
Standard
Commands for
Programmable
Instruments
(SCPI)

Volume 1: Syntax and Style

VERSION 1999.0
May, 1999
Printed in U.S.A.

Hints
Click on any triangle in the left-hand pane to expand the headings list.

Click on any heading to go directly to that part of the document.

Click on the binoculars or press Ctrl-F (Command-F on the Mac) to open the Find function. Type in the search word or phrase, then click on the binoculars with a swirling arrow icon (or press Ctrl-G) to locate next instance of the word/phrase once the first instance is located.

Minimize this note by clicking on it, then clicking on the "-" on the left end of the red title bar.

Double-click on the minimized note to display it again.

NOTICE, STATEMENT of INTENT
and

AUTHORIZATION TO COPY

© Copyright 1999 SCPI Consortium

This document defines the Standard-Commands-for-Programmable-Instruments (SCPI) Consortium’s SCPI
standard. Although the Consortium hereby expressly disclaims any and all warranties whatsoever regarding
the SCPI standard, the Consortium has published this document with the intent that the SCPI standard will be
seriously considered and adopted, in whole, by the test and measurement marketplace. Consistent with that
intent, permission is hereby granted by the Consortium to make copies of this entire document as a whole,
PROVIDED THAT this NOTICE, STATEMENT of INTENT and AUTHORIZATION TO COPY shall
prominently appear on each such whole copy. Further consistent with that intent, permission is hereby granted
by the consortium to make copies of portions of this document, absent this NOTICE, STATEMENT of
INTENT and AUTHORIZATION TO COPY, PROVIDED THAT each such portion-copies shall only be
used in a manner which is consistent with the purposes of implementing, promoting, disseminating, or
enhancing (as opposed to deviating from) the SCPI standard as herein defined, such as the inclusion of such a
portion-copy in an instrument (or instrument-related) product manual which implements SCPI (as defined
herein) or in use for design of such an instrument (or instrument related) product. However, under no
circumstances may copies of this document, or any portion of this document, be made solely for purposes of
sale of the copy or copies.

For information, contact:

Fred Bode, Executive Director
SCPI Consortium
2515 Camino del Rio South, Suite 340
San Diego, CA 92108

Phone: (619) 297-1210
Fax: (619) 297-5955
Email: fbode@vxinl.com
Web Page: http://www.scpiconsortium.org

European SCPI Consortium Contact:

John Pieper
ACEA
P.O. Box 134
7640 AC Wierden
The Netherlands

Phone: +31 546 57 79 94
Fax: +31 546 57 55 75
Email: acea@compuserve.com
Web Page: http://ourworld.compuserve.com/homepages/acea/

1999 SCPI Syntax & Style

i

Foreword
Commercial computer-controlled test instruments introduced in the 1960s used a wide variety of
non-standard, proprietary interfaces and communication protocols. In 1975, the Institute of Electrical and
Electronic Engineers approved IEEE 488-1975. IEEE 488 defined a standard electrical and mechanical
interface for connectors and cables. It also defined handshaking, addressing, and general protocol for
transmitting individual bytes of data to and from instruments and computers. This standard has been updated
and is now IEEE 488.1-1987.

Although it solved the problem of how to send bytes of data between instruments and computers, IEEE 488
did not specify the data bytes’ meanings. Instrument manufacturers freely invented new commands as they
developed new instruments. The format of data returned from instruments varied as well. By the early 1980s,
work began on additional standards to specify how to interpret data sent via IEEE 488.

In 1987, the IEEE released IEEE 488.2-1987, Codes, Formats, Protocols and Common Commands for Use
with IEEE 488.1-1987. This standard defined the roles of instruments and controllers in a measurement
system and a structured scheme for communication. In particular, IEEE 488.2 described how to send
commands to instruments and how to send responses to controllers. It defined some frequently used
“housekeeping” commands explicitly, but each instrument manufacturer was left with the task of naming any
other types of command and defining their effect. IEEE 488.2 specified how certain types of features should
be implemented if they were included in an instrument. It generally did not specify which features or
commands should be implemented for a particular instrument. Thus, it was possible that two similar
instruments could each conform to IEEE 488.2, yet they could have an entirely different command set.

Standard Commands for Programmable Instruments (SCPI) is the new instrument command language for
controlling instruments that goes beyond IEEE 488.2 to address a wide variety of instrument functions in a
standard manner. SCPI promotes consistency, from the remote programming standpoint, between instruments
of the same class and between instruments with the same functional capability. For a given measurement
function such as frequency or voltage, SCPI defines the specific command set that is available for that
function. Thus, two oscilloscopes made by different manufacturers could be used to make frequency
measurements in the same way. It is also possible for a SCPI counter to make a frequency measurement using
the same commands as an oscilloscope.

SCPI commands are easy to learn, self-explanatory and account for both novice and expert programmer’s
usage. Once familiar with the organization and structure of SCPI, considerable efficiency gains can be
achieved during control program development, independent of the control program language selected.

1999 SCPI Syntax & Style

ii

Table of Contents

Chapter 1 Introduction
1.1 Requirements . 1-1
1.2 Organization . 1-1
1.3 SCPI Goals . 1-1
1.4 SCPI Usage . 1-2
1.5 Instrument Interchangeability . 1-3

Chapter 2 References

Chapter 3 Life Cycle
3.1 Adding a Capability . 3-1
3.2 Obsoleting a Capability . 3-1
3.3 Device Dependent Commands . 3-2

Chapter 4 SCPI Compliance Criteria
4.1 IEEE 488.2 Requirements . 4-1
4.1.1 IEEE Mandated Commands . 4-1
4.1.2 IEEE Optional Common Commands . 4-1
4.1.3 IEEE Common Command Implications . 4-1
4.1.3.1 Overlapped and Sequential Commands . 4-2
4.1.3.2 *CLS . 4-2
4.1.3.3 *OPC and *WAI . 4-3
4.1.3.4 *OPC? . 4-3
4.1.3.5 *RST . 4-4
4.1.3.5.1 Interaction With the Synchronization Commands . 4-4
4.1.3.5.2 Implications For *SAV and *RCL . 4-4
4.1.3.5.3 *RST and *RCL as Overlapped Commands . 4-4
4.1.3.6 *IDN? . 4-5
4.2 SCPI Requirements . 4-5
4.2.1 Required Commands . 4-5
4.2.2 Optional Commands . 4-6
4.2.3 Documentation Requirements . 4-6

Chapter 5 Notation
5.1 Interpreting Command Tables . 5-1
5.2 Interpreting Syntax Flow Diagrams . 5-2

v

Chapter 6 Program Headers
6.1 Common Command and Query Headers . 6-1
6.2 Instrument-Control Headers . 6-1
6.2.1 Mnemonic Generation Rules . 6-1
6.2.2 Building the Command Tree . 6-2
6.2.3 Queries . 6-6
6.2.4 Traversal of the Header Tree . 6-7
6.2.5 Multiple Capabilities and Numeric Keyword Suffixes . 6-8
6.2.5.1 Single Instrument with Many Electrical Ports . 6-8
6.2.5.2 Multiple Identical Capabilities . 6-8
6.2.5.3 Logical Instruments . 6-9

Chapter 7 Parameters
7.1 Character Program Data . 7-1
7.2 Decimal Numeric Program Data . 7-1
7.2.1 <numeric_value> Definition . 7-1
7.2.1.1 DEFault . 7-1
7.2.1.2 MINimum|MAXimum . 7-2
7.2.1.3 UP/DOWN . 7-2
7.2.1.3.1 STEP Subsystem Command Syntax . 7-3
7.2.1.3.2 [:INCRement] <numeric_value> . 7-3
7.2.1.3.3 :PDECade <numeric_value> . 7-3
7.2.1.3.4 :MODE LINear|LOGarithmic|L125|L13 . 7-3
7.2.1.3.5 :AUTO <Boolean>|ONCE . 7-4
7.2.1.3.6 STEP Subsystem Examples . 7-4
7.2.1.4 INFinity and Negative INFinity (NINF) . 7-4
7.2.1.5 Not A Number (NAN) . 7-4
7.2.2 Unit Suffixes . 7-5
7.3 Boolean Program Data . 7-5
7.4 Coupling of Functions . 7-5
7.4.1 Functional Coupling . 7-6
7.4.2 Value Coupling . 7-6
7.4.3 Automatic Coupling . 7-7
7.5 Units of Measure and Suffixes . 7-7
7.5.1 Units of Amplitude and Power . 7-7
7.5.2 Expressing Unitless Quantities . 7-9

Chapter 8 Expressions
8.1 Function . 8-1
8.2 Usage . 8-1
8.3 Syntax . 8-1
8.3.1 Numeric Expression . 8-2
8.3.1.1 Syntax . 8-2

1999 SCPI Syntax & Style

vi

8.3.1.2 Precedence Rules . 8-3
8.3.1.3 Semantics . 8-3
8.3.2 Channel Lists . 8-3
8.3.3 Numeric Lists . 8-6

Chapter 9 Status Reporting
9.1 The Device-Dependent Register Model . 9-3
9.2 Transition Filters . 9-3
9.3 Operation Status Register . 9-3
9.4 QUEStionable Data/Signal Status Register . 9-4
9.5 Multiple Logical Instruments . 9-5
9.6 Status Structure for the Expanded Capability Trigger Model . 9-7

Chapter 10 *RST Conditions

Chapter 11 Naming Conventions
11.1 :DEFine <name>,<data> . 11-2
11.2 :DEFine? <name> . 11-2
11.3 :DELete[:NAME] <name> . 11-2
11.4 :DELete:ALL . 11-2
11.5 :CATalog? . 11-2

Chapter A Programming Tips

1999 SCPI Syntax & Style

vii

1 Introduction
1.1 Requirements

This volume, “Syntax and Style,” is global in nature and shall be used with all other volumes
of the SCPI standard.

1.2 Organization
The first five chapters of Syntax and Style are an introduction to the overall concept of SCPI
1999. They describe an overview of the standard, reference other standards, describe SCPI
compliance criteria, and how to interpret command tables and syntax flow diagrams. The
next three chapters in this volume describe the program headers, parameters and expressions
from which SCPI commands and responses are built. Following this are chapters which
describe the status reporting model, style guidelines for creating new commands, the effect
of *RST on parameter values, and facilities for managing named sets of data in an
instrument. Bode
This volume, Syntax and Style, is the first of the four-volume set that makes up the SCPI
1999 Standard. The second and largest volume is the SCPI Command Reference, which
contains the actual language constructs which appear in instruments. The third volume, Data
Interchange Format, defines a standard representation for data sets which may be used
between instruments and applications, between applications, or directly between
instruments. The fourth volume, Instrument Classes, defines the SCPI commands and
behavior needed to implement functionality sets associated with common classes of
instruments. These four volumes form the complete 1999 SCPI Standard and should be used
as a set. Bode
This document is intended to apply to “systems” instruments. It defines both organization
and content of messages at the controller-to-instrument and instrument-to-controller
information interchange level. This document was developed so that, an instrument
designed in accordance with it, shall be able to conform to IEEE Std. 488.1-1987 Standard
Digital Interface for Programmable Instrumentation, and IEEE Std. 488.2-1987 Codes,
Formats and Common Commands For Use With IEEE Std. 488.1-1987. Conformance to
IEEE 488.1-1987 and IEEE 488.2-1987 is not required by this document, recognizing that
some instruments implement physical interfaces other than the IEEE 488.1-1987. However,
SCPI is based upon the concepts and terminology used within these standards.

This document may impact the related person-to-instrument and the instrument-to-person
information interchange levels. Though the main purpose of this document is to define the
interface as it relates to remote control, implementation of these codes and formats may
affect the “front panel” of the instrument involved.

1.3 SCPI Goals
The goal of Standard Commands for Programmable Instruments (SCPI) is to reduce
Automatic Test Equipment (ATE) program development time. SCPI accomplishes this goal
by providing a consistent programming environment for instrument control and data usage.
This consistent programming environment is achieved by the use of defined program

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Introduction 1-1

messages, instrument responses, and data formats across all SCPI instruments, regardless of
manufacturer.

A consistent program environment uses the same commands and parameters to control
instruments that have the same functionality. These program commands and parameters are
sent from a controller to an instrument using IEEE 488.1, VXIbus, RS-232C, etc., interfaces.
SCPI instruments are very flexible in accepting a range of command and parameter formats,
which makes the instrument easier to program. The instrument resonses sent back to the
controller can be either data or status information. SCPI instrument response format of a
particular query is well-defined and reduces the programming effort to understand
instrument data and status information. Data information can be formatted so that it is
device- and measurement-independent.

SCPI programming consistency is both vertical and horizontal. Vertical programming
consistency defines program messages within an instrument class. An example of vertical
consistency is using the same command for reading DC voltage from several different
multimeters. Horizontal consistency is using the same command to control similar functions
across instrument classes. For example, the trigger command would be the same for an
identical trigger function found among counters, oscilloscopes, function generators, etc.

A key to consistent programming is the reduction of multiple ways to control similar
instrument functions. The philosophy of SCPI is for the same instrument functions to be
controlled by the same SCPI commands. To simplify learning, SCPI uses industry-standard
names and terms that are manufacturer and customer supported.

SCPI provides several different levels of instrument control. Simple Measure commands
provide users easy and quick control of SCPI instrumentation, while more detailed
commands provide traditional instrument control.

SCPI is designed to be expanded with new defined commands in the future without causing
programming problems. As new instruments are introduced, the intent is to maintain
program compatibility with existing SCPI instruments. SCPI ATE test programs designed to
run with new instruments may not be compatible with existing instruments. In other words,
the test programs are upward-compatible, but not downward-compatible.

To promote wide industry acceptance, SCPI is publicly available for implementation by
anyone, whether or not they are a member of the SCPI Consortium.

The Consortium does not release working documents or provisional documentation. Only
approved standards are released to the public.

1.4 SCPI Usage
The advantage of SCPI for the ATE system programmer is reducing the time learning how to
program new SCPI instruments after programming their first SCPI instrument.

Programmers who use programming languages such as BASIC, C, FORTRAN, etc., to send
instrument commands to instruments will benefit from SCPI. Also, programmers who
implement instrument device drivers for ATE program generators and/or software
instrument front panels will benefit by SCPI’s advantages. SCPI defines instrument

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

1-2 Introduction

commands, parameters, data, and status. It is not an application package, programming
language, or software intended for instrument front panel control.

SCPI is designed to be layered on top of the hardware-independent portion of IEEE 488.2.
SCPI can be used with controller-to-instrument interfaces such as IEEE 488.1, VXIbus,
RS-232C, etc.

1.5 Instrument Interchangeability
By providing a consistent programming environment, replacing one SCPI instrument with
another SCPI instrument in an ATE system will usually require less effort than with
non-SCPI instruments. SCPI is not a standard which completely provides for interchangeable
instrumentation. SCPI helps move toward interchangeability by defining instrument
commands and responses, but it does not define instrument functionality, accuracy,
resolution, connectors, etc., which is needed to provide true instrument interchangeability
without affecting the ATE system hardware and software.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Introduction 1-3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

1-4 Introduction

2 References
“ANSI S1.4” HP019

ANSI X3.4-1977, American National Standard Code for Information Interchange;
ISO Std.646-1983, ISO 7 bit Coded Character Set for Information Interchange

ANSI X3.42-1975, American National Standard Representation of Numeric
Values in Character Strings for Information Interchange; ISO Std. 6093-1985,
Representation of Numeric Values in Character Strings for Information
Interchange

ANSI/EIA/TIA-562-1989, Electrical Characteristics for an Unbalanced Digital
Interface TK014
ANSI/IEEE Std 181-1977, IEEE Standard on Pulse Measurement and Analysis by
Objective Techniques

ANSI/IEEE Std 194-1977, IEEE Standard Pulse Terms and Definitions

ANSI/IEEE Std. 260-1978, An American National Standard IEEE Standard Letter
Symbols for Units of Measurement (SI Units, Customary Inch-Pound Units, and
Certain Other Units); ISO Std.1000-1981, SI Units and Recommendations for the
Use of Their Multiples and Certain Other Units

ANSI/IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation

12-4-94 ltrANSI/IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands for use with ANSI/IEEE Std 488.1-1987

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic

Bell Telephone “Per BTSM 41004” HP019

“CCIR Recommendation 468-2” HP019

“CCITT Recommendation P53” HP019

CCITT Recommendation V.42, Fascile V111.1 (Blue book, 1988), Error
Correcting Procedures for DCE’s Using Asynchronous-to-Synchronous
Conversion TK014
“Dolby Labs Bulletin No 19/4” HP019

EIA RS-232-D, Interface Between Data Terminal Equipment and Data
Communication Equipment Employing Serial Binary Data Interchange TK014
EIA RS-422, Electrical Characteristics of Balanced Voltage Digital Interface
Circuits TK014
“Fields and Waves in Communication Electronics,” Ramo, Whinnery, and
Van Duzer HP056

“IEC Recommendation 179”

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

References 2-1

HP019

IEEE Micro, Volume 8, Number 4, August, 1988, pp 62-76

ISO Std. 2955-1983, Information processing–Representation of SI and other units
in systems with limited character sets

“On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform,” F.J. Harris, Proc. of the IEEE, Vol 66-1, January, 1978, pp 51-83

SAE J2264 1995-04 Chassis Dynamometer Simulation of Road Load Using Coast
Down Techniques.

