYSTEMS

HP-41
MLDL-ROM

Machine Language Development System

IntroductiCn.cocscecsasancecansenca
Installation.....c.c.- -

MLDL operating system eprom

CONTENTS

Organisation of the instruction set.......c.ccc0e0acee
MLDL write functionS..c.cecctvveacnsssnancsoosnsacncns

Utility functionS..c.ccvsvcccancvancasvacannocncs

Update functionS...ccveecoccanassssscsansaaascnconscaces

Appendix
Appendix
Appendix
Appendix
fAppendix
Appendix
Appendix
Function

Care and

A

Iﬂdex..-----o------.-.....-..----....

Warranty.....ccceevecacaccusessssvace

Input 7/ Dutput.....c..ccan

Programmabilityecoioceccacesoencnnsece

Hessades weoevuwenoamoveaane » o
XROM numbers..cc.cccaccsccasnannsas
XR0OM ;nd FAT structure....coceees
Interrupting Foints. .. ceccacnanne
fAssembly language information.....

e s 5w e e e

* 2w v e ees

How to set up your own EROM page....l.......;........

Page 2

WK
ISESRUNCRENE

|
@

47

o9

&0

MLDL aoperating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To
get a full understanding of all the routines and functions in
this eprom set, it is advisable to read through this manual
carefully before operating any of the functiones or routines.

INSTALLATION

Follaw the instructians of your ERAMCO MLDL-box carefully when
installing the eprom set in your box. It may be necessary to bend
the +Ffeet of the two eproms slightly inward to make them fit
easily into the eprom sockets. Do not forget to enable the page
on which you insert the eproms (far mare detailed information on
how to insert the eproms, consult your hardware manual of the
ERAMCO MLDL-box). A lower address is the most appropiate page
for insertion af the epraom. This provides a gquick access to the
routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will sgon discover the routines and functions in this
eprom set are divided into three sections. The +first section
contains all the functions and routines that will change anything
in the MLDL-ram you are working on. So always be careful when
using any of these functions. A single mistake can destroy the
whole 4K ram block that is under develapment.

The second section contains the functions that Ffacilitates
working with the MLDL~ram. They do not change anything in the ram
but will provide a quicker access to the ram (LROM will tell you
almost immediately where you can continue with writing in the ram
or where you can store a User-code program).

The third and last section in fact belongs ta the two mentioned

above. However, this is a seperate section to kesp compatible
with the xrom numbers of an oclder version.

"Page 3

MLDL operating system eprom

Note : All inputs which has to be placed in the alpha-register
are related to hexadecimal

In the description of the functicns it is assumed, that you have
one MLDL ram page available for exercising the examples. To
ensure that the examples work out in the way we have described
them, is it necessary tc clear one block and to place it at the
proper page. Place the first block off your MLDL ram at page 7.
This is easily achieved by turning the apprapriate (left) hex
rotary switch to 7. Disable the block by switching the left
enable switch down (off). Toc avoiad praoblems with the second
block, it is advisable to switch this block of toco.

After these preparations we can clear the whole black. Input far
this is 7 in ALFHA. Now execute the functicn CLEL. For detailed
information of it's operation see page 14.

Switch the MLDL ram page on line by switching the left enable
switch to the ON state. It is naw ready for the examples.

INPUT ¢ All the hexadecimal input in the ALPHA register is
checked on wvalid data. Data is wvalid only, if it
consists of the hexadecimal characters. These characters
are the numbers from @ upto ? and the letters A through
F. Any other character in ALFHAR will tcause an error. The
display will show DATA ERROR.

If the errar occurs in a function during a running
program, the error will be displayed and the program is
halted at the instruction, that caused the error.

DUTPUT : Every function in this M™MDL rom that gives an
hexadecimal output to the ALFHA register, will
automaticcally execute an AVIEW after it has put it's
data into the ALPHA register. 8Sg, if you are using for
example the function LOCA in a program, it is not
necessary to do a AVIEW after the function. (Otherwise
the result will be displayed twice. In conjunction with
the printer your results will alse be printed twice.

Page 4

HMLDL operating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,01

This non programmable function allows the user to read every word
in a ROM, EPROM, or MLDL-ram (EROM). In case of MLDL-ram it is
also possible to change or write in this MLDL-ram. The addresses
and data are prompted for and given in hexadecimal Fform. This
function will redefine the keybgard as long as it is used to make
hexadecimal input easier.

After calling this function it will prompt For the absolute
address in ROM. The fgllowing keys are now active: -9, A-F,
back-arrow and the on key. The back~arraw key is used in the
usual way to correct the last given input. NULL will be displayed
i¥ you held the last input-key. When you release this key after
NULL is displayed, you will be prompted again for the address.
Pressing back-arrow without input causes the function to exit to
narmal operaticn of the HF-41.

The address and three prompt signs are shown in the display 4
ARRA ___). From now on the keyboard is defined as follows:

-STO0 will give you the data at this and the following
addresses. Each address and the data are displayed for about
8.5 sec. Pressing any key accept the R/S or the ON key, will
slow down the listing of the data that is displayed. The R/S
key will stop the listing at any desired place. The ON key
will switch off the machine in the usual way.

Example : If you press RAMWR and 4ill in the prompt with
' XFDS (X represents the page the MLDL rom is
located) you will see @93. This is the last
letter of the xrom name of the MLDL rom. if you
press 570, you will see the whole name of the rom,
displayed one character at the time. Stop the
display after you have seen JIEQ. This is the end
of the xrom name.

Page 35

MLDL operating system eprom

~TAN or BST decreases thas address by one. This enables you to
go through the listing by hand.

Example : After you have stopped the listing in the previous
example, you can see the first letter of the xram

name, by pressing TAN or BST once. The display
shows XFFD 80:S.

—88T increases the address by one, making it possible to step
through the listing by hand.

Example : Fressing SST once places you at the end af the
xrom name. The display shows XFFE 3EB. Fressing

SST once more places you at address XFDF with data
a7z,

—~back-arrow asks you for a new address if there is no data
input. Otherwise it will operate in the usual way to correct
the last input.

Example : Fress back—-arrow once. You are prompted for the
new address. Fill in the prompt with 2FFE. This
address contains the revision level of the second
operating system rom. The‘number represents the
position of the letter in the alphabet. So if vyou
see BB6, your revision level is F.

-"e"*, "“iv, "2", "3" (numberkey’‘'s 8,1,2,3) are interpreted
as new data. In this way wrong data input is prevented,
because the {first character of a data word can only be
@,1,2 or 3. For the rest of the data input the hexadecimal
keyboard is available again. Halding the last data key will
NULL the input function and after releasing the key will
prompt for new data. With the back-arrow key it is possible
tc correct the last given input. The address will be
increased by one after completion of data input. This will
facilitate the writing of long programs.

Page &

MLDL ocperating system eprom

We will initialize our ram block with a name.
Therefore we have to go toc page 7. Fress back-
arrow once and fill in the prompt with 708@0. At
this address the XROM number of our rom is
lacated, and we have to give the ram block an XROM
number before writing to it. This is necessary,
for RAMWR checks this address avery time we write
to ram. If it is zeroc, the message NO ROM is given
and we arg asked for an address again.

The XROM number we will use is I1. This is the
same XROM number as the cardreader, so to aveid
problems you should disconnect your cardreader.
After this is done, we can start writing to our
MLDL ram. . Press back-arrow again and goto address
708&. The first thing to do, is to give the MLDL
ram block a name. The name we are going toc use is
NEWUSER @1.

This name is coded as follows :

Address Data Comment
7286 gB1 1 end of the name
7a87 aza 7]
7@88 7oy space
7289 a12 &
7@8A pas E
7@8E 813 S
7@8C 215 U
728D @17 W
7@8E Q05 E
7@8BF Qe:E N start of the name
7259 3EQ@ start of function

The name can easily be entered by pressing the
data words after each other. If you make a mistake
during - entry, vyou can correct it with the back-
arrow key. If you discover the mistake after vyou
have finished the data word, you can go back with
BET or TAN and try it again. With AFAT we will
complete the initialization of ocur MLDL ram page.
Fress backarraw twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can exit this fuhctian. when you are in input-mode, by means
of pressing the back—-arrow key twice.

If you are at address $@800@ and you try to da a backstep, vyou
will find yourself at $0001. This is done to avoid an unexpected

wrap around to $FFFF. If you really want to backstep ta $FFFF yau
have to press backarrow once and continue at this address. -

WARNING : Be careful with the addresses from xFF4 up tec xFFA.
These addresses are scanned by the operating system of
your calculator. It's possible that the calculatar will
crash when these adresses contain error data.

For mare
information see appendix F.

MMTORAM (Main Memory TO RAM)
XROM 11,02

The function MMTDRAM is used to copy a program from main memory
in the calculator to the desired MLDL~-ram page in a MLDL-box. All
the necessary translations for a good operation of this program
are made automatically. The Function Access Table ¢ FAT) is
updated at the same time with the new Global Labels of the
program. For good operation of this fun

: cticn it is hecessary - to
initialize the MLDL-ram in the praper wa

Y.

Freparation of the MLDL-ram: You need a block of ram words that
is 1long encugh to hold the desired program. The length of the
program can be found with the help of CBT (ses CBT). Add two to
this number of bytes and you have the number of bytes that will
be needed for the program when loaded into the MLDL-ram. Now you
must find a block in the ram space that is large enough. Write
down the starting address of this block.. BE CAREFUL Addresses in
ram are given in hexadecimal form, but the length of the program
(by CBT) is given in decimal farm. Key into ALPHA the starting
address of the block (it’'s advisable to leave about 20 words
between the starting address ot the block where the program will

be written and the first empty word in the ram you have found,
for future revisions).

When you are initializing a 4K block of MLDL ram ‘automatically
with the help of IPAGE, you do not have to do all of this. The
locading .address will be automatically given by IPAGE. Also the

tirst next empty word will be returned by MMTORAM to the ALFHA
register, to make loading easier.

Pagé'B

MLDL operating system eprom

User flags @ and 1 can be set or cleared to achieve the desired
private status

status

flag @ } flag 1 H
1 9
—| -
cleared ! cleared ! program open
cleared b set : pragram apen, after COFY
i H private
" set : cleared : program private
set ; set H program private

With the help of these two user flags it is possible to make the
program completely private in the MLDL-ram, e.g. you can not go
into FRGM mode to examine the program and it is not possible to
copy the program 'into the main memory with the help of the CDPY
function. A& partly private status is also possible. In this case
it is possible to examine the program, but after copying it into
the main memory it will be private. 7The third option means no
security at all. Frograms are now free to examine and to caopy ¢
compare with e.g. the math module).Flease note that changes in
the program are only paossible when it is stored in main memary (

see the manual of the calculator for it’'s behavior when you

are
in rom).

With wuser +flag 3 you can have the coption to delete the numeric
labels in a program. (for more information about this option see
CMFDL).

When this flag is set, nothing unusual will happen. The pragram
is first compiled and then loaded intc MLDL-ram with the desired
private status according to the settings of flag @ and 1.

If this flag is cleared to the contrary, the program will be
loaded with all numeric labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the
user flags. The functian will prompt for the name of the program
that has to be copied. It is enough to press ALPHA twice when
the program counter is already set in the wanted progranm.

Otherwise you must enter the name of the program in the same way
as with CLF or COFY.

MMTORAM calls one of the two present compilers, depending on the
‘status of user flag T and will compile the program (for messages
during compilation see COMFILE). When the program is compiled,
the message LOADING FGM will be displayed. When the whole preocess

is finished, a tone will sound and the message READY will be
displayed.

Page 7

B

MLDL operating system eprom

When the function has been finished, it will return the address
of the next free byte in MLDL-ram. Be carefull. If vyou are
loading manually, this is the address of the first byte after the
program. It decesn’t have to be necessarily empty. Whenever you
are loading, with the MLDL-page initialized with IFAGE, it will
be the next free byte available.

f CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the
program has been written on) will show you the updated FAT with
the new labels. .
Noting down the start and end-address of the used block will
allow you to make changes without address mistakes.