“Tuning a Control Loop Performance,” Gregory K. McMillan, Instrument
Society of America, ISBN 0-87664-694-1 XSS01c
VXI Consortium INC, VMEbus Extensions for Instrumentation Systems
Specification, Revision 2.0

 1
 2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

2-2 References

3 Life Cycle
SCPI is a “living” standard. Additional commands will always be needed to meet the needs
of new technologies and new instruments. The SCPI Consortium meets regularly to propose
and review extensions to the command set. New commands may be proposed by members of
the Consortium, and by other interested parties.

Proposals accepted by the Consortium are published and distributed to member companies
and are available for immediate use. Approved proposals are reviewed annually. After the
annual review, a new revision of the SCPI Standard is published, and the commands become
a permenant part of the standard.

All copies of the SCPI Standard contain a version year of issue. All SCPI instruments can be
queried to determine the version-year to which they conform.

3.1 Adding a Capability
HP076,

Ed Change

In general, a command proposed as an extension to SCPI will be approved if it is well
formed according to the rules set forth in “Syntax and Style”, if it conforms in style to
commands in the subsystem where it is placed, and if there is not already a command to
control the same functionality. The Consortium rejects commands only on the basis of
objective criteria.

SCPI is designed to grow in an upwardly compatible way. For a control program, this means
that the aditions to SCPI will not change the meanings of existing commands, and standard
programs will not need to be rewritten except to add new functionality. For an instrument,
upward compatibility means that the instrument functionality will not become inaccessable
due to additions to the language; existing instruments will not become obsolete by the
extension of SCPI.

3.2 Obsoleting a Capability
It is possible that a command may someday have to be altered or deleted in order to permit
important new functionality to be implemented. Such an event represents the failure of the
extension process because it breaks upward compatibility. Proposals for changes that break
upward compatibility will only be accepted if there is overwhelming evidence that the
benefits to users and the member companies of the Consortium outweigh the cost to existing
users.

The following commands have been deleted from the SCPI Volume II, Command Reference
as a part of the SCPI life cycle process. Reuse is discouraged. Any reinstatement is to be
accompanied by a careful review of compatibility issues with all previous versions of the
SCPI standard.

KEYWORD PARAMETER FORM NOTES DELETION DATE
STATus 1996
 :QUEue 1996
 :ENABle <event_queue_list> 1996
 [:NEXT]? [query only] 1996

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Life Cycle 3-1

3.3 Device Dependent Commands
From time to time manufacturers may elect to build instruments with capabilities that are not
covered by a current version of this standard. Presumably the manufacturer will submit these
new commands into the SCPI Life Cycle process. If the consortium adopts commands that
are incompatible those originally used by the manufacturer, the manufacturer is permitted to
provide his original commands in subsequent products for compatibility. 1

 2
 3

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

3-2 Life Cycle

4 SCPI Compliance Criteria
This section indicates mandatory and optional capabilities of SCPI. These capabilities are
fully specified elsewhere, in “Syntax and Style”, “Command Reference”, “Data Interchange
Format” and IEEE 488.2, and an instrument designer shall fully comply with the referenced
sections. Only designs conforming to these requirements shall be able to claim conformance
to the SCPI specification.

4.1 IEEE 488.2 Requirements
All SCPI instruments shall conform to the specifications for devices in IEEE 488.2, except
that section 4.1 IEEE 488.1 Requirements shall be omitted where an instrument does not
implement an IEEE 488.1 interface.

Additionally, a SCPI instrument shall be able to parse <compound command program
header> and <compound query program header>, to handle the tree structured commands in
SCPI.

4.1.1 IEEE Mandated Commands
All SCPI instruments shall implement all the common commands declared mandatory by
IEEE 488.2.

Mnemonic Name 488.2 Section
*CLS Clear Status Command 10.3
*ESE Standard Event Status Enable Command 10.10
*ESE? Standard Event Status Enable Query 10.11
*ESR? Standard Event Status Register Query 10.12
*IDN? Identification Query 10.14
*OPC Operation Complete Command 10.18
*OPC? Operation Complete Query 10.19
*RST Reset Command 10.32
*SRE Service Request Enable Command 10.34
*SRE? Service Request Enable Query 10.35
*STB? Read Status Byte Query 10.36
*TST? Self-Test Query 10.38
*WAI Wait-to-Continue Command 10.39

4.1.2 IEEE Optional Common Commands
IEEE Std. 488.2 describes several optional commands which may be implemented in a
device. None of these commands are required by SCPI.

KI0054.1.3 IEEE Common Command Implications
Proper implementation of some of the IEEE 488.2 common commands carry some
implications which are not immediately obvious. Primarily this has to do with the
synchronization commands.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

SCPI Compliance Criteria 4-1

4.1.3.1 Overlapped and Sequential Commands
KI005IEEE 488.2 defines a distinction between overlapped and sequential commands. As defined

in IEEE 488.2, a sequential command is one which finishes executing before the next
command starts executing. An overlapped command is one which does not finish executing
before the next command starts executing. These types of commands are described in IEEE
488.2, section 12. Examples are given in IEEE 488.2, appendix B.

KI005IEEE 488.2 defines three common commands (*OPC, *WAI, *OPC?) which a device
controller can use to synchronize its operation to the execution of overlapped commands.
The definitions for these common commands appear in sections 10.18, 10.19, and 10.39 of
IEEE 488.2. All three are required by IEEE 488.2, even if none of the device’s commands
are overlapped.

KI005Implementing any device commands as overlapped will increase the complexity of the
implementation of the three synchronization common commands.

KI005Each overlapped command has associated with it a Pending Operation flag. The device sets
this flag TRUE when it passes the corresponding command from the Execution Control
block to the Device Action block. The device sets the flag false when the device operation is
finished, or has been aborted.

KI005IEEE 488.2 defines a No Operation Pending flag. This flag is FALSE whenever any Pending
Operation flag is TRUE, and is TRUE whenever all Pending Operation flags are FALSE.
IEEE 488.2 also permits device designers to decide which overlapped commands are
included in the No Operation Pending flag. A device may implement commands which
select which overlapped commands are included in the No Operation Pending flag, although
the SCPI standard does not include such a command.

KI005IEEE 488.2 requires user documentation to clearly indicate which commands, if any, are
overlapped, and which overlapped commands are included and which are excluded from the
No Operation Pending flag.

KI0054.1.3.2 *CLS
KI005This command clears all status data structures in a device. For a device which minimally

complies with SCPI, these registers are:

KI005 SESR (IEEE 488.2)
 OPERation Status Register (SCPI)
 QUEStionable Status Register (SCPI)
 Error/Event Queue (SCPI)

KI005Execution of *CLS shall also clear any additional status data structures implemented in the
device. The corresponding enable registers are unaffected. See the table in Command
Reference, 20.7.

KI005*CLS forces the device into OCIS and OQIS (see 4.1.3.3 and 4.1.3.4) without setting the No
Operation Pending flag TRUE and without setting the OPC bit of the SESR TRUE and
without placing a “1” into the Output Queue.

KI005

 1
 2
 3

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

4-2 SCPI Compliance Criteria

For example, suppose a device implements INITiate[:IMMediate] as an overlapped
command. Assuming that the trigger model is programmed so that it will eventually return to
the IDLE state, and that INITiate[:IMMediate] takes longer to execute than *OPC, sending
these commands to this device:

KI005 INITiate;*OPC

KI005results in initiating the trigger model and, after some time, setting the OPC bit in the SESR.
However, sending these commands:

KI005 INITiate;*OPC;*CLS

KI005still initiates the trigger model. Since the operation is still pending when the device executes
*CLS, the device does not set the OPC bit until it executes another *OPC command.

KI0054.1.3.3 *OPC and *WAI
KI005A device is in the Operation Complete Command Active State (OCAS) after it has executed

*OPC. The device returns to the Operation Complete Command Idle State (OCIS) whenever
the No Operation Pending flag is TRUE, at the same time setting the OPC bit of the SESR
TRUE. See IEEE 488.2 Fig 12-4. The following events force the device into OCIS without
setting the No Operation Pending flag TRUE and without setting the OPC bit of the SESR:

KI005power on
KI005receipt of the dcas message (device clear)
KI005execution of *CLS
KI005execution of *RST

KI005Implementation of the *OPC and *WAI commands is straightforward in devices which
implement only sequential commands. When executing *OPC the device simply sets the
OPC bit of SESR. Executing *WAI is a no-operation. The device is, in effect, always in
OCIS.

KI005In devices which implement overlapped commands the implementation of *OPC and *WAI
is a little more complicated. After executing *OPC the device must not set the OPC bit of
SESR until the device returns to OCIS, even though it continues to parse and execute
commands. After executing *WAI the device must execute no further commands or queries
until the No Operation Pending flag is TRUE, or receipt of a dcas message, or a power on.

KI0054.1.3.4 *OPC?
KI005SCPI adds the requirement that *OPC? is implemented as a sequential command.

KI005A device is in the Operation Complete Query Active State (OQAS) after it has executed
*OPC?. The device returns to the Operation Complete Query Idle State (OQIS) whenever
the No Operation Pending flag is TRUE, at the same time placing a “1" in the Output Queue.
See IEEE 488.2 Fig 12-6. The following events force the device into OQIS without setting
the No Operation Pending flag TRUE and without placing a ”1" in the Output Queue:

KI005power on
KI005receipt of the dcas message (device clear)

KI005

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

SCPI Compliance Criteria 4-3

Implementation of the *OPC? query is straightforward in devices which implement only
sequential commands. When executing *OPC? the device simply places a “1" in the Output
Queue.

KI005The implementation of overlapped commands in a device complicates the implementation of
*OPC? and places some restrictions on the implementation of the Message Exchange
Protocol (MEP). IEEE 488.2 dictates that devices shall send query responses in the order that
they receive the corresponding queries (IEEE 488.2 6.4.5.4). Although IEEE 488.2
recommends that *OPC? be the last query in a program message, there is nothing to prevent
a controller program from ignoring this suggestion. This is why *OPC? must be sequential.

KI0054.1.3.5 *RST
The “*RST Conditions” chapter of Volume 1 gives pretty a lucid description of the SCPI
requirements of *RST. There are, however, some implications.

KI0054.1.3.5.1 Interaction With the Synchronization Commands
KI005*RST stops the execution of any overlapped commands. The natural outcome of this is that

the No Operation Pending flag will go TRUE. Execution of *RST must place the device in
OCIS before setting the No Operation Pending flag TRUE, so that the effect of any pending
*OPC command is nullified (that is, the OPC bit of the SESR does NOT get set).

KI0054.1.3.5.2 Implications For *SAV and *RCL
KI005In devices which implement the optional *SAV and *RCL common commands, the scope of

instrument settings affected by these commands shall be the same as that affected by *RST.
This means that if *RST has any effect upon a command, then so must *RCL. Conversely, if
the device designer wants *RCL to have an effect upon a command, then *RST must also
have an effect upon that command. Inversely, and more importantly, if the device designer
wants a command to be EXCLUDED from the scope of *SAV and *RCL, then it must also
be excluded from the scope of *RST.

KI005KI0054.1.3.5.3 *RST and *RCL as Overlapped Commands
KI005While *RST stops the execution of running overlapped commands, the instrument designer

may find it useful to make the *RST command, itself, overlapped. For example, if resetting
requires the return to an initial position of a slow-reacting, electro-mechanical device. In this
case, performance may be better served with *RST overlapped as subsequent commands
may be parsed and executed while the resetting is completing. Even while overlapped, the
*RST command shall always complete the resetting of device state variables before
subsequent commands are processed to insure the integrity of *RST exception programming.
For similar reasons, *RCL may be an overlapped command.

KI005If *RST or *RCL is overlapped, its Pending-Operation flag shall be reported in the
No-Operation-Pending flag.

KI005If execution of *RST or *RCL causes a device operation which is equivalent to executing an
overlapped command, the device shall set TRUE the Pending-Operation flag associated with
that command.

 1
 2
 3

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

4-4 SCPI Compliance Criteria

KI0054.1.3.6 *IDN?
KI005IEEE 488.2 is purposefully vague about the content of each of the four fields in the response

syntax. SCPI adds no further requirement, but here are some suggestions:

KI005All devices produced by a company should implement the *IDN? response
consistently.

KI005Field 1, the Manufacturer field, should be identical for all devices produced by a
single company.

KI005Field 2, the Model field, should NOT contain the word “MODEL”.
KI005Field 4, the Firmware level field, should contain information about all separately

revisable subsystems. This information can be contained in single or multiple
revision codes.

4.2 SCPI Requirements
IEEE 488.2 describes the syntax of programming and device behavior to a certain level.
Further refinement of the syntax and addition rules are imposed by SCPI in order to give
instruments a common “look and feel”. The “Syntax and Style” volume of this standard
describes the concepts behind SCPI and sets guidelines for originating new commands. A
SCPI device shall follow these guidelines and style requirements.

4.2.1 Required Commands
The following commands are required in all SCPI instruments:

Mnemonic Command Reference Section Syntax and Style Section
:SYSTem
 :ERRor 21.8
 [:NEXT]? 21.8.3e (see Note 1) 1996
 :VERSion? 19.16 (see Note 2) 1991 PH022

:STATus 18 5
 :OPERation
 [:EVENt]?
 :CONDition?
 :ENABle
 :ENABle?
 :QUEStionable
 [:EVENt]?
 :CONDition?
 :ENABle
 :ENABle?
 :PRESet

Note 1: The requirement changed from SYSTem:ERRor? to SYSTem:ERRor[:NEXT]? in
version 1995.1.

Note 2: Requirement applies for all versions greater than 1990.0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

SCPI Compliance Criteria 4-5

PH022

4.2.2 Optional Commands
All other commands in the “Command Reference” are considered optional, depending on the
capabilities of the instrument. That is, the control of any instrument capability that is
described in SCPI shall be implemented exactly as specified by using the appropriate SCPI
defined commands. For example, an instrument dedicated to voltage measurement would
not implement commands for sensing frequency. Certain commands, if implemented,
require that other commands also be implemented.

When a device does not support all alternative parameter values that are allowed for a SCPI
command, it may implement a subset of these values unless otherwise stated. For example,
if an instrument implements only RECTangular and UNIForm data shaping for its
CALCulate:TRANSform:WINDow command, it may generate an error on receipt of any
other SCPI defined parameter value (FLATtop,HAMMing, etc). However, a device must
implement all parameters of a multi-parameter SCPI command.

Commands required to implement a SCPI-described capability may be omitted under special
conditions. The special condition exists when a command to be implemented affects a part
of the instrument in which the configuration is fixed, and that the fixed configuration for that
command corresponds to the value it would take on when an IEEE 488.2 *RST reset
command is issued. For example, an instrument with a display that is configured to be
permanently on does not need to implement the command that turns the display ON or OFF,
since at *RST it is required by SCPI to be ON. If an instrument has a fixed configuration in
which a setting does not correspond to the *RST value, then the instrument shall implement
the command for that setting even though it has only a single legal value.

4.2.3 Documentation Requirements
The documentation for a SCPI instrument shall list the version number for which the
instrument complies. This information shall appear on instrument specification sheets and
related documents, as well as the programming manual.

HP076The manual for a SCPI instrument shall have a separate section titled “SCPI Conformance
Information”. This section shall list separately:

The SCPI version to which the instrument complies

The syntax of all SCPI confirmed commands implemented by the instrument.
Confirmed commands are those commands which are published in the latest
version of SCPI to which the instrument conforms. Commands in the
DIAGnostic subsystem, and other commands which are not intended for end-user
use need not be documented in this section.

HP000,HP001

The syntax of all SCPI approved commands implemented by the instrument.
Approved commands are those commands which have been approved by the
SCPI Consortium, but are not contained in the version of SCPI to which the
instrument conforms.

HP000

The syntax of all commands implemented by the instrument, which are not part of

 1
 2
 3

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

4-6 SCPI Compliance Criteria

the SCPI definition.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

SCPI Compliance Criteria 4-7

5 Notation
Extensive use is made of syntax flow diagrams and tables throughout this document.
Associated with these are notational styles, which are described in this chapter.

5.1 Interpreting Command Tables
Command tables are used to define a set of SCPI commands. A table shows the commands,
their hierarchical relationships, related parameters (if any), and associated notes. The table is
broken into 3 columns; the KEYWORD, the PARAMETER FORM, and any NOTES.

The KEYWORD column provides the name of the command. The actual name of the
command consists of one or more keywords since SCPI commands are based on a
hierarchical structure, also known as a tree system. In such a system, associated commands
are grouped together under a common node in the hierarchy, analogous to the way leaves at
a same level are connected at a common branch. This and similar branches are connected to
fewer and thicker branches, until they meet at the root of the tree. The closer to the root, the
higher a node is considered in the hierarchy. To obtain a particular leaf or a particular
command, the full path to it must be specified. This path is represented in the tables by
placing the highest node in the hierarchy in the left-most position. Lower nodes in the
hierarchy are indented one position to the right, below the parent node.