For an example of how to lcad your user code programs in the MLDL
box, we rever to How to set up your own EROM page. There a

complete descripticn is given hew to set up a MLDL ram page for
locading usar-code programs.

AFAT (Append FAT entry)
XROM 11,83

The function AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has been written in
the M DL-ram. Functions are anly accessable to the HF-41 when
they have an entry in the FAT. This .also holds true for programs

that are trancferred to the MLDL-ram. The functicn MMTORAM takes
care of this automgticaly.

Input for AFAT is in the format UOFAAA. ANA is the start—address
ocf the function within a page, P is the page number where the
function is loadedy, 0 is an affset and U tells the HP-41 if the
routine is a M-code routine or a User code program.

U=0 M-caode function. The address points to the first word that
is executable
U=2. User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is found
at X3FF.

Page 1@

MLDL operating system eprom

In order to understand the interaction of O and F it is necessary
to realise that EFROM and MLDL-ram can be placed at every wanted
page, e.g. at any desired port. It must alsc be kept in mind that
an EPROM or MLDL-ram page contains only 4K. The value of F is
only pointing to the page where the MLDL-ram is positiconed at at
this moment. The value of P will change when ycu address the
MLDL-ram to a different page. Opposite to this is the behavior of
the value forr 0. 0 is a constant added to the pagenumber. It will
not change when you place the MLDL-ram at a different page. The
constant 0 allows you the possibility ta execute functions and
routines from another page other than the one where the FAT entry
is 1lodged. So it is evident that the page which is called must
"always be O pages further in the memory.

Example ¢+ The page that contain the FAT is at page 8, and the
page that contain the routine itsel+t is at page G,
address is 490. We want to make an entry for a User-—
code routine with AFAT.

The value of 0 (the offset } is C - B = 4

The value of P (page containing the fat) is B.
The value of ARA (start—address } is 49Q@.

The value of U (M- or User code) is 2.

We do now need the following input for AFAT

248494
When we move the first ROM ta another address we must also move

the second ROM the same number of pages in the same direction i+f

the value of O is something else then zero. Leading zerc’'s in the
input can be omitted

_Page 11

MLDL operating system eprom

Example : For our MLDL ram we have written the rom name with the
help of RAMWR. To be able to see the rom name when
are executing a catalocg 2, we have to place the
name entry into the FAT. This is done with AFAT.

We do have a function name, sc the digit representing U
will be zero.

The rom name is not located at ancther page, sc the
offset is alsc zera.

We are wcrking at page 7, 5o the value of F will be 7.
The starting address of the function is the

executable ward of the function and is in
located at @92.

we
Krom

first
our case

This results in a total entry for AFAT of Q7092

Az leading z2ero’s can be omitted, we can use 7092 as=
the entry address for AFAT. Write the entry intc ALFMHA.
Go ocut of ALFHA and execute AFAT. I+ you do now

a
catalog Z ycu will see NEWUSER @1 in the display when
the catalog routine bas arrived at page 7. (1+ vyaou
have no printer or timer module, it will be the first
name that appears in the catalog.

DFAT (Delete FAT entry)

XROM 11,84

The function DFAT is used when you want to delete an entry fron

the FAT. The function or routine which is deleted will be
invisible for the HF-41 after executicn of DFAT. The XROM numbers
af all the rcutines and functions thait came after the deleted
function in the FAT, will get cne lower. Fay attention to this
tfact when vyou use functions or routines from the ram you are
working ©n. The same input format is used as with AFAT. The
difference is that you do not need to specity the value of U.

Sa the input format will be OFAAA (offset), (page),
). H

DFAT will search in the page with number F and deleste the
specified entry. Leading zeros may be omitted.

atidrescs

Fage 12

MLDL oberating system eprom

Example : In the sxample of the function AFAT we have added ¢he.
function name to the FAT, to give the MLDL ram page a
name. We will add another name to the FAT, USER 01, by
appending & name to the FAT with address 7@§D. (for
detailed instructions how to append an entry to the FAT
see AFAT).

I¥{ you execute a catalng 2, you will ses NEWUSER 81 and
after this USER Bl. The last entry has ta be remaved..
This is easily accomplished by getting the right entry
address into ALPHA and execution aof DFAT.

Give in ALFHA the entry address of USER Bi. This
address is 708D. GBet ocut of ALFHA and execute DFAT.
With a catalog Z you can check, that the entry has been
removed. You should only see NEWUSER @1 in the catalog.

MOVE (MOVE ram block)
XRM 11,@5

The function MOVE allows the user to move certain parts in a ROM,
EPRCM or MLDL-ram to another place. Keep in mind that you can
only move into MLDL-ram. MOVE makes it possible to insert words
or delete words at any place in the MLDL-ram. It is also
advisable to copy only small routines or functions from another
page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows : EBEBBREEEEDDDD

BBBEB gives the starting address of the block that has to be moved
(it is the first word that will be maved).

EEEE gives the end-address of the block that has to be moved (it
is the last word that will be moved).

DDDD gives the address of the first word af the block where the
source block will be copied.

The function will accept a destination address within the
eriginal block.

Page 13

"MLDL operating system eprom

Example : We want to copy the rom name to another part of the
rom, to be able tao make some changes and to use it as a
second header. This second name has to start at address
7DDE. The rom name is lacated at 7884 to 7©50Q.

The begin address is 7086
The end address is 725@
The destination address is 70DE

This gives a total entry for move of 7886472987DDE.
Enter this in ALFPHA and execute MOVE.

With the help of RAMWR you can check, that the word at
7DDE is 8B1 and at 7DE8 is 3IE@. These are the first and
last words of the rom name.

CLBL (Clear ram Black)
XROM 11,86

Clearing a block of MLDL-ram is done with the help of CLBL.
is in ALPHA in the format BEBREEEE.

EBBB is the first word cf the block that has to be cleared.
EEEE is the last word of the block that must be cleared.
Execution of CLBL puts zero in all the addresses between the
given ones, including the start and end addresses.

Input

Example : We discover after some time, that we don’'t want to use
the second rom name after all. We cauld leave it in the
ram page, but for good housekeeping we want it to be
clearad. This is accomplished by getting the right
begin and end address into ALFHA and executicn of CLBL.
Bwitch to ALPHA and give as input the start and end
address of the block of code we created with MOVE. The
starting address of this block is 7DDE ¢ destination
address when we moved). The end address is 7DEB (this
we have found with RAMWR).

So the total entry for CLEL is 7DDE7DES. Get out of
ALFHA and execute CLBL. With RAMWR you can check, that
the words at the specified addresses are deleted. :

Page 14

MLDL operating system eprom

Another option of CLBL is to clear a whele 4K block at once. For
this input P in ALFHA. P represents the pagenumber of the page
you want to clear. ###x ATTENTION ##*#* This last option is
dangerous. It operates like MEMORY LOST, but inm this case it is a
memory loss of the specified MLDL-ram page.

Example : Switch the other page of ML_DL ram to page &. Bet into
ALFHA and give the address of the page to be cleared ¢
&). Get cut of ALPHA and execute CLBL. Now you can
switch the second MLDL ram page on line by setting the
right enable switch to the ON pasition.

COPYR (CDPY Rom page)
XROM 11,@7

The function COFPYR enables the user to copy an entire page of ROM
or MLDL-ram to another page of MLDL-ram. This gives you the

opbortunity to change anything you want in the just copied bleck
of ROM. '

Input is in ALFHA and has the format SD.
5 is the page from where the copy has to be made (Scurce).
D is the page to which the copy is destined (Destinationm).

This function will sound a low tone to indicate the completion of
the function.

Example : We want to make a capy of our working MLDL ram page.
This could be done with mave by giving as input
7QR@7FFF60@@. But this will take longer and asks for a
more complicated input. Therefore we will make use af
COFYR. The input for this example is 76 in ALFHA. When
this is done, the function COFYR can be executed. After
the tone has sounded we can check, if the second rom is
available by executing a catalog Z. You will now ses
the romname NEWUSER @1 appearing twice in the catalaog.

Page 15

MLDL operating system eprom

ROMSUM
XROM 11,@8

To check if a ROM is still in good shape HEWLETT-FACKARD has put
a checksum in each ROM. With the function ROMSUM you are able to
compute this checksum and put it at the proper place in the MLDL-
ram you are developing. The checksum is calculated by adding all
the words on this page, take modulo 255 and put the remainder in
%FFF.

The input is P in ALPHA. F is the page number of the MLDL-ram you
want to update the checksum.

Example : To be able to detect if our rom is still in goed shape,

we are going to compute the checksum of the rom. Give
the address of the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will
be & instead of 7. Get back to normal operation mode
again and execute the function ROMSUM. This will take a
few seconds. During this time the display will remain
blank.
When the function is completed, vyou can check if the
checksum 1is calculated in the proper way. This is
achieved by kevying into the X-register the used xrom
number I1. Now execute ROMCHKX. The display will change
into 31 @€e&-@@ TST. After a few seconds it will change
to 31 e&—-@e DK.

(Remember I1 is the xrom number we used for our MLDL
ram page).

REG>ROM (REGisters to ROM)
XROM 11,89

This function is the opposite of ROMMREB (for more information on
this function see ‘at ROMPRES). This routine will translate the
registers with it's 5 words/register back into S different words
and place them at the praoper addresses in a MLDL-ram page.

The input in the Y-register determines where the data will be put

back in the MDL-ram. 3 different options are available to
achieve this. ' '

Page 1é

MLDL qperating system eprom

1. "Y'= @ The block wiill be Placed at the same
location as where the original was (if the
original was located from 8IFF to 8456 it
will be restored at the same addresses,

2. "Y'= P F represents a Page number that is created
with the help of COD. The block will now be
loaded at the same relative addresses from
which it came #rom but at a different page(
if the original was located at 83FF tgo 8456
it will be restored at FIFF to F45&).

3. Y = EBBE Here BREEB represents the start—-address
where the block will be stored (BEEE »>=
@218). The block will be loaded starting
at the address given by BPBBBE independent

from the original start-address of the
block.,

The X-register must hold the number of the register that contains
the first data words of the black that has tc be read back (.
actually the first register contains a header that is used by
‘REB>ROM and is made by ROM>REG).

Writing entire 4K blocks of M DL-ram from a storage medium is
facilitated by the tunctians SAVEROM and GETROM.

Example : Let us assume, that you have used the function ROMMREG
befaore. This can be accompl ished by getting ta the
example of ROMDREG at page Z3. Here the romname is

loaded to the registers in order to save it on magnetic
cards or a cassette drive.

First we will 1load the data back to it's original
Place. To see this really happening, we must first
clear the block, where the data is located. This is
done by CLEL. Fut in ALPHA the begin and end address of
the block to bz cleared (7@867@9@). Execute CLEL to
remove the data from the MLDL ram page.

Page 17

MLDL nper#ting system eprom

We can now restore the data by getting it back with
REG>»ROM. _

First we are gaing to get it back toc the original place
in the MLDL ram page. This is necessary in order to get
our rom—-name back. Input for this is zers in register Y
and zera in the X-register. The data will be 1lpaded

back at it’'s original place. You can check this with
RAMWR .

We also want the data lgaded back at a completely
different page. Therefore it is needed toc get the page
number into the Y register This is accomplished with
the functien COD. Place in ALFHA the letter
representing the page we want to store te (&6). After
getting out of ALFHA we execute COD. The display will
change a little. Now press B to move the binairy
representation of the page to the Y register and get
the address cf the header register in the X register.
Now execute REGXROM. VYou will find at the addresses

£A8& to &8990 the data that also is located at 78B4 tgo
7090.

The last option of REGMROM is to restore the data at
completely different addresses. If we don’'t want to
have the data at address 7884, but at address 7AEE
instead, we must make use of the last option of
RCM>REG. Now we have to specify.the starting address in
the Y register. This 1is done as with the previous
example. Flace in ALFHA the starting address (7AEE)
and execute COD. Again the display may differ from what
you are used to. Fress @ to enter the starting address
to Y and place the first register to use into the X
register.