Square brackets ([]) are used to enclose a keyword that is optional when programming the
command; that is, the instrument shall process the command to have the same effect whether
the option node is omitted by the programmer or not. Such a node is called a default node.
Letter case in tables is used to differentiate between the accepted short form (the uppercase
characters) and the long form (the whole keyword). The significance of the short and long
form keywords is explained in the “Program Headers” chapter.

The PARAMETER FORM column indicates the number and order of parameters in a
command and their legal values. A command may allow the use of a SCPI-defined
parameter type, a literal, or a combination of the two. The SCPI-defined parameter types are
described in the “Parameters” chapter, and are distinguished by enclosing the type name in
angle brackets (<>). A literal is typically a word that enumerates a setting that cannot be
described using the SCPI-defined parameter types.

In the PARAMETER FORM column, a number of characters have special significance.
Square brackets ([]) are used to enclose one or more parameters that are optional when
controlling the instrument. Braces ({}), or curly brackets, are used to enclose one or more
parameters that may be included zero or more times. The vertical bar (|) can be read as “or”
and is used to separate alternative parameter options.

The query form of a command is generated by appending a question mark to the last
keyword. However, not all commands have a query form, and some commands exist only in
the query form. The NOTES column is used to indicate this.

As an example, suppose the existance of the following table.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Notation 5-1

KEYWORD PARAMETER FORM COMMENTS
:FREQuency
 [:CW] <numeric_value>
 :AUTO <Boolean>
 :CENTer <numeric_value>
 :SPAN <numeric_value>

To set the frequency value for a Continuous Wave signal, the following command would be
sent:

FREQuency:CW 2000000

Alternatively, since the CW node is optional the following command is also valid:
FREQuency 2000000

To set the value of AUTO, either of the following commands are allowed, again due to the
optional CW node:

FREQuency:CW:AUTO OFF

FREQuency:AUTO OFF

The query form of the AUTO command is either of the following:
FREQuency:CW:AUTO?
FREQuency:AUTO?

In the “Command Descriptions,” the detailed descriptions of the individual commands are
provided immediately after the command table, in the order in which the commands appear
in the table, reading from top to bottom.

5.2 Interpreting Syntax Flow Diagrams
Syntax flow diagrams are used extensively throughout the SCPI document and IEEE 488.2
to provide pictorial representations of syntax. These representations are also known as
railroad diagrams.

The flow through a diagram is given by lines and arrows. These link together the various
objects used to form a command. Objects exist in the diagram as either a circle or a box.
Circles indicate literal characters and the boxes represent a syntactic structure that is defined
elsewhere in this document or in IEEE 488.2. Flow through the diagrams generally proceeds
left-to-right. Diagrams are entered on the left, and the syntax is satisfied when the diagram
is exited on the right. When an element or group of elements in the diagram is repeatable, a
reverse, right-to-left path will be shown around and above the element(s), and is marked with
a left-facing arrow. When an element or group of elements in the diagram are optional, a
left-to-right bypass path will be shown around and below the element(s). A branch in the
path indicates a choice of elements.

Lowercase and uppercase letters are considered equivalent; however, no attempt has been
made to specify both alternatives in every instance. Whitespace characters (as defined in
IEEE 488.2, section 7.4.1.2) are optional in many places, and no attempt has been made to
specify “optional whitespace” everywhere it may exist.

 1
 2
 3
 4

 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

5-2 Notation

6 Program Headers
Program headers are keywords that identify the command. The program headers follow the
syntax described in section 7.6 of IEEE 488.2. Instruments shall accept both upper and
lowercase characters without distinguishing between the cases. Program headers consist of
two distinct types, common command headers and instrument-control headers.

6.1 Common Command and Query Headers
The common command and query program header syntax is specified in IEEE 488.2 for use
with the IEEE 488.2-defined common commands and queries. Their syntax is:

6.2 Instrument-Control Headers
Instrument-control headers are used for all other instrument commands, typically those
related to source and measurement control. The syntax for instrument-control headers is:

The definition of the effect of the colons in an instrument-control header is covered later in
“Traversal of the Header Tree.”

6.2.1 Mnemonic Generation Rules
Each instrument-control header or keyword has both a long and a short form. A SCPI
instrument shall accept only the exact short and the exact long forms. Sending a header that
is not the short form, nor the complete long form to a SCPI instrument shall cause it to
generate an error. IEEE 488.2 limits the length of a header to 12 characters, including any
numeric suffix that may appear. The long form header is either a single word or an
abbreviation of a phrase. The short form header is an abbreviation of the long form header.
In order to maintain a consistent set of mnemonics, SCPI defines the rules to generate a
mnemonic.

The long form mnemonic is generated from either a single word or a phrase. If a single word
is used, then that word becomes the mnemonic. If a phrase is used, then the mnemonic is the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Program Headers 6-1

first letter of each word and the entire last word. For example the phrase “relative velocity”
would generate RVELOCITY as the long form command header.

The short form mnemonic is usually the first four characters of the long form command
header. The exception to this is when the long form consists of more than four characters and
the fourth character is a vowel. In such cases, the vowel is dropped and the short form
becomes the first three characters of the long form. For example, the short form of FREE is
FREE, however, the short form of SWEEP is SWE. Note that elsewhere in this document a
special notation is employed to differentiate the short form keyword from the longform of
the same keyword. The long form of the keyword is shown, with the short form portion
shown in uppercase characters, and the rest of the keyword is shown in lowercase characters.
Thus Relative VELocity keyword would be shown as RVELocity.

The short form generation rules imply that phrases such as “Jump Start” and “Jump Stop”
are not allowed. Although the long forms JSTART and JSTOP are unique, the short form is
the same in both cases, “JST.” This can be overcome by changing the phrases to “Jump
Begin” and “Jump End”, thus creating unique long and short forms. Alternatively, the
mnemonic JUMP can become an additional level in the tree, allowing STARt and STOP to
become their own mnemonics, giving JUMP:STARt and JUMP:STOP.

The mnemonic generation rules allow keywords such as “TIME” and “TIMer” at the same
tree level, since these are unique in both forms. This is not recommended since an unfamiliar
user may select the wrong function unintentionally. If the two functions have the same
number and type of parameters, the instrument may not signal an error, further exacerbating
the situation.

All instrument command headers are allowed a numeric suffix to differentiate multiple
instances of the same structure, such as multi-channel instruments. The numeric suffix is
applied to both the long and short forms. For example, TRIG1 is the short form of
TRIGger1. A numeric suffix of 1 is implied on all instrument command headers that do not
explicitly define a suffix; thus, TRIG is equivalent to TRIG1.

1996As a general rule, a mnemonic should contain no digits. Ending a short or long form
mnemonic in a digit creates an ambiguity in separating the mnemonic from any added
numeric suffix.

6.2.2 Building the Command Tree
SCPI commands are based on a hierarchical structure. This allows the same
instrument-control header (keyword) to be used several times for different purposes,
providing that the mnemonic occurs in a unique position in the hierarchy. That is, the
mnemonic does not collide with any other mnemonics at the same level, or one level
different where a default node exists.

Using hierarchical commands should eliminate the need for most multiword mnemonics.
The use of multiword mnemonics is discouraged and they should only be used when:

 A). The use of the hierarchical scheme would add several additional layers to the tree,
and

 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

6-2 Program Headers

 B). No further growth at the level of those potentially intermediate nodes is
anticipated.

These style guidelines should act as a starting point for creating new commands.

1. The lowest nodes should have the broadest base possible. For example, the center
frequency command should be FREQuency:CENTer rather than CENTer:FREQuency. Since
center is an adjective to the noun frequency, the tree will build with fewer duplicate nodes if
FREQuency:CENTer is chosen.

2. If a function is broad-based and thought of as a separate subsystem, make it a separate
subsystem even if it could properly be classified under another subsystem. For example,
bandwidth is a separate subsystem, even though it could be classified under frequency.
Bandwidth is generally thought of as a separate subsystem and not classified with other
frequency commands by customers.

3. Keep the tree as shallow as possible, usually three levels or less. If the tree for a given
implementation is considerably deeper than it is wide, something may be wrong with the
command structure.

4. Some nodes may be made optional. When choosing to define a node as the default at a
particular level, be sure that it is the most common choice at that level. Also, check carefully
for conflicting keywords, since all nodes below a default are effectively promoted by one
level when the default node is assumed.

5. Some root keywords are optional, depending on the instrument capabilities. In an
instrument which is primarily a source, the root mnemonic [SOURce] is optional. [SENSe]
is optional for instruments which are primarily sensors, and [ROUTe] is optional for
scanners. This is at the discretion of the device designer. For horizontal compatibility
purposes, the instrument should accept this node if it is sent as part of a program message.

6. A complete tree path shall be unique within SCPI. Thus, if a path is assigned a particular
function in any instrument, it must perform the same function in all instruments which
implement that path.

7. SCPI also discourages the use of different keywords performing the same function. This
problem is more difficult because of industry-standard terminology. A good example is
setting the output level on a source. Microwave sources call this power level, RF sources use
amplitude level, and power supplies use voltage level, yet the function is the same in all
three. One of the tools available is to provide aliases for the function in order to provide both
sets of terminology. Whenever possible, SCPI shall implement as aliases those instances
where duplicate names are necessary. Where aliases are used, one term shall be defined
which is the primary keyword. This keyword shall appear in all instruments.

8. The tree structure shall follow the general form of the instrument model described in the
“Command Reference.”

9. Implementations shall use the language constructs described in the “Command
Reference,” if a construct exists for the desired feature. If the feature does not exist, the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Program Headers 6-3

designer is responsible for following the life cycle described in an earlier chapter in order to
integrate the capability into SCPI.

10. The value or syntax of a parameter shall not change the type or number of other
parameters in that command. If such a condition is encountered, additional nodes should be
added to the tree.

For example, SCPI shall not include the structures such as:
 :SYSTem
 :BEEPer 1,<frequency>
 :BEEPer 2,<time>

Rather, SCPI uses a structure such as:
 :SYSTem
 :BEEPer
 :FREQuency <numeric_value>
 :TIME <numeric_value>

11. In general, parameters should only appear at the leaf nodes of the tree. In the undesirable
example below, the command to set a single frequency is placed at a different level to the
commands that are used for setting a range (span) of frequencies. Conceptually equivalent
level commands are being placed at different levels, leading to possible misconceptions in
use. “Optional” nodes should be created as required to accomplish the same task. For
example, suppose an instrument superficially wants the following set of commands:
 FREQuency <numeric_value>
 :CENTer <numeric_value>
 :SPAN <Boolean>

The SCPI implementation shall overcome this by creating a node under frequency that
represents a command to set a single frequency, such as CW (Continuous Wave). Causing all
the command parameters to be associated with leaf nodes. To retain simple operation as in
the case of setting a single frequency, the CW node can be made optional, providing it does
not create a keyword conflict. Thus our example becomes:
 FREQuency
 [:CW] <numeric_value>
 :CENTer <numeric_value>
 :SPAN <Boolean>

Exceptions to this guideline are the AUTO and STEP constructs defined in this document.
The AUTO and STEP commands are formed from the leaf node for the value. Other
exceptions may be defined. In these cases, the exception shall be noted in the command
structure of the language document.

Nodes should not be added to a command tree simply to make the tree have a uniform depth.
If the only usable names for a terminal seem not to have any meaning (for instance, VALue),
the addition may not be helpful and the tree should be implemented unbalanced. An example

 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

6-4 Program Headers

of this is the SOURce:FREQuency:SPAN node, which has the commands HOLD, LINK,
and FULL beneath it.

12. If a particular device function is not alterable or does not exist, then the associated SCPI
command need not be implemented unless the value of the function is different than the
defined *RST value for that function. If the *RST value is device-dependent, then the
function need not be implemented. For example:

 A. A source that has no amplitude modulation does NOT have to implement
AM:STATe OFF because AM:STATe OFF is specified at *RST.

 B. A device that only sweeps in frequency (and has no CW function) must
implement FREQ:MODE SWEep because FREQ:MODE is specified as CW at
*RST. However, it is permissable to allow only SWEep as a parameter to
FREQ:MODE.

 C. A device that produces a single, nonalterable CW frequency of 100 MHZ need
not accept FREQ[:CW] 100 MHZ since the *RST value of FREQ:CW is
device-dependent.

The intent of this rule is to allow common features with varying complexities to be accessed.
This rule specifies the minimum conditions of including a node. However, designers are
encouraged to include additional degenerate nodes which are important to their market. In
example A above, a designer may include AM:STATe OFF as a command, and is
encouraged to do so if the instrument is being targeted into markets where AM modulation is
a typical feature of instruments in this market.

FL00513. A new command may not be added if there is already a command to control the same
functionality. This rule insures two instruments will not be needlessly incompatible when
designers choose arbitrarily among multiple commands available to control a particular
function. (Notice that SCPI assures compatibility when aliased commands are implemented
by making one path required). A new command may not be added to the standard unless it
can be shown to control functions not controlled by any existing commands. The following
guidelines may help in determining whether a command controls new functionality or
represents illegal duplication, and guide selection of one command over another.

Does the setting of the new command affect the measurement result returned?

Signal preconditioning commands (like ATTenuator, FILTer, GAIN) appear in the INPut
subsystem and in SENSe. These commands are not aliases; The setting of
INPut:ATTenuator changes the reported signal level, while SENSe:ATTenuator would be
compensated for so the reported signal level would not be affected. Since these commands
affect the returned value differently, they control different functions and are not duplicate
controls.

Does the new command control a function with a different purpose than any existing
command?

Numerical post-processing commands (like WINDow, AVERage, SMOothing) appear in the
sensor and also in CALC. The function properly belongs in the sensor when its purpose is to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Program Headers 6-5

enhance accuracy or correct for artifacts introduced by the sensor. The function belongs in
CALCulate when its purpose is to change the presentation of the data or provide analytical
tools not directly related to measurement.

Does the command control measurement hardware?

Some functions (like SMOothing) may be performed directly on the signal in hardware or in
software after A/D conversion. While this rule can be difficult to apply, the fact that a
command controls measurement hardware often indicates that it belongs in the sensor rather
than CALCulate.

Does it make sense if the same operation may be done twice?

Another way to tell that a command controls new functionality is if it makes sense for the
controlled function to appear twice in a single instrument. The AVERage subsystem is a
good example; it is not unreasonable to build an instrument that averages several readings to
improve the accuracy of the measurement, and also provides averaging as a statistical
function in the CALCulate subsystem.

14. In general, SCPI commands which are only events without a query form do not have any
parameters. Including a parameter might mislead a user into believing the value could be
queried as most commands in SCPI have a query form, see 6.2.3. HP082
An exception to this guideline is when the action is performed on a named object within the
instrument and these objects cannot be enumerated. For example, <file_name>,
<trace_name>, and <data_handle> are objects whose values cannot be entirely listed within
SCPI. The user can create any number of <file_names> or <trace_names>. The signal
routing concepts in SCPI allow a large number of possible <data_handles>. HP082

6.2.3 Queries
All commands, unless otherwise noted, have an additional query form. As defined in IEEE
488.2, a query is a command header with a question mark symbol appended (for example,
FREQ:CENT?). When a query form of a command is received, the current setting associated
with the command is placed in the output buffer. Query responses do not include the
command header. Execution of a query form has no side effects. It shall not cause any
settings or couplings within the instrument to change. An exception is in MEASurement
subsystem, where instrument settings may change as a result of the measurement.

HP095Both the command and query forms shall be implemented unless a comment or note
indicating otherwise appears in the keyword summary. Even when a command accepts only
a single selection, both the command and query forms shall still be implemented. A note of
the form “[event; no query]” or “[no query]” indicates that only the command form and not
the query form shall be implemented. A note of the form “[query only]” indicates that only
the query form and not the command form shall be implemented.

When character data is used for a parameter, both longform and shortform values shall be
recognized. If the command has a query form with character response data, the shortform
value is always returned.

 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

6-6 Program Headers

When numeric parameters are queried, the result shall be returned in fundamental units
unless otherwise specified or requested. When several different units may be considered
fundamental (for example, dBuV or dBm), the units of the returned result shall be
documented in the query response description for the command. A query may have a related
:UNITs node to change the default units of the accepted or returned value, where this exists
the coupling shall be clearly indicated in the command description.

6.2.4 Traversal of the Header Tree
IEEE 488.2 allows the designer some discretion on how compound headers are handled
within the rules of section 7.6.1.5. SCPI imposes additional requirements regarding how a
compound command is parsed.

Multiple <PROGRAM MESSAGE UNIT> elements may be sent in a <PROGRAM
MESSAGE>. The first command is always referenced to the root node. Subsequent
commands, however, are referenced to the same tree level as the previous command in a
message unit. SCPI parsers shall follow the example presented in IEEE 488.2, section A.1.1.
A SCPI parser shall NOT implement the enhanced tree walking implementation described in
section A.1.2.

For example, if a hypothetical instrument had the command tree:
 FREQuency
 :STARt <numeric_value>
 :STOP <numeric_value>
 :SLEW <numeric_value>
 :AUTO <Boolean> | ONCE
 :BANDwidth <numeric_value>
 POWer
 :STARt <numeric_value>
 :STOP <numeric_value>
 BAND A|B|C|D

Then the following commands shall behave as described:

FREQ:STAR 3 MHZ;STOP 5 MHZ<nl> shall set the start frequency to 3 MHz
and the stop frequency to 5 MHz.

FREQ:STAR 3 MHZ;:FREQ:STOP 5 MHZ<nl> shall set the start frequency to 3
MHz and the stop frequency to 5 MHz.

FREQ:STAR 3 MHZ;POW:STOP 5 DBM<nl> may set the start frequency to 3
MHz and shall generate an error because POW is not a node at the current parser
level.

FREQ:STAR 3 MHZ;SLEW:AUTO ON<nl> shall set the start frequency to 3
MHZ and couple the frequency slew rate.

FREQ:SLEW:AUTO ON;STOP 5 MHZ<nl> may couple the slew rate and shall
generate a command error since the coupling command is not at the same level as
the stop command.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Program Headers 6-7

FREQ:SLEW 3 MHZ/S;AUTO ON<nl> may set the frequency slew rate to 3
MHZ/S and shall generate a command error because :AUTO is not at the same
level.

FREQ:START 3 MHZ;BAND 1 MHZ<nl> shall set the start frequency to 3 MHz
and the bandwidth to 1 MHz.

FREQ:START 3 MHz;:BAND A<nl> shall set the start frequency to 3 MHz and
select band A.

FREQ:SLEW:AUTO ON;3 MHZ/S<nl> may couple the frequency slew rate and
shall generate a syntax error, because IEEE 488.2 specifies that headers must be
sent with each command.

Default nodes in the tree shall not alter the header path of the parser in order to follow the
IEEE 488.2 rules for compound headers. IEEE 488.2, section 7.6.1.5 makes no mention of
default nodes, so adding something to the header path is not allowed. For example, if a
hypothetical instrument had the command tree:
 DISPlay
 [:STATe] <Boolean>
 :DATA <string>

Then the following situations would have these results:

DISP:STAT ON;DATA “Hello, world!”<nl> shall turn the display on and display
“Hello, world!”.

DISP ON;DATA “Hello, world!”<nl> may turn the display on and shall flag an
error (assuming that DATA is not a root mnemonic).

6.2.5 Multiple Capabilities and Numeric Keyword Suffixes
Many instruments provide multiple capabilities, by duplicating internal functional blocks.
One example is an instrument that can display more than one measurement at a time.
Another example is an instrument that can make a particular measurement on one of several
input channels. SCPI provides a mechanism to address this duplicate functionality while
retaining the same hierarchy for each duplication.

6.2.5.1 Single Instrument with Many Electrical Ports
When only electrical ports (front panel terminals) are involved, the <channel_list> notation
is sufficient to describe the measurement connection. An instrument which needs to select
one or more of several input terminals can be logically modeled as a simple instrument with
one set of inputs connected to a scanner (signal multiplexor).

6.2.5.2 Multiple Identical Capabilities
When an instrument has several independent measurement channels (or other capabilities,
such as displays or sources), the selection of which to use is designated by a numeric suffix
attached to a program mnemonic. If the suffix is absent, the command is treated as being
designated for capability number one. In this way, channel one of a multiple channel
instrument can accept the same commands as a single channel instrument to allow for

 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

6-8 Program Headers

upward compatibility. Further, adding multiple channels or capabilities to an instrument
class where multiple channels were not anticipated becomes possible.

The node that contains the numeric suffix is the one where the multiple capability occurs.
This may be at any level of the tree: root, intermediate or terminal node. As an example,
OUTP5:MOD3:FM2 would specify the second FM signal component of the third
modulation signal on the fifth output channel.

Devices which implement multiple channels/capabilities shall recognize nodes which do not
have numeric suffixes and treat them as channel/capability 1. Instruments with a single
channel/capability are not required to accept a numeric suffix. This allows for upward
compatibility.

6.2.5.3 Logical Instruments
A complex instrument such as a VXI card cage can be logically modeled as separate
instruments, each with its own (secondary) bus address. For example, common functions for
all instruments can be located at secondary address 00, and otherwise each instrument
responds individually to IEEE 488.2 commands. This requires that each logical instrument
(card) implement its own status model and I/O buffers.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Program Headers 6-9

 1
 2
 3
 4
 5

 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

6-10 Program Headers

7 Parameters
SCPI uses the parameter forms described in IEEE 488.2, section 7.7, with some additional
restrictions. Also note that SCPI specifies the values for all commands upon receipt of
*RST. In some cases, these reset values are device-dependent, but all measurement
parameters must be set to some deterministic value for that particular instrument, which in
turn must be documented in the instrument manual.

7.1 Character Program Data
Where possible, the same truncation rules are used for parameters as for headers. However,
in many cases industry standards take precedence. For example, IDC is a better choice for
DC current than anything SCPI rules would define, simply because it is an existing standard
with wide acceptance. In addition, several character program data forms are predefined as
extensions of <DECIMAL NUMERIC PROGRAM DATA>.

7.2 Decimal Numeric Program Data
Numeric elements shall be used only for representing numeric quantities. They shall not be
used for selecting functions on a “One of N” position switch.

Implementations shall accept numeric data as described in IEEE 488.2, section 7.7.2.4.
However, any number which exceeds +-9.9 E 37 shall generate an execution error (-222,
“Data out of range”). Numbers shall be rounded to the closest “correct” value that the
instrument accepts without error. This document does not define the value a parameter is set
to if an out-of-range value is received.

7.2.1 <numeric_value> Definition
The decimal numeric element is abbreviated as <numeric_value> throughout this document.
This is different from the <NRf> described in section 7.7.2.1 of IEEE 488.2 in several ways.

Several forms of <CHARACTER PROGRAM DATA> are defined as special forms of
numbers. These are: MINimum, MAXimum, DEFault, UP, DOWN, Not A Number (NAN),
INFinity, and Negative INFinity (NINF). Individual commands are required to accept MIN
and MAX. DEFault, UP, DOWN, NAN, INFinity, and NINFinity may be implemented at the
discretion of the designer, in which case it shall be noted in the instrument documentation.
Where an optional form is accepted, it will be noted in the command description.

A <non-decimal numeric> (IEEE 488.2, section 7.7.4), a <numeric_expression>, or a
<label> is part of <numeric_value> if an instrument implements these features.

7.2.1.1 DEFault
The special <numeric_value> parameter DEFault may be provided to allow the instrument to
select a value for a parameter. When DEFault is sent, the instrument shall select a value
which is deemed to be convenient to the customer. The setting may be device-dependent, or
it may be defined as part of this standard. The use of DEFault is optional on a
command-by-command basis. Individual commands shall document where DEFault is
required.

For example, to use the SYST:TIME command to set a device’s clock ahead one hour
(Daylight Savings Time), a program might send SYST:TIME UP,DEF,DEF<nl>.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Parameters 7-1

Another example is found in the MEASure commands. The syntax of the command which
measures DC voltage is:

MEASure:VOLTage:DC [<expected value>[,<resolution>]]

The MEASure command specifies that parameters are defaulted from the right and that any
parameter may be defaulted by using DEFault in place of the parameter. The following
command would measure DC voltage, defaulting the range to an instrument dependent value
(possibly autorange), but specifying the resolution at 0.001 Volt:

MEASure:VOLTage:DC DEFault,0.001V

7.2.1.2 MINimum|MAXimum
The special form numeric parameters MINimum and MAXimum shall be provided which
assume the limit values for the parameter. The maximum and minimum shall be queryable
by sending <header>? MAXimum|MINimum. The MAXimum value refers to the largest
value that the function can currently be set to, and MINimum refers to the value closest to
negative infinity that the function can be currently set to.

Some commands have multiple parameters. The query form of these commands returns a list
of values representing the current value of each of the parameters, in the order of their
normal occurrence in a program message. If a MINimum/MAXimum query of multiple
parameters is allowed, the keywords MINimum and MAXimum must occur as many times in
the query as there are parameters. MINimum requests that the instrument return the legal
value which is closest to negative infinity for the parameter; MAXimum requests the legal
value which is closest to positive infinity.

For example, suppose an instrument implements the SYST:TIME command, which requires
three parameters, and allows MIN/MAX queries on this command. The following queries
shall have these results:

SYST:TIME?<nl> shall return the current setting of the time-of-day clock in the
instrument.

SYST:TIME? MAX,MAX,MAX<nl> could return 23,59,59.

SYST:TIME? MAX<nl> shall set an error (-109, “Missing parameter”), since
three parameters are required and only one was sent.

7.2.1.3 UP/DOWN
An instrument may optionally allow the use of steps for some or all of its numeric entry. If
steps are used, the keywords UP and DOWN shall be used as numeric parameters which
perform stepping. Steps may be adjustable through the step node for each individual
parameter.

The instrument may step a parameter when UP or DOWN is received in lieu of a numeric
value. This capability is optional. However, if the capability is implemented, the device
shall include a node for each command which accepts step parameters. This node will
specify the step. The step may either be a fixed linear size or a logarithmic number
representing number of decades/step.

 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

7-2 Parameters

7.2.1.3.1 STEP Subsystem Command Syntax
The form of the step subsystem is as follows:

:STEP
 [:INCRement] <numeric_value>
 :PDECade <numeric_value>
 :MODE LINear|LOGarithmic|L125|L13
 :AUTO <Boolean>|ONCE

7.2.1.3.2 [:INCRement] <numeric_value>
This command controls the step size in absolute units when STEP:MODE LINear is selected.

At *RST, this value is device-dependent.

7.2.1.3.3 :PDECade <numeric_value>
This command controls the number of steps per decade when STEP:MODE LOGarithmic is
selected.

At *RST, this value is device-dependent.

7.2.1.3.4 :MODE LINear|LOGarithmic|L125|L13
This command controls the linearity of steps. The various parameters have the following
meanings:

LINear: Steps are a fixed value added to or subtracted from the current value of
the parameter.

LOGarithmic: Steps are placed at points spaced logarithmically. If the current
value of the function is x, the value of the function after executing an up shall be
determined by the following formula:

10
⎡
⎢
⎣

⎣log10(x)∗STEP:PDECade⎣+ 1
STEP:PDECade

⎤
⎥
⎦

and the value of the function after executing a DOWN shall be determined by:

10
⎡
⎢
⎣

⎡log10(x)∗STEP:PDECade⎡− 1
STEP:PDECade

⎤
⎥
⎦

where ⎣ is the symbol for floor, and ⎡ is the symbol for ceiling. DT
L125 — Steps are determined by the sequence
 ... 0.1,0.2,0.5,1,2,5,10,20,50,100 ...

Executing UP will set the value of the function to the next higher value in the sequence.
Executing DOWN will set the value of the function to the next lower value in the sequence.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Parameters 7-3

L13 — Steps are determined by the sequence
 ... 0.1,0.3,1,3,10,30,100 ...

Executing UP will set the value of the function to the next higher value in the sequence.
Executing DOWN will set the value of the function to the next lower value in the sequence.

At *RST, this value is device-dependent.

7.2.1.3.5 :AUTO <Boolean>|ONCE
The step mode and increment is coupled to other instrument settings and physical inputs
when AUTO is ON.

7.2.1.3.6 STEP Subsystem Examples
 FREQ:CENT:STEP 5 MHZ<nl>
 FREQ:CENT UP<nl>

sets the center frequency step to 5 MHz, and then increments the current value by 5 MHz.

 BAND:RES 1MHZ<nl>
 BAND:RES:STEP:MODE LOG;PDEC 3<nl>
 BAND:RES UP<nl>

The above sequence would specify a logarithmic step, set three steps/decade, and then
increment the resolution bandwidth by 1/3 decade (logarithmic) to a final value of 2.154
MHz.

 BAND:RES 1MHZ<nl>
 BAND:RES:STEP:MODE L125<nl>
 BAND:RES UP<nl>

The above sequence would specify a 125 logarithmic sequence, and then increment the
resolution bandwidth to the next step in the sequence to a final value of 2.0 MHz.

7.2.1.4 INFinity and Negative INFinity (NINF)
A special case is made for infinity. Positive infinity is represented as 9.9 E 37. Negative
infinity is -9.9 E 37. Instruments shall accept numbers within this range as valid numeric
data. They shall also limit response data to this range. If a valid instrument setting is infinity
or negative infinity, the values 9.9 E 37 and -9.9 E 37 shall be accepted and returned to
represent positive and negative infinity respectively, and on input, the implementation shall
accept INFinity as an alias for positive infinity, and NINFinity as an alias for negative
infinity.

The numeric values for positive and negative infinity were chosen so that they fit into a
32-bit IEEE 754 floating point number. This allows easy implementation using standard
tools in all popular languages and operating systems. Note that this does not limit the
numeric resolution. These values are larger than any quantities used or anticipated in
instruments.

7.2.1.5 Not A Number (NAN)
Not a number is represented as 9.91 E 37. Not a number is defined in IEEE 754. Typical
applications are dividing zero by zero or subtracting infinity from infinity. Not a number is

 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

7-4 Parameters

also used to represent missing data. A typical application is when a portion of a trace has not
been acquired yet. On input, devices shall accept NAN as an alias for not a number.

The numeric value for NAN was chosen so that it can be represented as a 32-bit IEEE 754
floating point number. This allows easy implementation using standard tools in all popular
languages and operating systems. Note that this does not limit the numeric resolution. This
value is larger than any quantities used or anticipated in instruments.

7.2.2 Unit Suffixes
The <DECIMAL NUMERIC PROGRAM DATA> may be followed by an optional suffix.
All parameters which have associated units shall accept a suffix. Only suffixes appropriate
for the command should be accepted. All suffixes must include the associated unit. See
IEEE 488.2, 7.7.3, <SUFFIX PROGRAM DATA>, for a complete discussion of this topic.

Suffixes must accept multipliers except in cases where the multiplier is illogical, such as
dBm or PCT. Table 7-2 in IEEE 488.2 lists the allowed multipliers. If any of the multipliers
are allowed with a suffix, then all the multipliers shall be interpreted properly. Compound
suffixes are allowed.

If a suffix is included, the suffix and associated multiplier, if implemented, are applied to the
parameter. If the suffix is omitted, default units are used. The default unit is determined
either from the :UNIT subsystem as described in 7.5 of Syntax & Style and in Chapter 23 of
the Command Reference, or it is the fundamental unit associated with the parameter.
Fundamental units are either described in the appropriate subsystem or in the one shown in
IEEE 488.2, table 7-1.

7.3 Boolean Program Data
The form <Boolean> is used throughout this document as a shorthand for the form
ON|OFF|<NRf>. Boolean parameters have a value of 0 or 1 and are unitless.

On input, an <NRf> is rounded to an integer. A nonzero result is interpreted as 1. This
algorithm is the same as the one described in IEEE 488.2, section 10.25.3.

The <CHARACTER PROGRAM DATA> elements ON and OFF shall be accepted on input
for increased readability. ON corresponds to 1 and OFF corresponds to 0.

Queries shall return 1 or 0, never ON or OFF.

7.4 Coupling of Functions
There are two forms of coupling: functional and value. A coupling occurs when sending a
command changes the value associated with another command. In general, functional
couplings are discouraged except in the MEASure subsystem. Value couplings are allowed
if the coupling equations are well specified.

Some functions may have the ability to be decoupled. If functions can be decoupled, the
ability to recouple them shall also exist. If a function cannot be decoupled, then a node to set
its value shall not exist, or shall be implemented as query-only. If a node is settable under
some conditions, then the node may exist.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Parameters 7-5

Another level in the tree is used to control coupling. The keyword AUTO shall be used to
control coupling. For example, the command to couple resolution bandwidth would be:

 BAND:RES:AUTO ON

Setting a value explicitly for a function shall cause the function to be decoupled (:AUTO
OFF), if decoupling is possible. Otherwise an error shall be generated.

Selecting :AUTO ONCE shall cause the function to select the most appropriate value for
current conditions (range, signal level, etc), and then be decoupled. A subsequent query of
an :AUTO? will always return 0, since ONCE is an event which leaves the function in
AUTO OFF mode.

7.4.1 Functional Coupling
Functional coupling occurs when a command causes side effects in the basic operating
mode of the device. An example is a command which sets the start frequency and also starts
a sweep.

If a command which invokes a functional coupling is necessary, the instrument shall also
implement primitive commands which do not have functional couplings. The instrument
may then implement a complex command which is described as a combination of these
primitive commands. This complex command may contain functional couplings, and must
document the sequence of primitive commands used in its programming documentation.

For example, if a source needs a command which sets the AM modulation level, and which
has the side effect of turning the modulation ON, the following could be implemented:

Primitives:
AM
 :STATE <Boolean>
 [:DEPTh] <numeric_value>

Complex command added:
AM
 :SDEPth <numeric_value>

Where AM:SDEPth is defined in the manual as:
AM
:DEPth <numeric_value>;
 :STATe ON

7.4.2 Value Coupling
The other form of coupling is called value coupling, which is allowed in SCPI. Values are
coupled when a command changes the value of other numeric settings in the instrument. The
coupling relation would follow device-dependent equations. For example, bandwidth in a
receiver may be coupled to the frequency span. The individual command descriptions define
these coupling equations.