After these initial actions the function REGIROM can hbe
executed. After termination you can check with RAMWRE to
see if the data really got there.

Page 18

MLDL cperating system eprom

XROM 11,12

This is net a normal function. It does not do
executed but it is used as a spacer from write
application rautines within the MLDL—=ram
application is to use it ag a NOF.
input without raising the stack.

anything when
routines and

. One possible
It will also.terminate data

Page 19

MLDL operating system eprom

UTILITY FUNCTIONS

COMPILE
XROM 11,11

The function COMFILE places in every numerical &T0 and XEQ the
distance to that numerical label. Programs prepared with the help
of COMFILE will usually run faster than programs that have to
calculate these distances while running. Two byte BOTO's that can
not make the distance will be transformed to three byte GCTG's.
Therefore vyour program can be made longer by this routine and it
is required tc have at least three registers 1left after the
program. (.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile.
Input is in the same way as with the mainframe functien CLF. So
if you are not in the program you want to compile, you must ingut
the complete name. Otherwise it is possible to press ALFHA twice.
The function will first pack the program (FACKING), then handle
the two byte GOTUO's (COMFL 2B G) and if needed (in this casa
compile has <found a 2 byte GTO that can not make it and will
replace it with a three byte GTO, thus causing insertion of null
bytes that have to be packed as well)} repeat this sequence.
After this is done it will continue with the three byte's GOTD's
and XER&'s (COMPL 3B G/X). After the routine is finished it will
put the message READY in the display. labels not found will give
the error condition NO LEL xx, with the number xx as the labsel
not found. When vyou switch to program mode you will find the
program step that caused the error condition.

If the program has the .END. . as last statement instead of a
normal END, it will change the .END. intg a normal one. This is

done for MMTORAM, which expects a program to be terminated with a
normal END.

To be able to change the .END. into a normal cne, the compiler
needs at least one empty register after the program. During the
initial packing of the program a check is made to see if there is
at 1least one register available. If this is nat the case, the
program will terminate with the message TRY AGAIN. I so you

should decrease the number of allacated memory registers. (
change size)

Fage 2@

MLDL operating system eprom

After execution of compile you will be placed at the first step
of the program.

Deleting steps or adding steps in a program, will change the
status of the program into a decompiled one. Reusing the compiler
will speed up the execution after the editing session,

Example : Create the next pfngram in your calculator

@1 LBL “TST 18 GTO 16
92 LBL @O i? LBL 17
@z LBL @1 2@ BEEP
R4 GTO @2 21 G770 ee
85 LBL @3 22 LBL B2
a5 GTD a4 23 GT0 a3
87 LBL @5 24 LBL @4
@88 G700 Bs 25 G706 8T
9 LBL @7 26 LBL @&
1@ GTO @8 27 GTO @7
11 LBL @9 28 LBL @8
12 G670 1@ 29 GTC B9
13 LBL 11 I8 LBL i@
14 BTO 12 31 GTO 11
13 LBL 13 32 LBL 12
16 G700 14 33 BT0. 13
17 LBL 15 34 LBL 14
35 GTO 135
36 LBL 1&
37 BTO 17

I1f you execute this program after you have loaded it,
you will notice the significant time it takes before
.you hear the first beep. You will hear the second one
much sooner. Stop the program and goto step 1. Delete
the superflucus label Bi1.

Execute the function COMPILE. You will be prompted for
the name of the program to be compiled. Press ALFHA
twice, since we are in the program already. (It‘'s also
possible to give the full name of the program (TST)).
Now the message FACKING is displayed. If you do net
have enough room after the program, COMPILE will
terminate with the message TRY AGAIN. Then the messages
CMPL 2B G and CMFL 3IE G/X will be shaowed shartly after
each other. When the compiler is through these
messages, a tone will be sounded and the display gives
the message READY.

Page 21

MLDL operéting system eprom

If you press PRGM once, you will find yourself at the
start address of the program. Press PRBM once more and
press R/S. Notify the fact that there is no delay
before the first beep sounds.

Gato step one once more and delete label 0RA. Executian
of COMFPILE will give the error message NO LEL @@. If
you go into PRGM mode you will be at the step that
caused the error, step 19. Please restore the program
with LBL @8 at step @1 again,because we are going to
use this program again in the example of CMPDL.

LOCA (LOCAte word)
XROM 11,12

This function allows you to locate a data—-word in a 4K bleck of
ROM, EFROM or MLDL-ram.

The input format in ALFHA is as follows: EBEBEDDD.

EBBE specifies the address from where LOCA starts s=zarching in
the 4K block. Actually it will start at BEBB + 1 to allow
repeated search in the block. NONE will be displayed when the
wanted data (DDD ? is not found in this 4K block. Whenever a
data~word is found, it will be displayed together with the
address at which it is found. The data in ALPHA (adress + word)

will be replaced with the cata found.This makes it possible to
continue searching for the same word.

Example : With a small user code pregram you can easily print out
all the occurrences of an instruction in a rom or MLDL
ram page. Create the following user code program (make
sure you saved the TST program)

@1 LBEL ‘LOCATE @5 AQFF
@2 'ADD + DATA 84 LBL @1
@3 AON @7 LOCA

B4 FROMPT - @8 BTO @1

Input for this program cculd be a starting address like
XBB@ and the data to search for could be 84@. This
would give you a complete list of all the MLDL WRITE
instructions in the MLDL rom. Enter for X the page

address where the MLDL rom is located (usually page F
) - :

Fage 22

' MLDL operating system eprom

LROM (LLast ROM word)
XROM 11,13 ‘

i.LROM searches backwards for the last non zern word in a block
beginning at a given start-address. Input is AGAA in ALFHA. The
display will give the address of the last non zero word and the
value at this address. NONE will be returned when the black
between the start address and the beginning of this 4k page does
not contain any ward (other than zero }.

This function can be very useful when the end-address of the last
program entered has to be found. In this case the easiest way is
to put xFF4 into ALPHA and execute LROM. It will give you the
address of the last word that is cccupied by the program.

Example : If we want to find out where we can load our nmext user
code praograms, we could search for empty space with the
“help of RAMWR, but this would be rather cumbersome. To
avoid this, we are geing to use the function LROM. In
this case we want to search on page 7, starting +from
the end and working backwards. Input for this is 7FFF
in ALFHA. Execution of LROM will return 7AF7IEB to the
display after a short search time. This tells us, that
the next available word in our rom is at address 7AF8.
I+ we are searching on a cempletely empty page, LROM
will return the message NONE to the display, because it
can not find any word unequal to zero on the page. Try
this with page 5 for example. Input for this is SFFF in
ALFHA. Execute LROM. After a short while the message

NONE will be displayed.

CDOD (CODe)
XROM 11,14

The hexadecimal number in the ALFHA-register is converted to it's
-bit-representation and this will be placed in the X-register.
The contents of the ALFHA-register is unchanged. The stack will
be rolled up and the value in the X-register before COD was
executed is placed in the LASTX~-register.

The display won 't be intelligable after the function COD has been
executed. For the synthetic programmer this will sound normal.

Page 23

MLDL operating system eprom

Example : Input. in ALPHA the hexadecimal address of our romname

and the start address of ocur romname (7@B&7890).
Execute COD after Placing the address in ALFHA. I+ we
change the display format to fix 9, the display will
look like this @.zoeB728 <90 Save this coded
representation of the address, for we are using it to
demonstrate an example with DECOD.
These s0 called non normalized numbers (NNN's)
not be used to make calculations, for they can hang up
the calculator for quite some time. Also they can not
be stored and recalled in the szne mannner as normal
numbers, for they are normalized atter being recalled.
This is easily dzmonstrated by pressing STQ @1 and FRCL
@1 after each other. The result is é& zero X register.

shoulid

DECOD (DT 0De)
XROM 21,15

The Ffunction DECOD is the cpposite of the function COD. It will
translate a -bit-representation in the X-register tg the same
hexadecimal form as is used by the function COD. The output is
given in the ALPHA-register. When DECOD is executed manually

DECOD will also give the hexedecimal representation in the
display. : :

Example 1 We are going to use the same number as we have created

with the function COD. First clear the ALFHA register.,
Now we must get back our just created number. If you do
a RDN, it will come back to the X register. Execute thea
function DECOD. The hexadecimal representation of the
number will appear in the display. If you press back-—
arrow once, it will disappear and the nonnormalized

number is viewed again. Go into ALFHA and discover the
hexadecimal representation here.

Fage 24

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)
AROM 11,1¢&

This function enables you to check if a ROM or MLDL~ram is still
in good shape. Impartant though is the fact that a ROM or MLDL-
ram must contain a good computed checksum (see ROMSUM for the
definition of the checksum). HP rom‘'s will always contain a good
checksum. During the test the XROM number is displayed along with
the short form of the name and the revision number of the ROM. If
the ROM or the MLDL~ram doesn’'t contain this short name ar the
revision number, the display will shaw @a-g@,

Input in the X-register, the XROM number of the ROM or MLDL~ram
you want to test (an example is 2D far the cardreader). During
the test XX NN-RR TST will be displayed. XX is the XROM number of

the ROM that is tested, NN is the shortened name and RR is the
revision number. ‘

Output of ROMCHKX is the display XX NN-RR BAD (indicates a bad
ROM) or the display XX NN-RR 0K (indicates a good ROM) These

outputs will be given only when the function is executed from the
keyboard.

The behavior of ROMCHKX will be different when it is executed in
a pragram; when a ROM is faund to.be gocd it will da the next
step in the preogram. Else it will skip the next steg ¢ compare
the function FS5?: the rule do if true is in force).

When there is nc ROM present with the desired XROM number the
message ND ROM XX will be displayed. Again it’'s behavior in PRGM

mode is different. It will act as if the ROM is bad and skip the
next line.

Example : We can check if the MLDL operating system eprom is
still good. For this we need an input of 11 in the X
register (this is the xrom number af the MLDL rom).
When we execute the function ROMCHKX, the display will
change to 11 AS~ A TST. This indicates that the rom
with xrom number 11 is under test. The revision code of
this rom is AS A. After a short time the display will
change to 11 AS- A OK . When we execute ROMCHKX with a
xrom number that is not present it will say NO ROM nn.
This can be tried with zero in the X register because a
rom never can have xrom nr DQ. The display will show ND
ROM @2 after ROMCHKX has been executed.

Page 25

MLDL operating system eprom

ROM>REG (ROM to REGisters)
XROM 11,17

All the credits for this function anmd its Counterpart (REG>ROM)
go to Paul Lind and Lynn Wilkins who have written these two
routines. ROMMREG places S words of 10 bits each in one HF-41
register. To avoid damage to the stored data it is saved as alpha
data. This guarantees an optimal use of the available registere
in the main memory of the calculator. Because of these functions
it is now possible to store the routines and functions that
written in a MLDL~ram on tape or cards and they make it
to exchange M-code with other users.

are
easier

To transfer complete blocks roms tao and from tape the funections
SAVEROM and GETROM are incorporated in this rom.

The input for this function must be given in the Y-register. It
has the form BBEBEEEE.

BEEB is the address of the first word to stere.

EEEE is the address of the last word to store.

This input has to be in binary and right Jjustified. This is
achieved by putting the BBBBEEEE form in ALFHA and executing COD
after this. 7The binary representation can be transferred to the
Y-register by means of keying in a number in the X-register. The
X-register holds the number of the first data register that will
be used as data store. (normally this will be register 0@)
If the number of registers needed, exceeds the number of free
registers you will get the error message NONEXISTENT.

There is also output from this function. In the LASTX-register
the last used register is given. By subtracting X from LASTYX you
will get the number of used registers minus 1. I¥f you add t to

this you will get the number of registers needed to store the
desired MUDL-ram block.

Page 24

HLDL-aperating system eprom

Example : uWe

ute this function properly, we
have to give the Block to be saved in a binary

Fepresentation in the Y register. In the previous
example we have already created the address in the
ALPHA register, co we only bave to execute the function
COD. This gives us the binary representation of the
block to be saved in the x register. We want to save
the block in the user registers starting at register
22, so we have to enter zero into the X register. Freaess

@. This also moves the binary representation g+f the
black to be saved to the Y register.