 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

7-6 Parameters

Groups of functions may be coupled in complex ways which affect the values for each other.
For example START, STOP, CENTER, and SPAN are all value-coupled. CENTER is the
arithmetic average of START and STOP. SPAN is the difference between START and
STOP. Changing any one affects the value of two others.

7.4.3 Automatic Coupling
A special type of coupling is the automatic coupling. This is when the device provides an
algorithm to select the value of a parameter. This algorithm could be based upon physical
inputs or other settings. When it is desirable to turn this algorithm on and off, the keyword
AUTO is added. The AUTO command may accept parameters of ON|OFF|ONCE. ON
enables the instrument algorithm. OFF disables the instrument algorithm. ONCE causes the
algorithm to be employed once, changing the associated parameter, and then reverting to
AUTO OFF.

7.5 Units of Measure and Suffixes
Most of the information on units and suffixes is specified in IEEE 488.2, section 7.7.3.
However, further clarification is needed for units of power and amplitude, and for unitless
quantities.

7.5.1 Units of Amplitude and Power
The fundamental unit of linear power is the Watt (W).

The fundamental unit of linear amplitude is the Volt (V).

The fundamental unit of logarithmic power is the dBm.

The fundamental unit of logarithmic amplitude is the dBV.

Industry practices have caused other units to become widely used in various disciplines,
particularly the units of uV, dBuV, dBuW and dBmV. Furthermore, many instruments cover
a broad spectrum of applications where different units are considered the standard.
Therefore, instruments which implement commands whose parameters might be expressed in
several different amplitude or power units shall provide the following means of setting and
measuring amplitude and power functions:

If the unit is not specified, the default unit shall be that specified with a command in the
UNIT subsystem, or a UNIT command in the appropriate sub-tree. The *RST values of
settings in the UNIT subsystem shall be device-dependent. However, if a *RST unit is
different than the specified default unit, or is a logarithmic unit, then the command in the
UNIT subsystem for that unit must be implemented.

If a suffix is sent with an <NRf>, the unit corresponding to that suffix shall override the
default unit for that parameter.

If an instrument accepts units from one of the classifications described above, it must accept
all suffixes of that classification. For example, if an instrument accepts Watts, it must also
accept uW, mW, etc. This includes all suffix multipliers described for that unit in IEEE
488.2. However, it may, but is not required, to accept Volts as a unit. In instrument which
accepts both requires a defined impedance for the conversion

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Parameters 7-7

(Power= Voltage2

Impedance)

either explicitly through an input or output impedance command or implicitly if the
impedance of the instrument is known and fixed. A further restriction, is that if an
instrument accepts logarithmic units, it shall also accept the comparable linear unit. For
example, an instrument which accepts dBms must also accept Watts, MW, UW, etc. For
example:

POW:UNIT DBUV<nl>
POW:LEV 50<nl>

shall set the amplitude level to 50 dBuV.

POW:UNIT DBM<nl>
POW:LEV 5V<nl>

would set the power level to 5 Volts.

Since some instruments are used in applications where both power and voltage units are
appropriate, the system’s impedance may be important to the user. This impedance is
needed to do the conversion between power and voltage (and maybe even current). All
instruments are encouraged to provide a node for at least querying this impedance. The node
shall be called :IMPedance, and will generally appear under the INPut or OUTPut
subsystem. Open circuits shall be expressed by setting IMPedance INFinity. It is therefore
possible to express output power in Volts:

POW:UNIT V<nl>
OUTP:IMP 50 OHM<nl>POW:LEV 5<nl>

would set the power level to 5 Volts into a 50 Ohm load, or 0.5 Watt.

It is also sometimes necessary to determine which amplitude measurement is being made.
Therefore, a measurement qualification may be appended to the suffix. The suffix
appendices are described as:

PK: Peak amplitude

PP: Peak-to-peak amplitude

RMS: RMS amplitude

If no suffix appendix is specified, the default is device-dependent. However, all instruments
shall accept the suffix appendix for all types they support.

For example, a voltmeter which measures RMS voltage shall accept the suffixes V and
VRMS. A function generator which outputs peak voltage would accept the suffixes V and
VPK. An RF signal source might accept dBUV, dBUVRMS and dBUVPK.

 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

7-8 Parameters

7.5.2 Expressing Unitless Quantities
The ratio of two linear quantities shall default to a unitless ratio (A/B). For example, if the
input power for a system is 5 Watts, and the output power is 20 Watts, the power gain =
20W/5W = 4.

The difference between two logarithmic quantities shall be expressed in dB. For example if
the input power of a system is 3 dBm and the output power is 5 dBm then the gain of the
system is 5 dBm-3 dBm=2 dB.

Under exceptional conditions other units may be used for the ratio of two quantities. A valid
exception would be if a standards-setting organization (Bell, CCITT, military, IEEE, IEC,
etc.) specifies that a measurement shall be made using a special unit like PCT (percent).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Parameters 7-9

 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

7-10 Parameters

8 Expressions
8.1 Function

DIF01TWV41CThe <EXPRESSION PROGRAM DATA> described in IEEE 488.2 is more tightly defined
in this section. SCPI defines five types of expressions, numeric expressions, channel lists,
numeric lists, Data Interchange Format (dif) expressions, and instrument specifier
expressions. The dif expressions are defined in Volume 3, “Data Interchange Format.”
Instrument specifiers are defined in Volume 4, “Instrument Class Applications.”

Other expression types may be added in future releases of this document, including but not
limited to logical expressions, trigger expressions, and sequence expressions. Other uses of
IEEE 488.2 expressions are legal, and may be documented in the individual command
descriptions.

8.2 Usage
DIF01The use of expressions is optional in SCPI. For expression types defined in this section, it is

permissible to use any subset. Only expression types which are required by a particular
command may be recognized as parameters of that command.

8.3 Syntax
DIF01Inside expressions, white space as defined in IEEE 488.2, section 7.4.1.2 is allowed between

any lexical elements. For expressions defined in this section, a lexical element is defined as
any operator, punctuation, or IEEE 488.2 syntactic element. For a <dif_expression>, spaces
may appear around block names, block modifiers, keywords, or value types. See Data
Interchange Format, Section 3.2. Note that explicit white space may be required to separate
lexical elements. No semantic meaning should be attached to the case of alpha characters

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Expressions 8-1

used in operators. For example, the following are instances of the same operator:
 AND
 and
 And

8.3.1 Numeric Expression
A numeric expression is a collection of terms which evaluates to a trace, number, array, or
other data element.

8.3.1.1 Syntax TEK002
Where <numeric_operator> is defined as:

 1
 2
 3
 4
 5
 6
 7

 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

8-2 Expressions

Where <unary_numeric_operator> is defined as:

Unary operators should not be used with signed numbers.

Where <variable> or <trace_name> is defined as the diagram shows:

8.3.1.2 Precedence Rules
Expressions shall be evaluated according to the following precedence rules:
 1. Enclosed by parentheses
 2. Unary operators (+ and -)
 3. ^(exponentiation)
 4. * (multiplication), / (division), MOD and DIV
 5. + (addition) and - (subtraction)
 6. NOT
 7. AND
 8. OR and EXOR
 9. Left to right

8.3.1.3 Semantics
As stated in the syntax diagram, expressions may contain terms which are numbers, traces,
variables, or expressions.

Elements in a numeric expression are promoted to the size and type of the most complex
element, and the result of the expression is of that type. That is, an expression containing a
<trace_name> will be evaluated according to the rules for arithmetic on traces, and the result
will be a trace. If an expression contains both a <trace_name> and scalar data, a trace is
created with all elements set to the value of the scalar data before arithmetic is performed.
For example, if TREF is a trace_name, the expression (TREF-3) results in a trace the same
size as TREF, with each data element lower by three.

8.3.2 Channel Lists
Channel lists are used to specify electrical ports on an instrument. They are typically used for
signal routing either in a standalone switch box or in an instrument with multiple input
channels. An instrument with multiple channels may or may not do any signal switching as

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Expressions 8-3

the result of a channel list. Completely separate sensing channels are allowed, but may
appear to the language the same as channels which are switched.

A channel list may appear in measurement, configuration, and other such commands. For
example, MEAS:VOLT? (@1,3,4:6) says measure the voltage on channels 1, 3, and 4
through 6. Whether the measurements are performed simultaneously or in the order in the
list is unspecified. Channel lists are also used by the ROUTe subsystem, “Command
Reference,” 15.1.

The syntax for a <channel_list> is:

Where <channel_range> is defined as:

Where both instances of <channel_spec> must contain the same number of dimensions.

Where <module_channel> is defined as:

KI004

 1
 2
 3
 4
 5
 6
 7

 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

8-4 Expressions

Where <channel_range> indicates all the channels from the first number through the second
number and where <module_specifier> is defined as:

Where <channel_spec> is defined as:

The number of dimensions in a <channel_spec> is one greater than the number of
occurrances of the ‘!’ character in the <channel_spec>

When a <channel_range> of dimension greater than one is scanned, the right-most index of
the <channel_spec> varies most rapidly.

The multidimensional channel range is to be considered as a list of single dimension channel
ranges. For example, (@1!1:2!3) means dimension 1 (row) ranges from 1 to 2 and dimension
2 (column) ranges from 1 to 3. If the size of the matrix in this example is 2X8, then the range
(@1!1:2!3) does not mean: row 1, column 1 through 8 and subsequently row 2, column 1
through 3, but row 1, column 1 through 3 and next row 2 column 1 through 3. This method
provides a functional compatibility between commands sent to matrix switches with
different row lengths. PH020,DT
Channel lists are order sensitive. For example:
 SCAN (@5:3) means close 5, 4, 3 in order.
 SCAN (@1!1:2!3) means close 1!1, 1!2, 1!3, 2!1, 2!2, 2!3 in order.
 SCAN (@1!3:2!1) means close 1!3, 1!2, 1!1, 2!3, 2!2, 2!1 in order.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Expressions 8-5

PH020,DT

8.3.3 Numeric Lists
A numeric list is a an expression format for compactly expressing numbers and ranges of
numbers in a single parameter.

The syntax for <numeric_list> is:

Where <numeric_range> is defined as:

The range is inclusive of the specified numbers.

 1
 2
 3
 4
 5
 6
 7

 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

8-6 Expressions

9 Status Reporting
SCPI requires the status mechanism described in chapter 11 of IEEE 488.2, including full
implementation of the Event Status register structure.

Ed changeA SCPI device shall include the SCPI-defined OPERation status register and QUEStionable
data/signal status register with the associated condition, event, and enable commands. In
Figure 9-1 on the following page, “Minimum Status Reporting Structure Required by SCPI”,
a pictorial representation is given that shows the core of the SCPI-required status reporting
capability. Additional requirements are established for instruments that support either
multiple logical INSTruments or the expanded capability TRIGger model.

TK046In general, a status register should fit into a 16-bit integer with the most-significant bit
always zero (positive logic).

In the figures in this chapter, an elongated box is used to represent the “Status Data
Structure-Register Model,” which is defined in IEEE 488.2. SCPI consists of condition,
event, enable and optional transition registers. Two concentric circles with a cross through
the center one indicates a logical summing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Status Reporting 9-1

Figure 9-1 Minimum Status Reporting Structure Required by SCPI

 1
 2
 3
 4
 5
 6
 7
 8

 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

9-2 Status Reporting

9.1 The Device-Dependent Register Model
The Device-Dependent Register model follows the structure described in IEEE 488.2,
section 11.4.2. The transition filter described in figure 11-6 is actually a pair of
programmable transition filters which are described below.

The commands which access these registers are described in the “SCPI Language
Description.”

If the Error/Event Queue Summary is reported in the Status Model, then bit 2 of the Status
Byte shall be used to reflect the Empty/Non-Empty status of the queue. A bit value of 1
indicates the queue is not empty. See the SYSTem:ERRor subsystem, Command Reference,
21.8. TK012

9.2 Transition Filters
Transition filters are described in IEEE 488.2, section 11.4.2.2.1. SCPI allows the use of
programmable transition filters. When transition filters are used, SCPI requires the use of
separate positive and negative transition filters. A positive transition filter allows an event to
be reported when a condition changes from false to true. A negative filter allows an event to
be reported when a condition changes from true to false. Setting both positive and negative
filters true allows an event to be reported anytime the condition changes. Clearing both
filters disables event reporting.

The contents of transition filters are unchanged by *CLS and *RST.

9.3 Operation Status Register
The OPERation status register contains conditions which are part of the instrument’s normal
operation.

The definition of each of these bits (condition register) is as follows:

0-CALibrating — The instrument is currently performing a calibration.

1-SETTling — The instrument is waiting for signals it controls to stabilize
enough to begin measurements.

2-RANGing — The instrument is currently changing its range.

3-SWEeping — A sweep is in progress.

4-MEASuring — The instrument is actively measuring.

5-Waiting for TRIG — The instrument is in a “wait for trigger” state of the
trigger model.

6-Waiting for ARM — The instrument is in a “wait for arm” state of the trigger
model.

7-CORRecting — The instrument is currently performing a correction.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Status Reporting 9-3

8-12 available to designer

13-INSTrument Summary Bit One of n multiple logical instruments is
reporting OPERational status.

14-PROGram running — A user-defined programming is currently in the run
state.

15 always zero

9.4 QUEStionable Data/Signal Status Register
The QUEStionable status register set contains bits which give an indication of the quality of
various aspects of the signal.

A bit set in the condition register indicates that the data currently being acquired or
generated is of questionable quality due to some condition affecting the parameter associated
with that bit. For example, if the FREQ bit were set, this would mean that the frequency
accuracy of the signal was of questionable quality.

Ed ChangeThe frequency bit might, in turn, have a register set associated with it, further refining the
error into device-dependent conditions such as loop unlocked, oven cold, or reference signal
missing. This layering of registers is called “fan-out”. See Figure 9-2 for an illustration of
this technique. The device designer should be aware that adding registers to the status model
increases complexity. At the same time, it may be the only way to communicate time
sensitive status information to the instrument controller.

TK048Bit 14 is defined as the Command Warning bit. This bit indicates a non-fatal warning that
relates to the instrument’s interpretation of a command, query, or one or more parameters of
a specific command or query. Setting this bit is a warning to the application that the resultant
instrument state or action is probably what was expected but may deviate in some manner.

Figure 9-2 Hierarchical Expansion of the QUEStionable Status Register

 1
 2
 3
 4
 5
 6
 7
 8

 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

9-4 Status Reporting

TK048For example, the Command Warning bit is set whenever a parameter in one of the
Measurement Instruction commands or queries is ignored during execution. Such a
parameter may be ignored because it cannot be specified by a particular instrument.

Bit 13, INSTrument summary, is described later in this chapter in association with multiple
logical instruments.

Bits in both OPERation and QUEStionable status registers may be redefined by the
application programmer. This optional feature allows an application program to configure
two registers in whatever form it likes. Any error or event number from the entire pool of
errors/events the instrument can generate may be mapped into any bit of the OPERation or
QUEStionable register.

For example, an application program controlling a voltmeter may choose to map VOLTage
event X, VOLTage event Y and VOLTage event Z directly into the QUEStionable register
so that it has more direct access to them. Another purpose for this feature is to minimize the
need for adding complex hierarchical registers to the status model. The mapping is
controlled by the STATus:OPERation:MAP and STATus:QUEStionable:MAP commands.

9.5 Multiple Logical Instruments
A SCPI device that supports multiple logical instruments may include an INSTrument
summary status register and an individual instrument ISUMmary for each logical instrument.

Figure 9-3 Expansion of the INSTrument Summary Bit for Multiple Logical Instruments

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Status Reporting 9-5

Ed ChangeThe ISUMmary registers shall report to the INSTrument register, which in turn shall report
to bit 13 of the QUEStionable or OPERation status register. This is shown pictorially in
Figure 9-3, “Expansion of the INSTrument Summary Bit for Multiple Logical Instruments.”
Such a multilogical instrument may also expand the QUEStionable and OPERation register
in the manner shown in Figure 9-4, “Expansion of QUEStionable Register for Multiple
Logical Instruments.”

Ed Change

Using such a status register configuration allows a status event to be cross-referenced by
instrument and type of event. Further, when using a single logical instrument, the status
structure is seen to behave in a manner that is directly compatible with a single physical
instrument of the same capability. This affords upward compatibility.

For multiple logical instruments, the INSTrument register indicates which instrument(s)
have generated an event. The ISUMmary register is a pseudo-questionable status register for

Figure 9-4 Expansion of QUEStionable Register for Multiple Logical Instruments

 1
 2
 3
 4
 5
 6
 7
 8

 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

9-6 Status Reporting

a particular logical instrument. There may be two INSTrument registers for each logical
instrument in the device. For each event type, such as VOLTage, all the events may be ORed
together from each logical instrument to provide a summary by event type to the
QUEStionable status register.