After thase Preparations th

e function ROMIREG can he
executed. Fressing LasTX gives us the last used
register. This means we needed 4 registers tg store the
bleck ¢ 2-2 + 1).

MNEM (MNEMonicse)
XROM 11,18

This function will give in ¢
M-code instruction that is ¥
that are used are the sg ecall
(Jacebs) mnemonicsg).

I-register. Eventual su
field specificaticns)

onjunction with DISASM the
etched with DISAsM. The
ed HF-mnemonics ¢ there are also PFC
The mnemenics are left as a string in the
rplus information ¢ jump-distance, value,
is given in the T-register. In case af two
ASTX~register is used. The focllowing User-
code program makes it possible tg translate every ROM that vyau

name of a
mnemonics

Page 27

‘'MLDL operating system eprﬁm

Example : With the following user code program you are able to
print ocut the machine code on a rom page.

21 LBL ‘mdis Name of program

P2 CLST initialize the stack registers

B3 STO L initialize the LAST X-register

@4 SF 21 makes program stop at aview

PS5 ‘start add? ask for start—address

26 AON make ready for input’

@7 FROMPT ask and wait for input

@8 AOFF leave the ALFHA mode

@< COD put the start-address in X

1@ LBL @1 start of the loop

11 DISASM get the instruction

12 AVIEW view the address, wvalue and the
character

1T MNEM build the mnemonic in the stack

14 CLA initialize the ALFHA-register

15 ARCL Z get the first part of the mnemonic

16 '@ append a space

17 ARCL T get the second part of the mnemonic

18 AVIEW view the mnemonic

19 GTO 81 restart the loop

This routine is meant to be used in ‘manual’ mode. For
use with the printer it must be rewritten. The choice
is up to the user.

DISASM (DISASeMbler)
XROM 11,19

The function DISASM makes it possible to put the contents of ROM
into the display. At the same time the character representation
from the word is given in the display.

Input: The X-register must contain the address of the wanted word
(this can be done with the help of COD).

Dutput: The X-register will be incremented by one to make it easy
to use DISASM in a loop. The Y-register holds the binary value of
the address and the data at this address (these values can be
made visible with DECOD). The ALFHA-register contains AARRA WWW L

Page 28

MLDL operating system eprom.

 AAAA is the address of the wanted word.
WWW is the value of this word.
. is the character representation of the word.

There are two ways to represent characters in the HP-41. One way
is the use of the ASCII standard. The other way is derived from
this standard by subtracting 4@ [hex] fraom the codes in the range
from 40 hex through SF fhexl. This gives you codes that lay in
the range from @ hex to 1IF [hexl. These ars the cedes, that are

used for the display. Therefore DISASM will translate these codes
to narmal characters.

Example : To see how the funciiocn DISASM is used see the function
MNEM and the related user cade program ta print the
contents of a rom with microcode functions.

CAT (CATalog ?
XROM 11,20

The function CAT gives you a selective CAT 2. This routine ig
especially useful when you have to examine the catalog of a ROM
that is located at a higher numbered port. When the system is
loaded with a lot of roms it will take a long time befare vyou
arrive at the desired ROM (maybe you must go through the TIMER,
FRINTER, IL-MODULE before yod reach the wanted ROM). The
function prompts in the same way as the CAT function of the HFP-
41. The prompt can be answered with the hex digits B~F (CAT will
redefine the keyboard in the same way as RAMWR). Entering digits
B-3 results in the nermal CAT function from the HP-41. Digits S-F
will start the catalog at the wanted page. For further details we
refer to the manual of the HP-41,

Users of an HF-41CX have to be careful using this function. In
some cases there have been crashes reported, due ta changes in
the functioning of the CAT function of the HP-41CX. This is
highly dependant of the contents of the status registers.

Page 29

MLDL operating system eprom

Example : 1f the MLDL rom is installed at page F (this will
usually be the case, when the box is delivered to you
straight #rom the supplier) you would see with a
normal CAT 2 all the functions of the roms that are
physically lacated before the MLDL rom. At least one is
lacated there at the moment, and that is the test rom,
we are working on in our examples. So if yod do a
normal CAT 2 you will first see NEWUSER B!1. To skip
this part, we can start our catalog at page F. Execute
the function CAT and fill the prompt with the digit F.

The catalcg will start up immediately at page F thus
showing the contents of the MLDL rom.

CBT {(Count BYtes)
XRDOM 11,21

This function counts the number of bytes that is occupied by a
program. The END statement is taken in account. At the prompt the
name of the desired program must be keyed in or if you are

already in the desired program press ALPHA twice (compare with
the function CLP }.

Output is given in the display only. The stack and the ALPHA-
register are left undisturbed. '

I+ you try to get the length of a program that is resident in a
rom module the error message ROM is given.

Example : At the explanation af COMPILE we have written a short
user code program to demanstrate you the advantages of
COMFILE. Execute COMFILE once more on this praogram to
make sure the program is as compact as possible. Now
you can find out how long the program actually is. I¥
you execute CBT and press ALPHA twice, the display will
change to &B BYTES. This is the length of your program
including the END statement
Remember this length for you will see that the use of
CMFDL will significantly decrease the number of used
bytes, thus giving you a lot of memory back.

Page 32

MLDL operating system eprom

SYNT (SYNTesize }
XROM 11,22

With this function you can create two— and some three bytes
instructions in program memory without using the bytegrabber.
Data for this function needs to be given in the X- and Y-
register. The first byte of the instruction ¢ decimal coded) is
given in the X-register. The second byte is given in the VY-
register. SYNT will place the instruction after the program line
where the pragram counter is pointing at that moment. ATTENTION :
this routine works both in PRGM and RUN mode. Therefere you must
be very careful when assigning SYNT to a key. Carelessly pressing

the assigned key will produce an unwanted line in your program or
even worse.

Example : 159 ENTER™ SB execute SYNT will give a TONE 8 in vypur
program which is completely different fraom the normal

TONE B. An input of 247 in X and Y will give you a byte
grabber.

GE (Go to .End)
XROM 11,23

This function is a sort of replacement of the GT0.. function of
the HF~41. It will put you at the end of frogram memory, but it
is not packing the memory. Furthermare it does not put an end to
the last program in memory. When you do not know where you are in
main memory use GE and you are at a familiar place again.

This routine will display B2 REG NNN and also circumvents the

line number bug in the HF-31 operating system.

XROM 11,24

This is just a seperator for the second and third section. Far

more details see page 14,

Page I1

MLDL operating system eprom

UPDATE FUNCTIONS

SAVEROM
XROM 11,25

With this function you can save the contents of an entire rom on
cassette tape. The input farmat for this function is a name in
the alpha register and the desired page number in x.

A file will be created on tape of 440 registers, occupying 28
records.

Because there are a lot of users who have been using the Mountain
Computer eprem burner set with the functions READROM and WRTROM
we also included a user code program to be able to read back rom
files in the old B24 format. This is the program 'RROM in
appendix H. :

The File identifier on tape for the new file created by SAVEROM
is % 87. This means that the files are presented in the DIR as :

NAME 27,8 640

We have chosen for a nonexistant file type to be sure that the
data is not accidently destroyed. ' Therefore the file is also
automatically secured after creation. SAVEROM saves 7 records per
file compared taoa WRTROM or °‘WROM. Now you will be able to get the
maximum number of roms on your tape (e.g. 24 files).

Toc get the maximum number of files on your tape it is recommended
to do a NEWM with 27 file directory entry’s. You can write 172
files o©n each side of the tape then. After having written 17
files you should protect the tape from rewinding from one side to
the other by creating a dummyfile "ENDTAFPE" of 30@ registers.

FPage 32

Example 3

GETROM

MLDL operating system eprdm

I¥f you have a cassette drive you can try the following
example. We will save the contents of our rom at page 7
on tape and read it back with GETROM. Give a filename
in ALPHA, for example USER1. Since we have our rom at
page 7, were also the HFIL module resides, we have to
move it to another page. This could be page 5. If you
can not use this page, place your rom at another page.
I¥# =o replace in the following example the pagenumber
with your new page number

We have the name in ALPHA and naw we have tg give the
page address in the X register. In cur example this
will be 5. Execute SAVEROM. You will hear the cassette
drive working for some time. If you watch the drive
closely, you will notice that it writes 20 blocks after
each other.

When the drive is ready again you could do a DRIR and
see as entry in the directory of the tape our Just

created romfile. It will be in the form as described
under the function description,
e.g. USER1 27,5 620,

XROM 11,26

This is the counterpart of the SAVEROM function. Input format is

the same,

be in x.

so the name must be in alpha and the page number must
For more information on the format of the files, we

refer to the function SAVERDOM.
Getrcm will read back the contents of the rom file and put it in
the desired ram page. There is no checking done to see if the

specified

page is actually a ram page. This is to allow you to

get a rom file to a page that is not switched on.

Example :

If you have saved our rom file an tape, we can
demonstrate it coming back. First of all clear the page
we are working on. This is done with CLBL. You probably
know by naw how this function works, so it is left up
to you to clear the block. Fut in ALFHA the name of the
file we want to read back, e.g. USERi. In the X
register the page address should be entered to which we
want the rom read back. In our case this will be page
S. Now the function GETROM can be executed. After it
has finished, vyaou can check if it is back again in the
usual way with a CAT 2.

Page 33

MLDL operating system eprom

CMPDL
XROM 11,2

This is in fact nearly the same function as the normal COMPILE.
Therefore we are refering to COMPILE for the set up of the flags
and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric
labels in the program while compiling. This shortens the pregeam
and speeds it up. This can be done, because the HF-41 remembers
where to jump to in the jump and execute functions. So after the
tirst run of a program, the HP-41 knows the distances to all the
labels and will always jump this distance. It does not matter if
there 1is a 1label or not. Therefore the labels can easily be
deleted. Only when the program contains indirect jumps or xeq's
is it impossible to do sa. This is due to the fact, that the HF-
41 can not remember all the possible addresses of all labels in

the program. For this reason you can not use this function when
the program containg a GTO ind or XEQ ind.

The program respects all the local labels. So the labels a
thraugh J and the labels a through e are respected and will not
be deleted. This is necessary because the HF-41 searches for them
when you use them from the keyboard.

When this Ffunction is executed, it will make use of the user
registers to hald the addresses of the deleted labels. Therefore
make sure that the number of allocated registers is more then the

number of labels in the programs. If you don’'t take care of thie
the calculator might crash.

To pratect the compiled.status as much as pPCssible we change the
terminated by the .END. This protects you from accidently writing

at the end of the program if you want to centinue at the end of
the programmemary with new programs.

During program compilation, you will see the following messages
after each other. FACKING

COMFL 2B 6
COMFL 2B G/X
FACKING
COMFL 2B G
COMPL 3B G/X
READY

Page 34

MLDL operating system eprom

The compiler makes use of the normal compiler. First the whole
program is compiled to find out where toc jump to. Then all the
LBL's are deleted and their addresses are remembered in the wuser
registers. This is done during the packing stage. After this the

program is compiled again. When the function is through you are
at the beginning of the pragram.

The user registers contain the infarmation where the program
resided and where the specified labels in the pragram were. The
structure of a register is as follows 1@@SSSSLLLLANN. The first
two digits indicate alpha type aof data. The SSS5 part gives ynou
the start address of the program in pragram counter format. The
LLLL part gives vyou the address of the 1label in the packed

program without the labels. The NN part gives you the deleted
label at this address.

Example : We will compile the program that we used by the Bxample
of COMPILE again. This time we are going to compile it
with OCMPDL. This is easily done. First make sure we
have encugh empty registers by setting the size to 18
or greater. We can now execute CMPDL. At the prompt
give the name of the program : TST. After the compiler
has finished we can see the results. Just run the
program. Again there is nc delay in the first beep..
Also notify the fact that the flying goose ‘does nat
move anymore. This is because the goose only moves one
place to the right whenever the program encounters . a
label. But since all labels are deleted, it is not
neceassary anymore to move the goose. If you stop the
program and execute the function CBT, you will get as
result 48 BYTES. This implies that we have saved 20
bytes of memory, and in this case it means that the

program is shortened by roughly one third af it°s
original length.

IPAGE
XROM 11,2

This functien sets up a ram page to load user programs and/or
assambler code functions. The entire specified page is cleared
- and the specified xrom number and the name in alpha are written
at the appropriate places. This we have already done manually

when we explained RAMWR and AFAT. With this funcé¢tion it will be
much easier.

Page 35

MLDL. operating system eprom

Input for this functiocn in ALPHA is the name of the rom. This
name must be from one to 11 characters. As it is the name of the
rom it is advisable to make it at least B characters. This has
two reasons. First, a function name of more then 7 characters can
not be executed. Second and more important is the fact that the
CAT function of the HP-41 CX searches for names that are longer
then 7 characters. So, if you use a name of 1less then 8
characters, the rom name will not show up in the header catalog
of the HP-41 CX. This is also the case with the CCD module, a
module likely to spread ocut as much as the FPPC ram. Second thing
to give as input is the MLDL ram page number toc b= initialized.
This page number is given in the X register. (in decimal)

When the function is executed, it will prompt you for the xram
number aof the page. There is no checking done an the input,
because it is possible to use other xrom numbers, but you can not
execute a function in a rem with a xrom number higher then J1l, so
it is advisable to use a xrom number between 1 and Ii. Sez $or
the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first
eleven characters in the alpha register when you have no more
then 12 characters. If you have more then 12 characters in alpha
the mname will be the first 11 characters that are left in the
display after having it displayed. 1In other words the first 11
characters of the last 12 characters in the alpha register will
be used and write into MLDL ram.

When you have less then 11 characters the last character can be
an underscore.

Output of the function is in alpha the addrees of the first empty
word as it is used for the function MMTORAM.

Example : We will now initialize our page with the help of IFAGE.
First switch the MLDL ram page back from page S to page
7. Give the desired name in ALFHA. We will make use of
the same name as we used in the examples before. It
will be NEWUSER @1. Give the right page number in the X
register (7). Now execute the function IFABE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 2!. This is the xrom number for
user roms. After a short while a tone will sound and
the message READY will be in the display. Fressing
ALFHA once gives you the first free byte available to
load from. This will be address 7@92. ‘

Page 3&

MLDL operating system eprom

MKPR
XROM 11,29

This function allows you to make yaour programs private, even if
you do not have a card reader. The function will respect the
compiled status of the program. At the prompt you must i1l in
the name of the program that has tc become private or if you want
to make the current program private press alpha twice.

Example : If we want to secure cur Praogram compiled with CMFDL
from accidently being alterad we could make it private.
Execute private and fill in the prompt with TST. 1f you

switch to program mode you will now discover that the
program is private,

Page 37

XROM

11,21
11,82

11,83
11,04
11,05
11,0&
11,27
11,08
11,09

11,18
11913
11,12
11,13
11,14
11,15
11,16
11,17

11,1B
11,19

11,20
1151

11,22

11,23

NAME

" RAMWR
MMTORAM

AFAT
DFAT
"‘MOVE -
CLBL
CORPYR
ROMSUM
" REG>ROM

COMFILE
LOCA
LROM
cobD
DECOD
ROMCHKX

~ROM>REG-

~MNEM--
DISASM

~CaT
CBT
BSYNT

“GE

MLDL operating systgm eprom
APPENDIX A

INPUT

B8-F hex

BEBEB in ALFHA

flags @, 1 and 3
UOFAAA in ALFHA

OPAAA in ALFHA _
BREBEEEFEDDDD in ALFPHA
F / BBBEEEEE in ALFHA
SD in ALPHA

P in ALPHA

@/P/BBBE in reg Y
first reg in X

name of pragram
BBEBDDD in ALPHA
BEEBE in ALFHA

hex in ALPHA
binary in X

XROM in X '
BREREEEE in reg Y
first reg in X
AAAADDD in Y

BEEB in X

F at prompt

name at prompt

X first dec. byte
Y second dec. byte
pc. at .(END.

Page 38

OUTPUT

word in ram
stored program

FAT updated
FAT updated
block is moved
block cleared
copied block
romsum in xFFF
data in ram

compiled program °
AARADDD / NONE
ARAADDD / NONE
binary in ¥

hex in ALPHA

bad / ok do if true’
data in registers
last reg in LASTX '
mnemonic in Z and T
EBBE + 1 in X '
AARADDD in Y

cat from page F
length of program
instruction after pc.

XROM

11,24
11,25
11,26
11,27
11,28

11,29

NAME

s s

SAVERDOM
GETROM
CMPDL
IPAGE

MKPR

MLDL operating system eprom

APPENDIX A
INPUT OuUTPUT

name in ALPHA 4K in file on tape
dec. page in X _ .
nama in ALPHA 2K of tape in ram
dec. page in X
name of program short comp. program
name in ALPHA desired page cleared
dec. page in X name + xrom in page
xrom at prompt load addr. in ALFHA
name of program private program

REPRESENTING

SHORT FORM LETIER

cMmIomMowD

address digit

begin address digit
data digit or destination digit
end-address digit

- affset digit

page number digit
source digit

-user digit

Page -39

MLDL operating system eprom

APPENDIX B

PROERAMMING AND THE MLDL EPROM SET

Most functions provided by the ERAMCO MLDL-EPROM can be entered
in program whenever the eprom—set is plugged in an ERAMCO MLD{-—
box connected to the calculator. When the ERAMCO MLDL~box
containing the eprom set is connected program lines with eprom
functions are displayed and printed as standard functions.

If the box is disconnected, these program lines are displayed and
printed as XROM functions with two identification numbers. The
first number -11- indicates that the functions are provided in
the ERAMCO PMRDL-EFPROM. The second number identifies the
particular function. The XROM numbers for the ERAMCO MUDL-EPROM
are listed below.

Function XROM Number:! Function XROM Number{ Function XROM Mumber

[} [}
AFAT XROM 11,83 | DISASM XROM 11,19 ! RAMWR XROM 11,@1
CAT XROM 11,28 | GE XROM 11,23 { REGORCM XROM 11,89
CEY XROM 11,21 ! BETROM XROM 11,26 ! ROMCHKX XROM 11,14
CLBL XROM 11,06 ! IPAGE XROM 11,28 { ROMSUM XROM 11,08
CMPDL XROM 11,27 ! LDCA XROM 11,12 ! ROM>REG XROM 11,17
caD XROM 11,14 : LROM XROM 11,13 ¢ SAVEROM XROM 11,25
COMPILE XROM 11,11 ! MKPR XROM 11,29 ! SYNT XROM 11,22
COPYR XROM 11,87 : MNEM XROM 11,18 § -— XROM 11,12
DECOD XROM 11,15 ! MMTORAM XROM 11,82 § —— XROM 11,24

! MOVE XROM 11,05 !

DFAT XROM 11,34
Underlined functiaons are not programmable.

I+ program lines using the ERAMCO MLDL eprom are entered when the
eprom set is not connected, the function is recorded and
displayed as XEQ faollowed by the function name. Frogram execution
will be slowed down by lines in this form because the calculator
will first search in main memory for a program or program line
with the specified label.

Page 4@

‘MLDL. operating system eprom

AFPFENDIX C

MESSAGES

This is a list of messages and errors related to the functiens in
the ERAMCO MLDL-EPRDOM set. When any of these errors are generated
the attempted function is not perfarmed, except as noted.

DISPLAY
BAD MLDL
ENTRY >&4

GTO/XEQ IND

' NO ENTRY

NO HPIL

NO LBL xx

NONE
NONEXISTENT
NO ROM

NO ROM xx

FUNCTION

RAMWR
AFAT

CMFDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE
CMPDL
MMTORAM

LRCM
LOCA

-all-

ROM>REG

RAMWR

ROMCHKX

MEANING
The MLDL ram page is malfunctianing.
There are already 64 entry’'s in the FAT.

The program contains GTD or XERQ ind
statements.

No such entry exists in the FAT.
The HPIL module is not plugged in.

The GTO or XE@ has no corresponding LEL
in this praogram.

The whole block is empty,
There is no such word in the bleock from
start-address up to the end of the page.

The ERAMCDO MLDIL-EPROM set is not plugged
in or is disabled or is malfunctioning.
There are not enough registers available
to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM
number at the first address of this
page. :

The ROM with the given XROM number is nat
plugged in or disabled.

Page 41

NO

DISPLAY

WRITE

PAGE > 15

ROM

xx NN-RR BAD

KX

com

COMPL 3B G/X

LOA

PAC

REA

NN-RR OK

FL 2B &

DING PGM

KING

DY

MLDL operating system eprom

FUNCTIDN

RAMWR

GETROM
IPAGE
SAVEROM

MKPR
MMTORAM
COMFILE
CHMPDL
CBT

ROMCHKX

ROMCHKX

COMPILE
CMPDL
MMTORAM

COMPILE
CMPDL
MMTORAM

MMTORAM

COMPILE
CHMPDL
MMTORAM

COMPILE
CHMPDL
IPAGE
MMTORAM

APPENDIX C

MEANING

The data is not written at the
address. It is impossible to write to an
EPROM or ROM page. Also you can not
write at a disabled page.

desireaed

There is an invalid pagenumber in reg X.

The named program doesn’t exist in main
memory but is found in ROM

The ROM with the XROM number xx is bad.

The ROM with the XROM number xx is ok.

The 2 byte GTO0’'s are handled.

The 3 byte GTO0’'s and XEfli's are handled.

The program is loaded to MLDL ram.
A byte is deleted and the program is
packed to reduce the length of the

program.

The function is ready.

Page 42;

M. DL operating system eprom

APPENDIX D

XROM numbers range from 1 up to 31 inclusive. As quite a Ffew
ROM‘s are available at the moment of this writing it is advisable
to choose a XROM number with care ta avoid conflicts with other

modules.
ROM name H XROM ID ! ROM name i XROM 1D
MATH H 21 ¢t SECUR P 12 =
STAT T B2 t CLINLAEB P19 #
SURVEY i 2z ! AVIATION P12 »
FINANCE H @24 ¢ MONITOR ¢ 19 % +
STANDARD ! @5 i STRUCT-B V19 %
CIR ANAL) i C PPC 1981 i 28
STRUCT-A y B7 i ASSEMBLER 3 P21
STRESS I . 1= i IL-DEVEL P 22
HOME M H a9 i I/0 i 23
GAMES H 18 = i IL-DEVEL i 24
C PPC 1981 ¢ 18 = ! —-EXTFCN i 25
AUTODUP : 18 = i —-TIME- i 26
REAL EST IS § § v — WAND P 27
MACHINE i 12 i —MASS ST i 28
THRML P13 i (- CTL FNS - !
NAVIG i 14 i HP~IL MODULE) !
PETROL i 15 ¢ —PRINTER i 29
FETROL H 1& i CARD READER V38
PLOTTER H 17 s PPC ROM 2 2?7 !} 3t
PLOTTER H iB H HEE B

ERAMCO-MLDL

+ Only a small number of this ROM, an early version of
ROM, were made and are not stacked or sald by HP.

Those marked with an asterisks share their identifying
and should not be used in the HP-41 at the same time.
functions with the same XROM ID the one at the lowest
(i.e. the lowest numbered port) will be accessed first
other will be ignored. So use discretion when choosing
XROM number if you want to avoid these kind of problems.