9.6 Status Structure for the Expanded Capability Trigger Model
Ed ChangeFor instruments that implement the expanded capability trigger model, those instruments

may implement status structures to indicate the exact point in which the wait for ARM or
TRIGger is occurring. If multiple SEQuences are employed, then the status structure shall
exist to indicate in which SEQuences the wait for ARM or TRIGger is occurring. If multiple
ARM LAYers are employed, then the status structure shall exist to indicate in which LAYer
the wait for ARM or TRIGger is occurring. Figure 9-5, “Expansion of the OPERational
Register for the Expanded Capability Trigger Model,” shows the structure for an instrument
that employs more than one TRIGger sequence, more than one ARM sequence, and multiple
ARM LAYers.

* The use of Bit 15 is not allowed since some controllers may have difficulty reading a 16 bit
unsigned integer. The value of this bit shall always be 0.

** The extension bit is used, where required, to summarize the events in INSTrument15 and up.
The extension of the status structure shall conform to IEEE 488.2

Figure 9-5 Expansion of OPERation Register for the Expanded Capability Trigger Model

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Status Reporting 9-7

 1
 2
 3
 4
 5
 6
 7
 8

 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

9-8 Status Reporting

10 *RST Conditions
All instruments shall return to a known configuration when the IEEE 488.2 *RST command
is received. The “Command Reference” specifies the *RST condition for every command. In
some cases, the condition may be instrument-dependent. Instrument-dependent means that
the designer may determine the setting at *RST. However, the setting shall be known for the
instrument. Leaving a setting undefined at *RST is not allowed, unless specifically permitted
in the command description.

Consideration shall be given to safety if the instrument is capable of producing hazardous
conditions.

Operation after a *RST is optimized for remote operation.

A *RST command returns the instrument to a state where it is waiting for a command to
initiate measurements or other instrument actions.

KI001aAll instruments shall place themselves in the trigger idle state. Source instruments should not
be sourcing power at any output port. This condition may be reached by lowering the
power/voltage level or by turning the output state to OFF. Input ranges should normally be
set to AUTORANGE or minimum sensitivity. Settings which are normally coupled should
be coupled. Special modes, complex modulations, postprocessing, or similar functions which
are generally application-dependent should be disabled leaving the instrument in its most
fundamental mode of operation.

Finally, thought should be given to implementing *RST conditions so that the incremental
programming necessary after *RST for the applications be minimized.

The SYSTem:PRESet command performs the same action as the front panel preset key. This
typically sets all instrument parameters to values for good local/human interaction. In
manual operation, it is often desirable to have SYSTem:PRESet enable continuous
measurements. This may be different from the *RST state and the power-on state.

Status structures are not affected by *RST. The status event bits are cleared by *CLS and by
reading the event register. The error/event queue is also cleared by *CLS. Device-dependent
and SCPI status registers and queues are preset with the SCPI required STATus:PRESet
command. TK012
If a device is unable to implement the *RST condition of a function, it may choose a
different *RST condition. However, under these circumstances, the command for this
function must be implemented, even if only one selection is available. If the device
implements the stated *RST setting, the function must assume that value at *RST.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

*RST Conditions 10-1

 1
 2
 3
 4
 5
 6
 7
 8
 9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

10-2 *RST Conditions

11 Naming Conventions
In many SCPI subsystems there is the need for assigning names to structures or expressions
or arbitrary data memory.

This includes naming of windows in the DISPlay subsystem, traces in TRACe, expressions
to specify events and sequences in TRIGger, expressions to specify cards and channel lists in
ROUTe, and various items elsewhere. If possible, these naming operations should all have
the same form so that these operations in the various subsystems can be consistent. A user
can therefore transfer knowledge gained in one area to a similar task in another subsystem.

For this proposed general-purpose naming facility, there is no “enable” command; all
currently defined names will be associated with their data at define/assign time and exist
until deleted. There are two forms of the “purge” command: one which operates on
individual names as well as one for the whole name space. Names have implicit types and
memory is allocated based on the subsystem in which the name is created. Names must be
unique within the system to allow a designer to implement these commands using one global
name space.

The same keywords for naming will be used in all subsystems which allow names. Even
though TRACe:DEFine and DISPlay:WINDow:DEFine require different parameters, the
operations are similar and the instrument programmer can expect similar keywords.

The name space is not affected by *RST, and names remain associated with their data after
this operation.

KEYWORD PARAMETER FORM NOTES
Naming Sub-subsystem:
:DEFine <name>,<data>
:DEFine? <name>
:DELete
 [:NAME] <name>
 :ALL [event; no query]
:CATalog? [query only]

Command Descriptions
Differences among these commands and differences from the macro definition facility are
noted in the descriptions.

The name is sent as <character data> rather than as a string, because that is the simplest
IEEE 488.2 type that meets the requirements. Macro definitions needed the <string> type
because macro names could contain colons and queries, and their total length could be more
than 12 characters. Names do not have those extensions. When a name is returned (for
example, in a “CATalog?” query), it must be sent as <string response data> so that a null
string ("") can indicate that nothing is defined.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Naming Conventions 11-1

Names defined using these commands are not purged at *RST. The only way of deleting
them is through a DELete or DELete:ALL command.

11.1 :DEFine <name>,<data>
This command associates a user-specified <name> with data <data>. The type of <data> is
dependent on the subsystem in which the command occurs, and must be specified in the
syntax for that tree. The <data> field may be optional for some subsystems.

11.2 :DEFine? <name>
This query requests the instrument to return the definition of <name>. The type of data
returned depends on the specific subsystem in which the command occurs. If possible (that
is, if IEEE 488.2 allows), it should be returned in the same form it was sent.

11.3 :DELete[:NAME] <name>
This command undefines the name, disassociates it from any data, and frees the name and its
data memory for use by other definitions. There is no query associated with this action.

11.4 :DELete:ALL
This command undefines all names in this subsystem, and frees any associated data memory.
There is no query associated with this action.

11.5 :CATalog?
This query requests a list of defined names in this subsystem. The instrument must return a
list of one or more strings, each containing one name and separated by commas. If no names
are defined, a single null string is returned.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

11-2 Naming Conventions

A Programming Tips HP077
By following a set of simple guidelines, a programmer can reduce the number of errors
encountered when using SCPI instruments. All references in this appendix are to Volume I:
Syntax and Style, unless otherwise specified.

1. Avoid sending default nodes. See 5.1 and 6.2.2 item 5. Default nodes are used within
SCPI to allow the language to grow. Thus, older instruments will not have implemented the
default node. A command is more likely to work with more instruments if the default nodes
are omitted. For example, use:

INP:FILT ON

rather than:

INP:FILT:LPAS:STAT ON

2. Avoid sending a numeric suffix of 1 in applications that only use the default capability.
See 6.2.5.2. An instrument with multiple capabilities is required to interpret a header without
the numeric suffix as if a numeric suffix of one had been used. Leaving off the numeric
suffix means the same commands will work with an instrument that has multiple capabilities
and an instrument that does not. For example, use:

OUTP ON

rather than

OUTP1 ON

3. Be careful when sending coupled commands. See 7.4.2. Many instruments adhere to the
suggestion in IEEE 488.2 section 6.4.5.3. If the coupled commands are contiguous in the
same program message, the instrument is more likely to resolve any conflict between the
current settings and the new settings. For example, use:

:FREQ:STAR 100;SPAN 100

which sets START to 100, STOP to 200, CENTER to 150, and SPAN to 100. Assume that
START was 200 and STOP was 500 before sending;

:FREQ:STAR 100

Now, START is 100, STOP is 500, CENTER is 300, and SPAN is 400. Then send:

:FREQ:SPAN 100

which sets START to 250, STOP to 350, SPAN to 100, and leaves CENTER at 300 . These
states are very different and the second is probably not the intended one.

4. Verify instrument settings when knowing their exact value is required. If the actual value
of a setting is important, query the setting after programming it. An instrument is required to
round parameters. See 7.2. For example, sending:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
A
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

Programming Tips A-1

:VOLT 1.68
:VOLT?

may return 1.68, 1.7, or 2 depending on the capability of the instrument.

5. Send commands and queries in different program messages.

The response from a query combined in a program message with commands that affect the
queried value is not predictable. Sending:

:FREQ:STAR 100;SPAN 100
:FREQ:STAR?

always returns 100. When:

:FREQ:STAR 100;STAR?;SPAN 100

is sent, however, the result is not specified by SCPI. The result could be the value of START
before the command was sent since the instrument might defer executing the individual
commands until a program message terminator is received. The result could also be 100 if
the instrument executes commands as they are received.

6. Use the highest level commands possible for compatibility across instruments. Whenever
feasible, use the MEASure, CONFigure, READ?, FETCh?, and INITiate commands. Use the
lower level commands only when a special characteristic of an instrument must be
manipulated.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

A
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1999 SCPI Syntax & Style

A-2 Programming Tips

Index

<> 5-1
[] 5-1
{} 5-1
| 5-1

 A
aliases 6-3
ANSI

X3.4-1977 2-1
X3.42-1975 2-1

ANSI/EIA
TIA-562-1989 2-1

ARM 9-3

 B
Bell Telephone BTSM 41004 2-1
<Boolean> 7-5
BTSM 41004 2-1
building command trees 6-2

 C
CALibrating 9-3
capability, multiple 6-8
CATalog 11-2
CCIR Recommendation

468-2 2-1
CCITT Recommendation

P53 2-1
V.42 2-1

channel
lists 8-3

channel list 8-1
channel_list 6-8, 8-4
<channel_range> 8-4 - 8-5
<channel_spec> 8-5
character

case 5-2
character case 6-1
<character data> 11-1
CHARACTER PROGRAM DATA 7-5
command table notation 5-1
common command header 6-1
common commands

 effects of *RST 10-1

 mandatory 4-1
 optional 4-1

compliance criteria 4-1
CORRecting 9-3
coupling 7-5

functional 7-6
value 7-6

 D
data interchange format 8-1
<DECIMAL NUMERIC PROGRAM DATA>

7-1, 7-5
DEFault 7-1
default node 5-1
DEFine 11-2

query 11-2
definition, macro 11-1
DELete 11-2
device dependence 3-2
devices 4-1
dif 8-1
display window naming 11-1
Dolby Labs Bulletin No 19/4 2-1
DOWN 7-1 - 7-2

STEP 7-3

 E
EIA

RS-232-D 2-1
RS-422 2-1

element
lexical 8-1
syntactic 8-1

expression
channel list 8-1
data interchange format 8-1
dif 8-1
instrument specifier 8-1
numeric 8-1 - 8-2
numeric list 8-1
precedence rules 8-3

<EXPRESSION PROGRAM DATA> 8-1

Index - 1

 F
flow diagram notation 5-2
form

long 5-1, 6-1
short 5-1, 6-1

front panel 1-1

 H
header

command command 6-1
command tree generation 6-2
instrument control 6-1
keyword generation 6-1
longform 6-1
numeric suffix 6-2, 6-8
queries 6-6
query 6-1
short form 6-2
tree traversal 6-7

hierarchical structure 5-1

 I
IEC Recommendation

179 2-1
IEEE

Std. 181-1977 2-1
Std. 194-1977 2-1
Std. 260-1978 2-1
Std. 488.1-1987 1-1, 2-1, 4-1
Std. 488.2-1987 1-1, 1-3, 4-1, 6-1, 6-7
Std. 488.2-1992 2-1
Std. 754-1985 2-1

INFinity 7-1, 7-4
INSTrument 9-6
instrument control header 6-1
instrument dependent 10-1
instrument specifier expression 8-1
INSTrument Summary Bit 9-4
ISO

Std. 2955-1983 2-2
ISUMmary 9-6

 K
KEYWORD 5-1
keywords 6-1

 L
label 7-1
lexical element 8-1
life cycle 3-1 - 3-2
living standard 3-1
logical instruments 6-9
long form 5-1, 6-1

 M
macro definition 11-1
mandated commands 4-1
MAXimum 7-1
MEASuring 9-3
MINimum 7-1 - 7-2
<module_channel> 8-4
<module_specifier> 8-5
multiple

capabilities 6-8
electrical ports 6-8
indentical capabilities 6-8
logical instruments status 9-5

 N
naming conventions 11-1

CATalog 11-2
DEFine 11-2
DELete 11-2

NAN (not a number) 7-4
nomenclature

see notation 5-1
<non-decimal numeric> 7-1
Not A Number (NAN) 7-1
notation 5-1

command tables 5-1
query 5-1
status structure diagrams 9-1
syntax flow diagrams 5-2

NOTES 5-1
<NRf> 7-1
numeric expression 8-1 - 8-2
numeric list 8-1
<numeric_expression> 7-1
<numeric_list> 8-6
<numeric_operator> 8-2
<numeric_range> 8-6

1999 SCPI Syntax & Style

Index - 2

 O
obsolesence 3-1
OFF 7-5
ON 7-5
OPERation 9-1
OPERation Status Register 9-3
optional

 use of expressions 8-1
commands 4-6
common commands 4-1
IEEE 488.1 interface 4-1
nodes 6-4
SCPI commands 4-6

 P
PARAMETER FORM 5-1
parameters 7-1

<CHARACTER PROGRAM DATA> 7-1
<NRf> 7-1
<numeric_value> 7-1
Boolean program data 7-5
character program data 7-1
decimal numeric program data 7-1
DEFault 7-1
DOWN 7-2
INFinity 7-4
MAXimum 7-2
NAN (not a number) 7-4
STEP UP/DOWN 7-3
unit suffixes 7-5
UP 7-2

precedence rules 8-3
primary keyword 6-3
program headers 6-1

queries 6-6
<PROGRAM MESSAGE> 6-7
<PROGRAM MESSAGE UNIT> 6-7
PROGram running 9-4

 Q
queries 6-6
QUEStionable 9-1
QUEStionable Data 9-4

 R
railroad diagrams 5-2
RANGing 9-3
References 2-1

requirements
documentation 4-6
IEEE 488.1 4-1
IEEE 488.2 4-1
IEEE mandated commands 4-1
minimum status structure 9-1
multiple capabilities 6-9
safety 10-1
SCPI 4-5
SCPI commands 4-5

rounding
numeric program data 7-1

 S
SAE J2264 2-2
safety requirements 10-1
SCPI

requirements 4-5
semantics 8-3
SETTling 9-3
short form 5-1, 6-1
Signal Status Register 9-4
square brackets 5-1
status reporting 9-1

device dependent registers 9-3
diagram notation 9-1
effect of *CLS 9-3
effect of *RST 9-3
enhanced TRIGger model 9-7
minimum requirement 9-1
multiple logical instruments 9-5
OPERation 9-1, 9-3
QUEStionable 9-1, 9-4
transition filters 9-3
TRIGger model 9-1

STEP 7-3
AUTO 7-4
INCRement 7-3
MODE 7-3
PDECade 7-3

<string> 11-1
<SUFFIX PROGRAM DATA> 7-5
SWEeping 9-3
Syntax and Style 1-1
syntax flow diagram notation 5-2
systems instruments 1-1

 T
trace naming 11-1
<trace_name> 8-3

1999 SCPI Syntax & Style

Index - 3

transition filters 9-3
negative 9-3
positive 9-3

Traversal of header tree 6-7
tree system 5-1
tree walking 6-7

enhanced 6-7
TRIGger 9-3

LAYers 9-7
SEQuences 9-7

 U
<unary_numeric_operator> 8-3
unit

amplitude and power 7-7
suffixes 7-5
unitless quantities 7-9
units of measure 7-7

UP 7-1 - 7-2
STEP 7-3

 V
<variable or trace_name> 8-3
VXI 2-2, 6-9

1999 SCPI Syntax & Style

Index - 4

	Syntax and Style
	NOTICE, STATEMENT of INTENT
	Foreword
	Table of Contents
	1 Introduction
	1.1 Requirements
	1.2 Organization
	1.3 SCPI Goals
	1.4 SCPI Usage
	1.5 Instrument Interchangeability

	2 References
	3 Life Cycle
	3.1 Adding a Capability
	3.2 Obsoleting a Capability
	3.3 Device Dependent Commands

	4 SCPI Compliance Criteria
	4.1 IEEE 488.2 Requirements
	4.1.1 IEEE Mandated Commands
	4.1.2 IEEE Optional Common Commands
	4.1.3 IEEE Common Command Implications
	4.1.3.1 Overlapped and Sequential Commands
	4.1.3.2 *CLS
	4.1.3.3 *OPC and *WAI
	4.1.3.4 *OPC?
	4.1.3.5 *RST
	4.1.3.5.1 Interaction With the Synchronization Commands
	4.1.3.5.2 Implications For *SAV and *RCL
	4.1.3.5.3 *RST and *RCL as Overlapped Commands

	4.1.3.6 *IDN?