Page 42

IL-DEVEL

number ,
Df two
address
and the
Your own

MLDL opgrating system eprom
APPENDIX E

XROM STRUCTURE

XRCM‘s are located at whole 4k blocks of addresses. The lowest
addresses in an XROM, and a few of the highest have special fune-
tions. The remainder may be filled in any way. The lgcations in
the 4k blocks must be filled by ten bit words, giving 2-1@ diffe~
rent codes. They may be read as instructions, or as alpha-numeric
data. The follawing summary, adapted from J. Schwartz® January
1983 PPC Conference paper, should be taken into account when
studying an application ROM, e.g. the MLDL-RDM. A listing ecan

easily be prepared by using the MLDL-ROM functicons DISASM and
MNEM. ,

Relative Functian of code at that address
address (hax) '

X220 The XROM ID number in hexadecimal digits.
X231 The number of functicns in the XROM (m),
including the XROM name.
Xea2-3 Address of XROM name . '
XRB84-5 Address of first routine, program, etc.
Xaa5--7 Address of second routine, etc.
X@A2+2n Address of n'th routine
X033+2n
1 : " "
X@B@a2+2m Address of last (m°th) routine .
X0@83+2Zm (m < &4)
XBa4+2m Compulsory null -~ po@.
X@@85+2m Compulsory null - PAGA.
" L1}

Page 44

MLDL operating system eprom

Add. of name Name of ROM (running backwards)

o 1 (1]
Add. of Fn# { Start of Fn# | code

" [1] 1
Add. of Fn# 2 Start of Fn# 2 code

11} " «”

L1 L]

XFF4-4a Special interrupt jump locations (see table).
XFFB-E ROM name abbreviation and revision #.
XFFF ROM checksum for diagnostic use

Word pairs containing function addresses:
First waord of pair: b @ O 0 O 0O all ai@ a9 aB
Second word of pair: B B8 a7 a& aS5S a4 aI a2 al a2

This results in the following address in this 4k block if 0000
zera:

PS p2 pl p@ all al@ a9 aB a7 asé a5 a4 a3 a2 al a@

is

Where p@-3 is the bit representation of the 4k page number and
ald-11 represant the relative offset from the beginning of the
page.When 0000 is not equal to zero it must be added to p@-3. For
more information see the function AFAT.

If the two words would read @83, OFF this would represent a
starting address of a function at address XIFF (hex). The bit b
in the first word indicates USER code or microcode. If set the
address is the start of a USER code program (e.g. 208, BAl in the

printer module is address &BAl, start of USER code program
“PRPLOT")

Page 45

xFF4
xFF3
xFFé&
xFF7
»FFB
xFF9
xFFA

Da

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during PSE laoop.

Interrupts after each program line.
Wake—up with no key down.

Interrupts when turned of+f.

Interrupts when peripheral flag is set.
wake-up with ON key.

Wake-up after memory lost.

not wse these points unless you know exactly what you
doing.

Careless use of these points may cause CRASHES.

Page 44

are

MLDL. operating system eprom
ASSEMBLY LANBUAGE INFORMATION

SHORT REVIEW OF THE HP-41 INSTRUCTIONS

The HP41 CPU has three main arithmetic registers: A,B and C.
These are 56 bits long (14 nibbles) ang instructions can operate
in varicus "fields" of the register.

{13 % 12 11 1@ 9 8 7) S & 312 11 @ !
3 L] L] L] 1]
H H ! XS 1| !
H H ALL 1 <{==>1 {
1< + + e s >
P MS M H S & X H
i<——>1< >i< >

ALL : The whole register

M ¢ Mantissa

MS : Mantissa Sign

XS : eXponent Sign

S&X : eXponent and Sign off exponent

@R : At specified pointer
R{— : from digit R to digit @
PR : Between P and @

There are two pointers P and R, of which the value is B-13. One
of them is selected at the time (through slct p or slct q), the
selected pointer is called R. These are three extra fields, which
depend on the value of the pointer), R<- (up to R, from digit R

to digit @) and P-B (between pointer P and @, & must be greater
thar Py . i

There is a register G, 8 bits long, that may be copied to or
from or exchanged with the nibbles R and R+1 of register C.
(R<{=12). There are 13 flags, B-13, of which flags B~7 are located
in the 8-bits ST (status) register, and there is a B-bits TONE

register T, of which the contents floats every machine cycle
through a speaker.

Page 47

MLDL operating system eprom

Then there are two auxilary storage registersy, M and N, which
can operate only in the field ALL. They are S& bits long.

There is a 1é6~bit program counter, which addresses the machine
language, and a KEY register of 8-bits, which is loaded when a
key is pressed. The returnstack is 4 addresses long and

is
situated in the CPU itsel+.

The CPU may be in HEX or DEC mode. In the last mode the nibbles
act as if they can have a value from @ to 9.

The USER-code RAM is selected by Cls%x1 through RAM SILCT, and
can be written or read through WRITE DATA or READ DATA. 1+ chip B
is selected (RAM address @0@ to @BF) the 16 stack registers may
be addressed by WRIT and READ @ to 1S.

FPeripherals (such as display, card reader, printer) may be
selected by Cis%xl through PRFH select or by SELP (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=a C=B , C=C+1 70<B

B=0 =A+1 =C+A 2A#C

C=0 A=A+B C=A-C 2A#D
ALOB A=A+C C=0-C RSHFA
B=A A=A-1 =-C-1 RSHFE
A<>C =A~F ?B#0 RSHFC
=C =A-C ?CH#0 LSHFA
C<OB C=C+C ?A<C

CLRF, SETF, ?FSET, ?R=. ?Fl (peripheral flag set?) , RCR (rotate
right) have a parameter B-13.

LD@R (load C at R) and SELP (select peripheral) have a parameter
a-F.

WRIT and READ have a parameter 0-15, called

BTy, 1(2Z), 2(Y), I(X), 4L), S(M, 6N, 7(D, BP), 9@,
1@ci-), 11ca), 12¢d), 13(c), 14(d), 15(e).

Page 48

MLDL operating system sprom

Jumps:
There are two classes jumps:

a. INC (jump if no carry) and JC (jump if carryl. These
instructians provide to Jjump relative 3F in pasitive
direction aor 4@ in negative direction.

b. ?NC B0 and ?C B0. These instuctions provide to jump to an
absolute 16 bits address. '

PNC XR and ?C XB are jump-subroutine instructions to absgolute
addresses. (remember the return stack is just 4 addresses long).

Miscelanecus instructions:

5T=8 C=6 ST=T FOWOFF
CLRKEY C<>6 ST<>T SLCT P
7KEY C=M ST=C SLCT @
R=R—1 M=C C=8T 2P=0Q
R=R+1 C<o>M ST<>C . TLOWBAT
G=C T=ST XQ->&50 A=B=C=0
GOTO ADR (CLA:31) ?C RTN PUSH (CL&:31)

C=KEY ?NC RTN POP { CL&:233)

SETHEX RTN G0TO KEY

SETDEC N=C RAM SLCT

DSPOFF C=N WRITE DATA

DSTTOG C<ON READ DATA

FETCH 5&X ‘ C=C or A PRFH SLCT

WRIT S&X (for MLDL C=C and A

Note : various arithmetic and all test instuctions may set the
carry flag. This flag keeps set only one machine cycle, so
a Jjump dependent on this flag must be immediate after the
arithmetic ar test instruction, otherwise the carryflag
will always be cleared.

Page 4%

CLASS § OPERATIDNS

MLDL gperating system eprom

v 13
33
308
34
k8
¥

i 13 0 18
348 | lgi
L8) —
208 | —
20§ —
358) 398 |
D8 | —
ZE4 | IE4
368 | a8
2E ¢ —
378 | 388
L § e

i 12
388
344
348
L
318
354
35
364
328
360
338
3

HI Y

- RS S e m S e e Y b wh wn se wE mEm oo

i 18
288
84
ica
Bt
298
804

i 8
84
258
§EC
288
oFc

b
i
=
o
B
a.
Fi
(.Y
'
&
-
- - o -
! RIZZ|Q2BF|32RR 5.
S) e e S S e e, e e et e e e S S "
- O - ml
N oo oa oo vzx!&l =t N ot oq OF
. g - aQ W =t
ow am @e ma o ao wa il.m.h...llxrw.t e ru Gm me we = “ PfA m
~| ogssl=rgz|sgey « i %
o £ N 09 i B9 B N L b roy ‘bum hw
Ilblllllltllllll“”llll!ldlllll“ -, -C” wv
-a BAITPIFTRARAS | 2IRER N .ﬂn
Y o4 od od) teal w=d =l oot o=l o= w=d n .’nh.x -N
. B B A s e e - 'I“l' - MW e we ow oo ' “ 0ww‘ 'l"
| 2388 |nzrz|sums g g
S U | wdp D s | G v B8 g~y swow
x muw GE e me Yo Ge Fe om e aa Ne ME BA N S Ge m \mxs ._.“tr.M
- T “mm“ 828R — n.w.d... B2BLaE~
- GR on 0w - @D ot @D e 0D = a
o e B ad e 4
 EEm W@ A0 9O OO WO e PO S dm N SE BN we oS e m h gh ‘h ”1
- nmmn e ﬂmﬂmm 3 L™ e
an e en &0 o (] H.t.". L > a2
el 22 2% e g we b b e o o s %, s ELE
Pyl by [y sE2853 £3%8s
£ lzzm A] lm-nt i!m.! " e]
" m ..mma'
= SRRE) SRan IR
o L3 = o Y g 40 4t
-{ 88X |0550|38ER 253% 383E

mE e® @B S8 We @4 9 == 9E Te =9 =8 Fw oD =w Do o=

EE T B® S8 S6 Se @s e w= G mm e =" = w2 @ma e

@ W o @

Lo

4
8
P

=
0P

CLRF
SETF
WEET
LDRR

R=

SELP
RRIT

1

RCR
MERONIC
NP

CLRF
SETF
WEET

Page 5@

Krita °C* ta RAM sesory or to the selected device is register p of the selected block

Set the carry flag if peripheral flag s is set
Read °L" froa RAN sesory or the selected device to register § in the selected block

Rotate °"C" right by p digits

o

mEMIC HEX
IUSED 234
INUSED x74
INUSED x84
INUSED sF4
T4 304
CLREY 308
wE 3L
ReR-1 304
R+l 30C
DMUSED 818
8oL w8
C=6 e
CoE e
(NUSED 118
#=L 158
L= 198
con 108
WNUSED 218
=57 258
STsT 298
STOT 208
INUSED 318
E R
ST 3%
COST 38
-0 &2
POKIFF 848
RCTP
SCTO BB

MLDL operating system eprom

CLASS B SPECIAL INSTRUCTION HEX CODES

Llears flag 8 tu 7 { "ST" register }

Clsars the ‘key pressed’ flag

Set the carry flag when a key has been pressed
Decresent the current painter

Incresent the current pointer

Not in use

Copy digits 7,r#t froa °C° to °5°

Copy *6° into digits r, 7¢I froa °C°
Exchange °6" with digits r,r#! fros °C"

Not ie use

Copy °C* into "A°
Copy °N°® into °C®
Eazchange °C" with °A°

Rut in use

Copy °8T° inte °T"
Copy °T° into "ST°
Exchange °ST® with °7°

Kot ia ese :

Copy digits |, ® froa °C" into °ST"
Capy "ST® into digits I, @ fros °C*
Exchange digits 1, 8 fros “C° with °ST°

Brop stack to convert IO into GO
8o to standby sode

Select °P* as the active pointer
Select "B° as the active pointer

Page 51 -

WENMIC HEX
CXEY 228
SETHEZ 258
SETIEC 248
DSPOFF 263
DSPIG 328
LRI 3
K RIN 348
RTN 3
UNSED B3R
WL o
C=K (ET
toN WA
Lo 13
PUSH 178
POP 180
(MUSED 1FB
B0TO XEY 232
RAR SLT 278
IUSED 288
WRITEZATA 2F
33 T
CCORA 378
C<C AND A T8
PRPHSLLT TF#
e V[
AOMBAT 168
#<B=C=t 140
S0TD ADR 1ER

OPERATION

Lapy key register into digit 4, 3 of °C®

Use hezadecigal arithmetic
Use decizal arithaetic
Tura off the display

Taggle the state of the display

Return from subroutine if the carry is set
Return from subroutine if carry $1ag cleare
Do a subroutine return alsays

Mot in use

Capy °C* into °N°
Copy *M° into °C®
Exchange "C° with °N*

Load nest rom word into digits 2-8 of °C°
Push address digits &-3 in "C" onto stack
Pop address froa stack into digits &-3 of °
Mot in use

Load key register into lower 8 bits of °PC*
Set ras address to digits 2-§ of *C°
Rat in use

Urite register "C" to the selected register

Load 2-B of °C* from ros address &~3 of °C*
Logical o7 of "C* with "A® bit by bit
Logical aed of °C° with "A" bit by bit

Set peripheral address to digit 2-8 of °¢°

Set the carry flag if the pointers are equa
Set the carry flag if low dattery

Clear registers °A® °8" and °C*

Copy digits &-3 of °C* into the °PC*

HLDL operating system Bprom.

CLASS 1 INSTRUCTIONS

Ciass 1 instructions are absolute
consist of two consecutive ROM words

Az Ao Aa Aa A= A As fa

Aim Aaa Aiz Az Ais Ais Ae Ae

BO0T0s and EXECUTEs. They
of the following format :

Aimg-fie 1is the 1&6-bit address to branch to. The pp field of the
secand word determines what type of instruction it is. The next

table shows values for pp :

pp MNEMDNIC OPERATION

B8 NC X@ execute subroutine 1¥ carry is clear
@1 C Xa execute subrautine if carry is set
1@ NC GO goto rom address if carry is clear
@1 C GO goto rom address if carry is set

Example : NC B0 8232 which jumps to the memory last routine

coded as :

Q11 Ba@aig a1

isg

PCT as first word

0703 Y010 18 = BOA as second word

Page 52

FIELD
ALL

MS
Xe
S&X
eR
R{—
F&

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATION

AREA OF OPERATION

All digits.

Mantissa digits 12 - 3,

Mantissa sign digit 13.

Exponent sign digit 2.

At exponent digits 2 - 8.

At digit specified by the current peinter.

Up to and including pointer from the right.

fram pointer F, left up to B, including pointers.

Page 53

MNEMONIC

=8
B=3
C=0
Al >R
B=A
A< >C
C=B
C<>»B
A=
A=A+B
A=A+C
B=A+1
A=A-B
A=p~—1
A=A-C
C=C+C
C=A+C
C=C+1
C=A-C-
C=C-1
C=0-C
C==LC-1
TB#0
TC#0
?0LC
?A<LB
THED
PAAC
RSHFA
RSHFRB
RSHFC
LESHFA

'HLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION

clear A

clear B

clear C
exchange A with
copy A into B
exchange A with
copy B into C

exchange B with

copy C into A
add B into &
add C into A
increment A
subtract B fraam
decrement A
subtract C from
double C

add A into C
increment C
A-C into C
decrement C
camplement C

nines complement C

sat carry flag
sat carry flag
set carry flag
set carry flag
set carry flag
set carry flag

‘if

if
if
if
if
if

B8
C#2
ALC
A<B
A#=d
AZC

shift A right 1 digit
shift B right 1 digit
shift C right 1 digit
shift A left 1 digit

&R

717 b
a2z
@4z
0s2
2Bz
an2
acz
fE2
i@z
122
142
1462
182

- 1A2

ic2
1E2
22
222

242

262
282

22

2Cc=2
2E2
3az2
322
342
362
382
3A2
3c2
SE2

Page 54

S

oes
226
24s
Q56
o8BS
RAsL
ecs
QES
106
126
146
16&
186
186
16
1E5
286
224
236
2664
286
2A6
2Cs
2E&
2es
326
346
368
286
zAs
3cs
3EL

R<—
ava
@24
B4a
B&A
BasA
BaA
bcAa
REA
1eA
124
144
16A
iBA
1AA
1CA
1EA
28A
22A
244
2&A
28A
2AA
2CA
2EA
IBA
I2A
344
IbHA
38/
TAA
3cA
JEA

ALL

@BE
@2E
@4aE
@&E
BBE
BAE
BCE
QEE
18E
12
14E
16E
i8E
1AE
1CE
1EE
2ec
22E
24E
26E
28E
2AE
2CE
2EE
3BE
I2E
34E
J&E
J8E
SAE
ICE
3EE

PQ

2812
a3z
asz
872
@92
@22
ap2
@rz
112
132
152
172
192
182
iD=
1F2
212

2
252
272
292
2p2
202
2F2
Jiz
332
352
372
392
3IB2
3Dz

IF2

Xs

@i1&
&
8546
B746
2968
aBs
@Dé&
@Fé
11&
136
156
17&
196
1B6&
106
1Fé&
216
236
2356
276
296
2B&
2D6
ZF 4
14
33&
356
374
396
IB&
3Dé&
3IF&

M

a1a
22A
esa
B7a
e%a
2BA
2DaA
ara
11A
1ZA
154
174
194
1BA
1DA
iFA
21a
23A
25A
274
29A
2BA
2D&
Z2FA
31iA
33A
ISA
3I7A
39A
3BA
3DA
3FA

s

RlE
B3E
OZE
@B7E
Q%
@EBE
ADE
@re
118
1ZE
1SE
17E
19€
1BE
1DE
iFE
21E

Z5E

27E
29E
ZBE
ZDE
2FE
31E
IIE
3ISE
I7E
39E
IBE
JIDE
3FE

DISTANCE JNC-

+/- B1
+/- @3
+/—- @3
+/— 87
+/— B9
+/~ BB
+/=- @D
+/— BF
+/= 11
+/- 13
+/~ 135
+/=~ 17
+/— 12
+/— 1B
+/=- 1D
+/= 1F
+/- 21
+/- 23
+/= 23
+/- 27
+/=- 29
+/- 2B
+/= 2D
+/~ 2F
+/= X1
+/=- I3
+/- 385
*/- I7
+/- 39
+/=- 3B
+/- 3D
+/- 3JF
Class

3FB
3EB
3DB
3CB
3BEB
3AB
378
38B
37B
348
ISR
34B
33B
32B
Jie
388
2FE
ZEB

Z2DB

2CB
ZBE
2AB
<98
288
278
248
25B
24B
23B
22B
Z21R
20B

MLDL

JC-

IFF
3EF
3DF
3CF
3BF
3AF
37F
IarF
3I7F
J&F
3ISF
34F
33F
3IZ2F
31iF
JaF
ZFF
2EF
2DF
2CF
Z<BF
2AF

29F

28F
27F
26F
25F
24F
23F
22F
21F
28F

operating syétém ebrom

CLASS I INSTRUCTIONS

SF7
JE7
3D7
IC7
ZIB7
IA7
297
87
377
367

357

347
337
327
317
a7
2F7
2E7
<D7
2C7
2B7
2A7
297
287
277
267
257
247
237
227
217

JNC+ JC+ DISTANCE JNC- JC-
Q2 @oF - /- B2 3F3
8iB @iF +/~ B4 JEZ
B2E @zF +/— B6& 303
@3B 83F +/— @8 3C3
B4B @4F +/= BA 3BZ
@38 @sF +/= 2C IAZ
B6B B&F +/—- BE 393
@78 @7F +/~ 1@ 383
@88 @GF +/- 12 373
@YB @9F +/~ 14 3I&3
BAB @AF +/=- 14 353
@BB BBF +/- 18 342
@cB @cF +/—- 1A 333
@DE @DF +/— 1C 22
@EB BEF +/- 1E 13
BFE @FF +/= 20 3a3
i@ 1@F +/=- 22 2F3
11B 11F +/- 24 2EZ
128 12F +/~ 26 2D3
138 13F +/~ 28 2C3
148 14F +/- 2A 283
iSB 15F +/=- 2C 2R3
16B 14F +/- 2E 293
17B 17F +/- 32 =283
igB 18F +/- 32 273
198 19F +/~ 34 2863
1AB 1AF +/- 36 253
iBB 1BF +/—- 38 242
1CB 1CF +/—- 3A 233
1DB 1DF +/- 3C 223
1ER 1EF +/-~ 3E 213
iFB 1IFF +/= 48 283

287

instructions allow the Program to jump up
forward or backward from its prasent location.
JNC and JC.

Page 55

The

JNC+ JC+
813 017
823 @27
a3z3 @37
@4 @47
RS2 @57
B&52 Re7
a7z @77
282 @87
293 av7
BAS @a7
2B BE7
BCcZ ec7v
BDE @&n7
REX BE7
BFE @F7
182 1@7
113 117
123 127
133 137
143 147
152 157
163 147
173 177
iBS 1B7
193 197
1AT 1A7
i1BS 1B7
1C3 iC?
1D 1D7
1EZ 1E7
1F= 1F7
to &3 words

mnemonics are

MLDL operating system eprom

e
|
:

!
{
!

lower 4! B ! 21 ! 213 314:!Si61718:!5!A!B!C:!D!E
e Rt Eed B B e Bt By DU PRy PR S SR S

u B !@!AIBICIDIEIFIGIH!IIJIK!LIM!N
o e il S R B S Ly R Sy A PO PR S
P ¥ IPIRQIRIS!ITIUIVIW! XtY!ZiILDIN:T
e e i Rt Bt e L e B Sy N DU SRR SN SRR S
SO N N B BRI BN A S R B G S S S SO
2 R R R Bl B R B Ty T uiiuy GUNINE SV DU SR
T 1@l 112131415617 1i81%9:4; 1< 1=153
R B R R R T R L] C Tty DUy Sy SUUI

4 ti~tatbieid!e! & & 1t 34 1as
R R e B e B et Rty ISRy JUNIY UMM SN SN SR

Note : The coleon (ZA) displays as a boxed star. The comma {(2C) is
also the left facing goose when used in a function name or

display and the peried (2E) is alsoc the right facing
goose.

You get the hexadecimal code of a character by taking the number
in the upper2 column and place the number in the lawer row behind
it. Last step is to place a zero in front of the number.

Example : The hexadecimal code of the letter W is Bi7.
0F the equal sign it is @30 :

FUNCTION NAMES

When a function is executed, the operating system checks the ROM
words containing the first two characters of the “function name
and tha two words immediately follewing. The catalcg table entry
for a wmicrocode function (both mainframe and XROM functions)
points to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word af
executable code. :

Page 5&

e AP me WR Ge BE Be es MY EmR BE e

MLOL operating system eprom

Example : This example shows you how a normal function name is
coded. -

18CE @BL A Hex @80 added to indicate end of name.
18CF @eaC .L

idD@ @83 C

{1@D1 xxx First executable word of CLA.

FUNCTION PRDMPTING

To tell the operating system that the end of the function name
has been reached, add @8@ hex to the final character. To provide
a prompt set the top two bits in the first two characters of the
function name by adding the hex constants in the following table

NULL IND %
1ST 2ZND alpha alpha #dig. ind stack stack none example

o

@@ any . X CLA,CLST

102 202 X X : CLP,COPY
126 100 A 3,4 SI1ZE
100 zee \ X
120 300 1 X . CAT, TONE
200 ooe 2 X X | STO,RCL
200 180 2 X X STO,RCL
200 200 2 X FS?,5F
220 300 X 2 X

. 322 @00 X 2 LBL

300 100 X 2 X XER(alpha)
00 209 X 2 :

‘200 300 X 2 X X(.ddd) 6TO

The operating system examine these ROM bits and executes a prompt
Lif the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function
from the keyboard. However, when the function is executed in a
program there will be ne prompt at all. Take care of this.

I¥f ¢the prompt accepts an alpha string, the input data is loaded
into the B register, right justified in reverse order in ASCII. -

Example : Exscution of the function ASN with the alpha argument

“COPY™ will 1load 00 RO O S SB 4F 4C into the o
register before the function is executed.

Page 57

MLDL. uperating system eprom

I¥f the prompt is numeric the input data is loaded intoc the "a"
register in binary. Whenever the prompt also accepts indirect,
the value in the "A" register is increased with hex 48.