	4.2 SCPI Requirements
	4.2.1 Required Commands
	4.2.2 Optional Commands
	4.2.3 Documentation Requirements

	5 Notation
	5.1 Interpreting Command Tables
	5.2 Interpreting Syntax Flow Diagrams

	6 Program Headers
	6.1 Common Command and Query Headers
	6.2 Instrument-Control Headers
	6.2.1 Mnemonic Generation Rules
	6.2.2 Building the Command Tree
	6.2.3 Queries
	6.2.4 Traversal of the Header Tree
	6.2.5 Multiple Capabilities and Numeric Keyword Suffixes
	6.2.5.1 Single Instrument with Many Electrical Ports
	6.2.5.2 Multiple Identical Capabilities
	6.2.5.3 Logical Instruments

	7 Parameters
	7.1 Character Program Data
	7.2 Decimal Numeric Program Data
	7.2.1 <numeric_value> Definition
	7.2.1.1 DEFault
	7.2.1.2 MINimum|MAXimum
	7.2.1.3 UP/DOWN
	7.2.1.3.1 STEP Subsystem Command Syntax
	7.2.1.3.2 [:INCRement] <numeric_value>
	7.2.1.3.3 :PDECade <numeric_value>
	7.2.1.3.4 :MODE LINear|LOGarithmic|L125|L13
	7.2.1.3.5 :AUTO <Boolean>|ONCE
	7.2.1.3.6 STEP Subsystem Examples

	7.2.1.4 INFinity and Negative INFinity (NINF)
	7.2.1.5 Not A Number (NAN)

	7.2.2 Unit Suffixes

	7.3 Boolean Program Data
	7.4 Coupling of Functions
	7.4.1 Functional Coupling
	7.4.2 Value Coupling
	7.4.3 Automatic Coupling

	7.5 Units of Measure and Suffixes
	7.5.1 Units of Amplitude and Power
	7.5.2 Expressing Unitless Quantities

	8 Expressions
	8.1 Function
	8.2 Usage
	8.3 Syntax
	8.3.1 Numeric Expression
	8.3.1.1 Syntax
	8.3.1.2 Precedence Rules
	8.3.1.3 Semantics

	8.3.2 Channel Lists
	8.3.3 Numeric Lists

	9 Status Reporting
	9.1 The Device-Dependent Register Model
	9.2 Transition Filters
	9.3 Operation Status Register
	9.4 QUEStionable Data/Signal Status Register
	9.5 Multiple Logical Instruments
	9.6 Status Structure for the Expanded Capability Trigger Model

	10 *RST Conditions
	11 Naming Conventions
	11.1 :DEFine <name>,<data>
	11.2 :DEFine? <name>
	11.3 :DELete[:NAME] <name>
	11.4 :DELete:ALL
	11.5 :CATalog?

	A Programming Tips
	Index

	Command Reference
	Table of Contents
	1 Introduction
	1.1 Requirements
	1.2 Organization

	2 Instrument Model
	2.1 Signal Routing
	2.1.1 Setting the Destination for Data Flow

	2.2 Measurement Function
	2.2.1 INPut
	2.2.2 SENSe
	2.2.3 CALCulate

	2.3 Signal Generation
	2.3.1 OUTPut
	2.3.2 SOURce
	2.3.3 CALCulate

	2.4 TRIGger
	2.5 MEMory
	2.6 FORMat
	2.7 Internal Routing
	2.7.1 Data and Control Flow
	2.7.2 Numeric Suffixes
	2.7.3 Lamina and Cloned Models
	2.7.3.1 FEED Exceptions
	2.7.3.2 Amorphous SENSe Model
	2.7.3.3 Other Subsystems

	2.7.4 FEED <data_handle>
	2.7.4.1 Sensor Function Selection
	2.7.4.2 FEEDs from CALCulate Sub-Blocks

	2.7.5 COMBine
	2.7.6 Memory Associated with Data Flow
	2.7.7 Querying the Data Flow
	2.7.8 <event_handle>

	3 Measurement Instructions
	3.1 CONFigure:<function> <parameters>[,<source list>]
	3.2 FETCh[:<function>]? <parameters>[,<source list>]
	3.3 READ[:<function>]? <parameters> [,<source list>]
	3.4 MEASure:<function>? <parameters>[,<source list>]
	3.5 <function>
	3.6 Presentation Layer
	3.6.1 Presentation Command Summary
	3.6.2 [:SCALar]
	3.6.3 :ARRay <size>

	3.7 Fundamental Measurement Layer
	3.7.1 Fundamental Measurement Command Summary
	3.7.2 :VOLTage [<expected_value>[,<resolution>]]
	3.7.3 :CURRent [<expected_value>[,<resolution>]]
	3.7.4 :POWer [<expected_value>[,<resolution>]]
	3.7.5 :RESistance [<expected_value>[,<resolution>]]
	3.7.6 :FRESistance [<expected_value>[,<resolution>]]
	3.7.7 :TEMPerature [<transducer>[,<type> [,<expected_value>[,<resolution>]]]]

	3.8 Measurement Function Layer
	3.8.1 Simple Measurements
	3.8.1.1 Simple Measurements Command Summary
	3.8.1.2 :AC
	3.8.1.3 [:DC]
	3.8.1.4 :FREQuency [<expected_value>[,<resolution>]]
	3.8.1.4.1 :BURSt [<expected_value>[,<resolution>]]
	3.8.1.4.2 :PRF [<expected_value>[,<resolution>]]

	3.8.1.5 :PERiod [<expected_value>[,<resolution>]]
	3.8.1.6 :PHASe [<expected value>[,<resolution>]]

	3.8.2 Time Domain Waveform Measurements
	3.8.2.1 Waveform Measurements Command Summary
	3.8.2.2 :AMPLitude
	3.8.2.3 :LOW
	3.8.2.4 :HIGH
	3.8.2.5 :RISE
	3.8.2.5.1 :TIMe [<low reference>[,<high reference>
	3.8.2.5.2 :OVERshoot
	3.8.2.5.3 :PREShoot

	3.8.2.6 :RTIMe [<low reference>[,<high reference>
	3.8.2.7 :FALL
	3.8.2.7.1 :TIME [<low reference>[,<high reference>
	3.8.2.7.2 :OVERshoot
	3.8.2.7.3 :PREShoot

	3.8.2.8 :FTIMe [<low reference>[,<high reference>
	3.8.2.9 :PWIDth [<reference>]
	3.8.2.10 :NWIDth [<reference>]
	3.8.2.11 :PDUTycycle|:DCYCle [<reference>]
	3.8.2.12 :NDUTycycle [<reference>]
	3.8.2.13 :TMAXimum Layer:Time Domain Waveform Measurements
	3.8.2.14 :TMINimum
	3.8.2.15 :MINimum
	3.8.2.16 :MAXimum
	3.8.2.17 :PTPeak

	4 CALCulate Subsystem
	4.1 :AVERage subsystem
	4.1.1 :CLEar
	4.1.2 :COUNt <numeric_value>
	4.1.2.1 :AUTO <Boolean> | ONCE

	4.1.3 [:STATe] <Boolean>
	4.1.4 :TCONtrol EXPonential | MOVing | NORMal | REPeat
	4.1.5 :TYPE COMPlex | ENVelope | MAXimum | MINimum | RMS | SCALar

	4.2 :CLIMits
	4.2.1 :FAIL?
	4.2.2 :FLIMits
	4.2.2.1 [:DATA]?
	4.2.2.2 :POINts?

	4.3 :DATA?
	4.3.1 :PREamble?

	4.4 :DERivative
	4.4.1 :STATe <Boolean>
	4.4.2 :POINts <numeric_value>

	4.5 :FEED <data_handle>
	4.6 :FILTer
	4.6.1 [:GATE]
	4.6.1.1 :TIME
	4.6.1.1.1 :STATe <Boolean>
	4.6.1.1.2 [:TYPE] BPASs|NOTCh
	4.6.1.1.3 :STARt <numeric_value>
	4.6.1.1.4 :STOP <numeric_value>
	4.6.1.1.5 :SPAN <numeric_value>
	4.6.1.1.6 :CENTer <numeric_value>
	4.6.1.1.7 :POINts <numeric_value>
	4.6.1.1.7.1 :AUTO <Boolean>|ONCE

	4.6.1.1.8 :WINDow RECTangular|UNIForm|FLATtop|HAMMing
	4.6.1.1.9 :KBESsel <numeric_value>
	4.6.1.1.10 :EXPonential <numeric_value>
	4.6.1.1.11 :FORCe <numeric_value>

	4.6.1.2 :FREQuency
	4.6.1.2.1 :STATe <Boolean>
	4.6.1.2.2 [:TYPE] BPASs|NOTCh
	4.6.1.2.3 :STARt <numeric_value>
	4.6.1.2.4 :STOP <numeric_value>
	4.6.1.2.5 :SPAN <numeric_value>
	4.6.1.2.6 :CENTer <numeric_value>
	4.6.1.2.7 :POINts <numeric_value>
	4.6.1.2.7.1 :AUTO <Boolean>|ONCE

	4.6.1.2.8 :WINDow RECTangular|UNIForm|FLATtop|HAMMing
	4.6.1.2.9 :KBESsel <numeric_value>
	4.6.1.2.10 :EXPonential <numeric_value>
	4.6.1.2.11 :FORCe <numeric_value>

	4.7 :FORMat NONE|MLINear|MLOGarithmic|PHASe|REAL
	4.7.1 :UPHase
	4.7.1.1 :CREFerence <numeric_value>
	4.7.1.2 :PREFerence <numeric value>

	4.8 :GDAPerture
	4.8.1 :SPAN <numeric_value>
	4.8.2 :APERture <numeric_value>

	4.9 :IMMediate
	4.9.1 :AUTO <Boolean>

	4.10 :INTegral
	4.10.1 :STATe <Boolean>
	4.10.2 :TYPE SCALar | MOVing

	4.11 :LIMit
	4.11.1 :STATe <Boolean>
	4.11.2 :CONTrol
	4.11.2.1 [:DATA] <numeric_value>{,<numeric_value>}
	4.11.2.2 :POINts?

	4.11.3 :UPPer
	4.11.3.1 [:DATA] <numeric_value>{,<numeric_value>}
	4.11.3.2 :POINts?
	4.11.3.3 :STATe <Boolean>

	4.11.4 :LOWer
	4.11.4.1 [:DATA] <numeric_value>{,<numeric_value>}
	4.11.4.2 :POINts?
	4.11.4.3 :STATe <Boolean>

	4.11.5 :FAIL?
	4.11.6 :FCOunt?
	4.11.7 :REPort
	4.11.7.1 [:DATA]?
	4.11.7.2 :POINts?

	4.11.8 :CLEar
	4.11.8.1 :AUTO <Boolean> | ONCE
	4.11.8.2 [:IMMediate]

	4.11.9 :INTerpolate <Boolean>

	4.12 :MATH
	4.12.1 [:EXPRession] <numeric_expression>
	4.12.1.1 :CATalog?
	4.12.1.2 [:DEFine] <numeric_expression>
	4.12.1.3 :DELete
	4.12.1.3.1 [:SELected] <expression_name>
	4.12.1.3.2 :ALL

	4.12.1.4 :NAME <expression_name>

	4.12.2 :STATe <Boolean>

	4.13 :SMOothing
	4.13.1 [:STATe] <Boolean>
	4.13.2 :APERture <numeric_value>
	4.13.3 :POINts <numeric_value>

	4.14 :STATe <Boolean>
	4.15 :TRANsform
	4.15.1 :HISTogram
	4.15.1.1 :COUNt <numeric_value>
	4.15.1.2 :ORDinate RATio | PERCent | PCT | COUNt
	4.15.1.3 :POINts <numeric_value>
	4.15.1.4 :RANGe
	4.15.1.4.1 :AUTO <Boolean>

	4.15.1.5 :STATe <Boolean>

	4.15.2 :TIME
	4.15.2.1 :STATe <Boolean>
	4.15.2.2 [:TYPE] LPASs|BPASs
	4.15.2.3 :STIMulus STEP|IMPulse
	4.15.2.4 :STARt <numeric_value>
	4.15.2.5 :STOP <numeric_value>
	4.15.2.6 :SPAN <numeric_value>
	4.15.2.7 :CENTer <numeric_value>
	4.15.2.8 :POINts <numeric_value>
	4.15.2.8.1 :AUTO <Boolean>|ONCE

	4.15.2.9 :WINDow RECTangular|UNIForm|FLATtop|HAMMing
	4.15.2.10 :KBESsel <numeric_value>
	4.15.2.11 :EXPonential <numeric_value>
	4.15.2.12 :FORCe <numeric_value>

	4.15.3 :DISTance
	4.15.3.1 :STATe <Boolean>
	4.15.3.2 [:TYPE] LPASs|BPASs
	4.15.3.3 :STIMulus STEP|IMPulse
	4.15.3.4 :STARt <numeric_value>
	4.15.3.5 :STOP <numeric_value>
	4.15.3.6 :SPAN <numeric_value>
	4.15.3.7 :CENTer <numeric_value>
	4.15.3.8 :POINts <numeric_value>
	4.15.3.8.1 :AUTO <Boolean>|ONCE

	4.15.3.9 :WINDow RECTangular|UNIForm|FLATtop|HAMMing
	4.15.3.10 :KBESsel <numeric_value>
	4.15.3.11 :EXPonential <numeric_value>
	4.15.3.12 :FORCe <numeric_value>

	4.15.4 :FREQuency
	4.15.4.1 :STATe <Boolean>
	4.15.4.2 [:TYPE] LPASs|BPASs
	4.15.4.3 :STIMulus STEP|IMPulse
	4.15.4.4 :STARt <numeric_value>
	4.15.4.5 :STOP <numeric_value>
	4.15.4.6 :SPAN <numeric_value>
	4.15.4.7 :CENTer <numeric_value>
	4.15.4.8 :POINts <numeric_value>
	4.15.4.8.1 :AUTO <Boolean>|ONCE

	4.15.4.9 :WINDow RECTangular|UNIForm|FLATtop|HAMMing
	4.15.4.10 :KBESsel <numeric_value>
	4.15.4.11 :EXPonential <numeric_value>
	4.15.4.12 :FORCe <numeric_value>

	4.16 :PATH (MATH|TRANsform|FILTer|SMOothing|FORMat|LIMit|AVERage)

	5 CALibration Subsystem
	5.1 [:ALL]
	5.2 [:ALL]?
	5.3 :AUTO <Boolean>|ONCE
	5.4 :BINertia
	5.4.1 :AVERage?
	5.4.2 :HSPeed <numeric_value>
	5.4.3 :INITiate
	5.4.4 :LSPeed <numeric_value>
	5.4.5 :NRUNs <numeric_value>
	5.4.6 :SDEViation?
	5.4.7 :UPDate

	5.5 :DATA <arbitrary block program data>
	5.6 :PLOSs
	5.6.1 :APCoeff
	5.6.2 :INITiate
	5.6.3 :LATime
	5.6.4 :STIMe <numeric_value>
	5.6.5 :UPDate

	5.7 :SOURce INTernal|EXTernal
	5.8 :STATe <Boolean>
	5.9 :VALue <numeric_value>
	5.10 :WARMup
	5.10.1 :INITiate
	5.10.2 :SPEed <numeric_value>
	5.10.3 :TIMeout <numeric_value>

	5.11 :ZERO
	5.11.1 :AUTO <Boolean>|ONCE
	5.11.2 :FSENsor
	5.11.2.1 :INITiate
	5.11.2.2 :LATime <numeric_value>
	5.11.2.3 :LEVel?
	5.11.2.4 :SPEed <numeric_value>
	5.11.2.5 :STIMe <numeric_value>
	5.11.2.6 :UPDate

	6 CONTrol Subsystem
	6.1 :APOWer
	6.1.1 [:STATe] <Boolean>

	6.2 :BLOWer
	6.2.1 [:STATe] <Boolean>

	6.3 :BRAKe
	6.3.1 [:STATe] <Boolean>

	6.4 :COMPressor
	6.4.1 [:STATe] <Boolean>

	6.5 :COVer
	6.5.1 [:ADJust] OPEN|CLOSe|SOPEn|SCLOse
	6.5.2 :POSition?

	6.6 :EBENch
	6.6.1 :CLEan
	6.6.1.1 :INITiate
	6.6.1.2 :DURation <numeric_value>

	6.7 :IDLE
	6.7.1 :INITiate

	6.8 :LIFT
	6.8.1 [:ADJust] UP|DOWN
	6.8.2 :POSition?