Example : Execution of the function RCL with a numeric argument
aof 585 will return 08 20 20 B2 B2 02 37 in the “A"
register. '

If the prompt would have been filled in with IND S5,
the "A" register caontains 22 20 @0 G2 @2 22 B7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the
operating system. The +First executable word, if a nop (@2@),
indicates that the function is non—programmadle. This means that
i¥ you execute the function in program mode, it executes rather
than being entered as a program line. S{ZE, ASN and CLP are naon—
pragrammable functions.

If thae first two executable words of a XROM function are both
zera, then the Ffunction is both non-programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when
the key is pressed rather than when the key is released. PRGM,
8HIFT and back-arrow are nen~programmable, immediate executing
functions. Note that unless your routine checks faor key release,
and the key to which your function is assigned is held down, the
function will be executed repeatedly until the key is released.
These two words affect the functicn operaticn only if the
calculator is in FRGM mode. In .RUN made, they are ignaored.

Example : these are a few examples of function name promptings.

12Dz @97 W 1185 B899 Y 12CC e85 E
12D3 @es E 1106 @12 P 12CD BRBE N
1204 129 I 1187 @oF O 12CE S@F ©¢
12D 216 WV 1108 123 C Z2CF 1184 T

Page 58

FUNCTION

MLDL operating system eprom

FUNCTION INDEX

AFAT..'.’II...I.l.'..'..lI-.-.--‘-..-'A.QIICII.-I..‘I

CAT...- ------- °

CBT..ccenne cveea

® S WO eD AN 9 VUG EDBEYdE eSS Ss e a

------ R A A R L I I I

CLBL.---..-----IIQ-O--QI-"-.....-I..tqn.nt..‘...t.o

C"PDLOIOI--.l.--u...n.l'.o'-l.l..‘..pl.-JOQ-oc-----

CDD-----..I.--l.l..-.ca..-----.-----------a.o--u--.
COHPILE.II.-----C-.----.---- --------

COPYR...-.'..Il.-lIII..'--..l.l.-.‘l.-.‘I.‘.'.-'I--

LR BB B B AL BB B B N IR

DECDD‘.-.---I..'.-.cl.l-c-.....-ODQ---'.b-.oct---oﬂ

DFAT--.....-l....-.--lnl-lolol...'.ll'..-----O--u..

DISAS".QI--.l..i.l..l.-l'l..-....n--l.--.'. ----- * v e

BE.-..-----.u-..lbl---ol.o--o.--h--.--o..---i-.--..

BETROM. ccnceaae

uo-o.----.-l..t'-Ul.i--.'--l

IPAGEI-..'O..IIQIIl..."l.l....'-....-.-...I.I“..I

LDCAI...II....I...'I'...'...I..‘-.....ll.ll..l-l...

LROH'G.D.-..IO....l'.-...ll."...'l‘...‘l. ------- s -

"KPR‘...lll‘-...llllﬂ.OI-I'.n--.‘..-..l.-.-'..l-l..

MNE”I‘Q‘Il'....l...‘l...‘.....l....ll'.l..".".'i.

H"TDRAH---...-.--...-.--oo.-“.lAn-o'...n--.l.-.c..-

MUVEOll......'..lt.....‘l..“--...l'.llll'...ll.l.l

RA"NR..I....l.....l.l...."-'.I..D..l.l-'.l-.'

REB)RO”II.l.‘.-...’----l......-'..-I.'.t--.-l'.....-

RUHCHKX-!.------‘.v--o.------.--.--.-.---‘.l---..--

RD“SU".-t.t....ot.o.-----l...ot-.c..--.-.o-t-...--.

RUN)REE.---....-.-...a.-t-.l.-nu'l---"-..--l--l-.-

SAVERDMI.‘..II.-..I.II.--....‘...l---.lll.-....-l..

SYNT.l.-.-.--."..-U.‘.ll..---..------n.-----.-.--.

o e e

s ey s

A A N N N N R R E I T YT eS

AL L R A N R N N T YT R T

Pagé S9

PAGE

i@
29
g
14
34

3T
v

<8
i3
24
12
28
31
33
35
22
23
37
27
8

1z
14
25
is
26

32

31
1Q
31

MLDL bperating system'eprom
CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the
feet of the eprom’s are protected against bending. Otherwise a
pin could brake from the eprom and make it worthless. Da not
cannect any external power supply to the eproms. Frotect the
eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the

labels on the eproms for these labels protect the eproms against
" loosing there data by accident through too much U.V. light on the
eprom’s.

Limited 180 day’'s warranty

The 83128A ERAMCO MLDt ~Eprom set is warranted against defects in
materials and workmanship affecting electronic performance, -~but
not software content- for 1BQ day’'s from the date of original
purchase. If you sell your unit or give it as a gift the warranty
is automatically ¢transferred toc the new ocwner and remains in
effect for the original 1B@ days period. During the warranty
period we will repair or at our cption replace at no charge a
product that proves to be defective, provided you return the

product, shipping prepaid, to ERAMCO SYSTEMS or their official
. se@rvice representative.

Page &8

MLDL operating system eprom
CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn't apply if the product has been damaged by
accident, misuse or as the result of service ar modification by

other than ERAMCO SYSTEMS ar their aofficial service
representative.

Na other express warranty is given. Any other implied warranty of
merchantability or fitness is limited te the 188 days period aof
this written warranty. In no event shall ERAMCDO SYSTEMS be liable
for cansequential damages. This liability shall in no way exceed
the catalog price of the product at the moment of sale.

Obligation ta Make Changes

Products are sold on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS shall have no obligation
to madify or update products once =old.

Page &1

MLDL operating system eprom

HOW TO SET UP YOUR OWN EROM PAGE

This part of the manual wiil tell you exactly how to sat up an
Erom image in your MLDL-box. This is done with the help of a few
user code routines that are icaded intoc the MLDL Ercm pages. I+
you follow the instructions to the letter, nothing can go wWrong.
And with the help of thesa instructions yau should be ables to set
up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you
want to work at and te set the Erom block to the preper page,
Therefore you must set the first block with the 1left rotary
switch at page A. Set the rotary switch eof the other block to
page E. Disable both the switches to the left of the leftmost
rotary switch (pull them down). When you set the switches in
this pcsition, you can compare the results of your actions with
the results that will be given in this appendix.,

step 2

Now we will first clear both Erom Pages. Key in alpha mode the
single character "A". Go out alpha mode and execute CLBL (for
more details see page 14) Repeat this segquence with the single
character “E" in alpha. At this mament your Erom pages should
bath be clear. Now you can aenable both the €rom pages by pushing
the both switches up. Don’'t expect anything to happen yet., Both
pages are still empty.

step 3

Bafore doing anything else we have to make sure that baoth pages
are empty. Kay in alpha "AFFF". Now execute LROM. The display
should read "none’. I+ this is not the case you should control
the setting of the switches and try step 2 again. This is done in
the same way for the second block, except you now have to key in
alpha "EFFF", The reading of the display should be again ‘none‘.
If this isn't the case return to step Z.

Fage &2

M DL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged inte the
system it uses the first word on every Rage starting from page 5.
If this word doesn’t contain a valid identifier, it can’'t execute
a routine or function located at that page. Therefaore we will
continue with the setting of these identifiers for both Erom
pages. In fact this identifier is the xrom number of a module. To
avoid any problems with other modules it is recommended in thisg
stage to unplug all your modules.

Also the name of the rom module has to be added. For this the
function IPAGE is used. It is enough to put the rom name inta the
ALPHA register. After this you give the 4K page address inm the X
register. Now you can execute the function IFAGE. It will prompt

you for a XROM number. To aveid problems we choose as XROM number
the number 221.

Note : In this manual we described twao ways to set up an Eraom
image. First time we did this with the function RAMWR (see
page 5). Far this is quite a cumbersome way to prepare an
Erom image.we did incorporate the function IPAGE (see page

35). Here we already gave you an example of how to create
your own Erom image.

Example : We will create one Erom image with xrom number 21 and
. as name "TEST ROM 1A". For this we make use of the Ran

page that is controlled by the left rotary and enabling
switch., The block is already cleared and enabled in
step 2. The block is addressed at page A", Now we have
all relevant data for the black, so we can initialize
it.
Key into ALPHA the name of the module and into the X
register the address of the RAM page that will held the
Erom image. This address is 1@.
Execute the function IPAGE. At the prompt you answer
with the desired xrom number E.G. 21. After a while a
tone will sound and the message READY is digplayed.

Page A3

MLDL operating system eprom

step 3

From now on the HP-41 can recognize anything that is written into
Ercm block one. So lets give it a try. First of all we have to
create a little program in main memory that is to be stored in
the Erom block.

We will use the following program: LBL ‘test
LBL 21
BEEP
GTD @1
END

step &

You have now created a program in the memory of your calculator.
But we wanted to have this program in the MLDL-box, because it ie
using up the last free bytes we had. That's no problem. We only
have to use MMTORAM to get the Program in the Erom page we want
it. For this we have to initialize a few things.

When we have initialized our Erom Ppage manually (without use af
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by MMTORAM. Do nat
use the reserved wards in an Erom image in which you are to load
your programs (see appendix E and appendix F).

If you work with IPAGE however, the starting address is already
given in the ALPHA register. When you have toc use the ALFHA
register between two sessions of loading programs, it is
advisable to keep the contents of the ALPHA register in a mormal
data storage register, or to note it down (be carefull saving the
address in a storage register, for MMTORAM can clear all the user
registers, when it makes use of CMPDL). This is handy for future
use. If you laost the address however, you can find it back with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags @ and

v to achieve the desired private status of the locaded program.
There .are four coptions for these flags. For a full descripticn of
these options we rever to the function MMTORAM at-page B.

Page &4

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag 3. MMTORAM decides on this flag wether it shall use CMPDL or
the normal COMPILE function when it is loading a program. See the
function CMPDL for the difference between the two compilers.

Example : We are guing to load the pragram described at step 5.
This program has to be loaded in a nonprivate, complets
open status. Furthermcre we do not want the numeric
labels to be deleted.

We do not have to give the starting address, for this
is given in ALPHA by the function IPAGE.

Fer a complete open, nonprivate status ¥lags @ and
have to be cleared.

Flag 3 has to be set for we do not want the numeric
labels to be deleted.

When these settings are made, the function MMTORAM can
be executed. You will see the messages of the compiler
and then the message “"LODADING PGM". When MMTORAM is
finished a tone will sound and the message “READYY ig

displayed. The program is now loaded in the Eram image
and is ready for use.

Note : If you switch to ALFHA you will see that the
starting address is changed. 1t now paints to
the +first free byte after the Just loaded

program. This provides an easy way of leoading
subsequent programs.

step 7

First thing we will do is deleting the prograt from main MEMOrY .
When you have done this, you should still be able to execute test
for it has been stored in the Erom page. 5o give it a try. You
will hear the familiar beeping every time the program is looping.
Stop execution of the pregram and switch to PRGM mode. Whenever
you try ta insert or deletg a program step, you will see the
message ‘'ROM°. This proves that the proegram has realy heen loaded
-into the MLDL-box. The program is alsc included in catalog 2. 1f
you execute CAT 2 you will see the label test shawing up in your
display sooner ar later, depending on the amount of other roms
that are plugged into the system.

Page 65

MLDL operating system eprom

When you want to store more and pther programs, you can $ollow
the described procedure starting at -step 5.
Load alsa the pragrams described on Page 21 (TST) and 28 (MDIS).
Load the T8T program with flag 3 cleared. Look at the program
after you have deleted it inm main memory. As you will sees, it
does not contains the numeric labels any more. This and the fact
that it is in ROM now, will speed up the execution quite a 1lot.
Load the MDIS program with flags 1 and 5 sat. The program will be

open in the eram page, but as saoon as it is copied back to main
memory, it will be private.

This is the end of the description of our MLDL ROM
system. We hope you will enjoy to work with this rom,

any complaints or wishes you want to ses in a future r
let us know. We will take these in account as much a

cperating
If you have
om, please
s passible.

ERAMCO SYSTEMS
W. van Alcmade str. S4
1785 LS Den Helder
The Metherlands

Page &6