	6.9 :MCONtrol
	6.9.1 [:STATe] <Boolean>

	6.10 :ROTation
	6.10.1 [:DIRection]

	6.11 :VCDevice
	6.11.1 [:STATe] <Boolean>
	6.11.2 :TDIameter <numeric_value>

	7 DIAGnostic Subsystem
	8 DISPlay Subsystem
	8.1 :ANNotation
	8.1.1 [:ALL] <Boolean>
	8.1.2 :AMPLitude <Boolean>
	8.1.3 :FREQuency <Boolean>

	8.2 :BRIGhtness <numeric_value>
	8.3 :CMAP
	8.3.1 :DEFault
	8.3.2 :COLor
	8.3.2.1 :HSL <hue>,<sat>,<lum>
	8.3.2.2 :RGB <red>,<green>,<blue>

	8.4 :CONTrast <numeric_value>
	8.5 :ENABle <Boolean>
	8.6 :MENU
	8.6.1 [:NAME] <menu_name>
	8.6.2 :STATe <Boolean>
	8.6.3 :KEY <string>

	8.7 [:WINDow]
	8.7.1 :BACKground
	8.7.1.1 :COLor <numeric_value>

	8.7.2 :GEOMetry
	8.7.2.1 :LLEFt <numeric_value>,<numeric_value>
	8.7.2.2 :SIZE <numeric_value>,<numeric_value>
	8.7.2.3 :URIGht <numeric_value>,<numeric_value>

	8.7.3 :GRAPhics
	8.7.3.1 :CLEar
	8.7.3.2 :COLor <numeric_value>
	8.7.3.3 :CSIZe <numeric_value>[,<numeric_value>]
	8.7.3.4 [:DRAW] <numeric_value>,<numeric_value>
	8.7.3.5 :PCL <block>
	8.7.3.6 :HPGL <block>
	8.7.3.7 :IDRaw <numeric_value>,<numeric_value>
	8.7.3.8 :IMOVe <numeric_value>,<numeric_value>
	8.7.3.9 :LABel <string>
	8.7.3.10 :LDIRection <numeric_value>
	8.7.3.11 :LTYPe <numeric_value>[,<numeric_value>]
	8.7.3.12 :MOVE <numeric_value>,<numeric_value>
	8.7.3.13 :STATe <Boolean>

	8.7.4 [:STATe] <Boolean>
	8.7.5 :TEXT
	8.7.5.1 :ATTRibutes <Boolean>
	8.7.5.2 :CLEar
	8.7.5.3 :COLor <numeric_value>
	8.7.5.4 :CSIZe <numeric_value>[,<numeric_value>]
	8.7.5.5 :FEED <data_handle>
	8.7.5.6 [:DATA] <string> | <block>
	8.7.5.7 :LOCate <numeric_value>[,<numeric_value>
	8.7.5.8 :PAGE <numeric_value>
	8.7.5.9 :STATe <Boolean>

	8.7.6 :TRACe
	8.7.6.1 :COLor <numeric_value>
	8.7.6.2 :FEED <data_handle>
	8.7.6.3 :GRATicule
	8.7.6.3.1 :AXIS
	8.7.6.3.1.1 [:STATe] <Boolean>

	8.7.6.3.2 :FRAMe
	8.7.6.3.2.1 [:STATe] <Boolean>

	8.7.6.3.3 :GRID
	8.7.6.3.3.1 :AUTO <Boolean>
	8.7.6.3.3.2 [:STATe] <Boolean>

	8.7.6.4 :PERSistence <numeric_value>
	8.7.6.4.1 :AUTO <Boolean>|ONCE

	8.7.6.5 :STATe <Boolean>
	8.7.6.6 :X
	8.7.6.6.1 :LABel <string>
	8.7.6.6.2 [:SCALe]
	8.7.6.6.2.1 :AUTO <Boolean> | ONCE
	8.7.6.6.2.2 :CENTer <numeric_value>
	8.7.6.6.2.3 :LEFT <numeric_value>
	8.7.6.6.2.4 :PDIVision <numeric_value>
	8.7.6.6.2.4.1 :LINK LEFT | CENTer | RIGHt

	8.7.6.6.2.5 :RIGHt <numeric_value>

	8.7.6.7 :Y
	8.7.6.7.1 :LABel <string>
	8.7.6.7.2 :RLINe <Boolean>
	8.7.6.7.3 [:SCALe]
	8.7.6.7.3.1 :AUTO <Boolean> | ONCE
	8.7.6.7.3.2 :BOTTom <numeric_value>
	8.7.6.7.3.3 :PDIVision <numeric_value>
	8.7.6.7.3.4 :RLEVel <numeric_value>
	8.7.6.7.3.4.1 :AUTO <Boolean>

	8.7.6.7.3.5 :RPOSition <numeric_value>
	8.7.6.7.3.6 :TOP <numeric_value>

	8.7.6.7.4 :SPACing LOGarithmic | LINear

	8.7.6.8 :R
	8.7.6.8.1 :LABel <string>
	8.7.6.8.2 [:SCALe]
	8.7.6.8.2.1 :AUTO <Boolean> | ONCE
	8.7.6.8.2.2 :CPOint <numeric_value>
	8.7.6.8.2.3 :OEDGe <numeric_value>

	8.7.6.8.3 :SPACing LOGarithmic | LINear

	9 FORMat Subsystem
	9.1 :BORDer NORMal|SWAPped
	9.2 [:DATA] <type>[,<length>]
	9.3 :DINTerchange <Boolean>
	9.4 :SREGister ASCii | BINary | HEXadecimal | OCTal

	10 HCOPy
	10.1 :ABORt
	10.2 :DATA?
	10.3 :DESTination<data_handle>
	10.4 :DEVice
	10.4.1 :CMAP
	10.4.1.1 :COLor
	10.4.1.1.1 :HSL <hue>,<sat>,<lum>
	10.4.1.1.2 :RGB <red>,<green>,<blue>

	10.4.1.2 :DEFault

	10.4.2 :COLor <Boolean>
	10.4.3 :LANGuage PCL[<n>] | HPGL[<n>] | POSTscript[<n>]
	10.4.4 :MODE TABLe | GRAPh
	10.4.5 :RESolution <numeric_value>
	10.4.5.1 :UNIT <SUFFIX PROGRAM DATA>

	10.4.6 :SPEed <numeric_value>
	10.4.6.1 :UNIT <SUFFIX PROGRAM DATA>

	10.5 :FEED <data_handle>
	10.6 [:IMMediate]
	10.7 :ITEM
	10.7.1 :ALL
	10.7.1.1 :DATA?
	10.7.1.2 [:IMMediate]

	10.7.2 :ANNotation
	10.7.2.1 :COLor <numeric_value>
	10.7.2.2 :DATA?
	10.7.2.3 [:IMMediate]
	10.7.2.4 :STATe <Boolean>

	10.7.3 :CUT
	10.7.3.1 :DATA?
	10.7.3.2 [:IMMediate]
	10.7.3.3 :STATe <Boolean>

	10.7.4 :FFEed
	10.7.4.1 :DATA?
	10.7.4.2 [:IMMediate]
	10.7.4.3 :STATe <Boolean>

	10.7.5 :LABel
	10.7.5.1 :COLor <numeric_value>
	10.7.5.2 :DATA?
	10.7.5.3 [:IMMediate]
	10.7.5.4 :STATe <Boolean>
	10.7.5.5 :TEXT <string>

	10.7.6 :MENU
	10.7.6.1 :COLor <numeric_value>
	10.7.6.2 :DATA?
	10.7.6.3 [:IMMediate]
	10.7.6.4 :STATe <Boolean>

	10.7.7 :TDSTamp
	10.7.7.1 :COLor <numeric_value>
	10.7.7.2 :DATA?
	10.7.7.3 [:IMMediate]
	10.7.7.4 :STATe <Boolean>

	10.7.8 [:WINDow]
	10.7.8.1 :DATA?
	10.7.8.2 [:IMMediate]
	10.7.8.3 :STATe <Boolean>
	10.7.8.4 :TEXT
	10.7.8.4.1 :COLor <numeric_value>
	10.7.8.4.2 :DATA?
	10.7.8.4.3 [:IMMediate]
	10.7.8.4.4 :STATe <Boolean>

	10.7.8.5 :TRACe
	10.7.8.5.1 :COLor <numeric_value>
	10.7.8.5.2 :DATA?
	10.7.8.5.3 :GRATicule
	10.7.8.5.3.1 :COLor <numeric_value>
	10.7.8.5.3.2 :DATA?
	10.7.8.5.3.3 [:IMMediate]
	10.7.8.5.3.4 :STATe <Boolean>

	10.7.8.5.4 [:IMMediate]
	10.7.8.5.5 :LTYPe SOLid | DOTTed | DASHed | STYLe<n>
	10.7.8.5.6 :STATe <Boolean>

	10.8 :PAGE
	10.8.1 :DIMensions
	10.8.1.1 :AUTO <Boolean>
	10.8.1.2 :LLEFt <numeric_value>,<numeric_value>
	10.8.1.3 :QUADrant[<n>]
	10.8.1.4 :URIGht <numeric_value>,<numeric_value>

	10.8.2 :LENGth <numeric_value>
	10.8.3 :ORIentation LANDscape | PORTrait
	10.8.4 :SCALe <numeric_value>
	10.8.5 :SIZE CUSTom|A|B|C|D|E|A0|A1|A2|A3|A4|B0|B1|B2|B3|B4|B5
	10.8.6 :UNIT <SUFFIX PROGRAM DATA>
	10.8.7 :WIDTh <numeric_value>

	10.9 :SDUMp
	10.9.1 :DATA?
	10.9.2 [:IMMediate]

	11 INPut Subsystem
	11.1 :ATTenuation <numeric_value>
	11.1.1 :AUTO <Boolean>|ONCE
	11.1.2 :STATe <Boolean>

	11.2 :BIAS
	11.2.1 :CURRent
	11.2.1.1 :AC <numeric_value>
	11.2.1.2 [:DC] <numeric_value>

	11.2.2 [:STATe] <Boolean>
	11.2.3 :TYPE CURRent | VOLTage
	11.2.4 :VOLTage
	11.2.4.1 :AC <numeric_value>
	11.2.4.2 [:DC] <numeric_value>

	11.3 :COUPling AC|DC|GROund
	11.4 :FILTer
	11.4.1 :AWEighting
	11.4.1.1 [:STATe] <Boolean>

	11.4.2 :HPASs
	11.4.2.1 :FREQuency <numeric_value>
	11.4.2.2 [:STATe] <Boolean>

	11.4.3 [:LPASs]
	11.4.3.1 :FREQuency <numeric_value>
	11.4.3.2 [:STATe] <Boolean>

	11.5 :GAIN <numeric_value>
	11.5.1 :AUTO <Boolean>|ONCE
	11.5.2 :STATe <Boolean>

	11.6 :GUARd LOW|FLOat
	11.7 :IMPedance <numeric_value>
	11.8 :LOW FLOat|GROund
	11.9 :OFFSet <numeric_value>
	11.9.1 :STATe <Boolean>

	11.10 :POLarity NORMal|INVerted
	11.11 :POLarization <numeric_value>
	11.11.1 :HORizontal
	11.11.2 :VERTical

	11.12 :POSition
	11.12.1 [:X]
	11.12.1.1 :ANGLe
	11.12.1.1.1 :DIRection UP|DOWN
	11.12.1.1.2 [:IMMediate] <numeric_value>
	11.12.1.1.3 :LIMit
	11.12.1.1.3.1 :HIGH <numeric_value>
	11.12.1.1.3.2 :LOW <numeric_value>
	11.12.1.1.3.3 :STATe <Boolean>

	11.12.1.1.4 :OFFSet <numeric_value>
	11.12.1.1.5 :VELocity <numeric_value>

	11.12.1.2 [:DISTance]
	11.12.1.2.1 :DIRection UP|DOWN
	11.12.1.2.2 [:IMMediate] <numeric_value>
	11.12.1.2.3 :LIMit
	11.12.1.2.3.1 :HIGH <numeric_value>
	11.12.1.2.3.2 :LOW <numeric_value>
	11.12.1.2.3.3 :STATe <Boolean>

	11.12.1.2.4 :OFFSet <numeric_value>
	11.12.1.2.5 :VELocity <numeric_value>

	11.12.2 :Y
	11.12.2.1 :ANGLe
	11.12.2.1.1 :DIRection UP|DOWN
	11.12.2.1.2 [:IMMediate] <numeric_value>
	11.12.2.1.3 :LIMit
	11.12.2.1.3.1 :HIGH <numeric_value>
	11.12.2.1.3.2 :LOW <numeric_value>
	11.12.2.1.3.3 :STATe <Boolean>

	11.12.2.1.4 :OFFSet <numeric_value>
	11.12.2.1.5 :VELocity <numeric_value>

	11.12.2.2 [:DISTance]
	11.12.2.2.1 :DIRection UP|DOWN
	11.12.2.2.2 [:IMMediate] <numeric_value>
	11.12.2.2.3 :LIMit
	11.12.2.2.3.1 :HIGH <numeric_value>
	11.12.2.2.3.2 :LOW <numeric_value>
	11.12.2.2.3.3 :STATe <Boolean>

	11.12.2.2.4 :OFFSet <numeric_value>
	11.12.2.2.5 :VELocity <numeric_value>

	11.12.3 :Z
	11.12.3.1 :ANGLe
	11.12.3.1.1 :DIRection UP|DOWN
	11.12.3.1.2 [:IMMediate] <numeric_value>
	11.12.3.1.3 :LIMit
	11.12.3.1.3.1 :HIGH <numeric_value>
	11.12.3.1.3.2 :LOW <numeric_value>
	11.12.3.1.3.3 :STATe <Boolean>

	11.12.3.1.4 :OFFSet <numeric_value>
	11.12.3.1.5 :VELocity <numeric_value>

	11.12.3.2 [:DISTance]
	11.12.3.2.1 :DIRection UP|DOWN
	11.12.3.2.2 [:IMMediate] <numeric_value>
	11.12.3.2.3 :LIMit
	11.12.3.2.3.1 :HIGH <numeric_value>
	11.12.3.2.3.2 :LOW <numeric_value>
	11.12.3.2.3.3 :STATe <Boolean>

	11.12.3.2.4 :OFFSet <numeric_value>
	11.12.3.2.5 :VELocity <numeric_value>

	11.13 [:STATe] <Boolean>
	11.14 :TYPE <character data>

	12 INSTrument Subsystem
	12.1 :CATalog?
	12.1.1 :FULL?

	12.2 :COUPle[:<subsystem>] ALL|NONE|<list>
	12.3 :DEFine
	12.3.1 :GROup <identifier>,<identifier_list>
	12.3.2 [:NAME] <identifier>,<numeric_value>

	12.4 :DELete
	12.4.1 :ALL
	12.4.2 [:NAME] <identifier>

	12.5 :NSELect <numeric_value>
	12.6 [:SELect] <identifier>
	12.7 :STATe <Boolean>

	13 MEMory Subsystem
	13.1 :CATalog
	13.1.1 [:ALL]?
	13.1.2 :ASCii?
	13.1.3 :BINary?
	13.1.4 :MACRo?
	13.1.5 :STATe?
	13.1.6 :TABLe?

	13.2 :CLEar
	13.2.1 [:NAME] <name>
	13.2.2 :TABLe

	13.3 :COPY
	13.3.1 [:NAME] <name>,<name>
	13.3.2 :TABLe <name>

	13.4 :DATA<name>,<data>
	13.5 :DELete
	13.5.1 :ALL
	13.5.2 [:NAME] <name>

	13.6 :EXCHange
	13.6.1 [:NAME] <name>,<name>
	13.6.2 :TABLe <name>

	13.7 :FREE
	13.7.1 [:ALL]?
	13.7.2 :ASCii?
	13.7.3 :BINary?
	13.7.4 :MACRo?
	13.7.5 :STATe?
	13.7.6 :TABLe?

	13.8 :NSTates?
	13.9 :STATe
	13.9.1 :CATalog?
	13.9.2 :DEFine <name> , <register_number>

	13.10 :TYPE? <name>
	13.11 :TABLe
	13.11.1 :BNUMber <numeric_value> {,<numeric_value>}
	13.11.1.1 :POINts?

	13.11.2 :CCURve <numeric_value> {,<numeric_value>}
	13.11.2.1 :POINts?

	13.11.3 :CONCentration <numeric_value> {,<numeric_value>}
	13.11.3.1 :POINts?

	13.11.4 :CONDition
	13.11.4.1 [:MAGNitude] <Boolean>{,<Boolean>}
	13.11.4.1.1 :POINts?

	13.11.5 :CPOint <numeric_value> {,<numeric_value>}
	13.11.5.1 :POINts?

	13.11.6 :CURRent
	13.11.6.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.6.1.1 :POINts?

	13.11.6.2 :PHASe <numeric_value>{,<numeric_value>}
	13.11.6.2.1 :POINts?

	13.11.7 :DFACtory <numeric_value> {,<numeric_value>}
	13.11.7.1 :POINts?

	13.11.8 :DLASt <numeric_value> {,<numeric_value>}
	13.11.8.1 :POINts?

	13.11.9 :DLINearize <numeric_value> {,<numeric_value>}
	13.11.9.1 :POINts?

	13.11.10 :EXPected <numeric_value> {,<numeric_value>}
	13.11.10.1 :POINts?

	13.11.11 :DEFine <structure_string>[,<numeric_value>]
	13.11.12 :FORCe
	13.11.12.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.12.1.1 :POINts?

	13.11.13 :FREQuency <numeric_value>{,<numeric_value>}
	13.11.13.1 :POINts?

	13.11.14 :LABel <string> {,<string>}
	13.11.14.1 :POINts?

	13.11.15 :LLIMit <numeric_value> {,<numeric_value>}
	13.11.15.1 :POINts?

	13.11.16 :LOG <string> {,<string>}
	13.11.16.1 :POINts?

	13.11.17 :LOSS
	13.11.17.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.17.1.1 :POINts?

	13.11.17.2 :PHASe <numeric_value>{,<numeric_value>}
	13.11.17.2.1 :POINts?

	13.11.18 :NCURve <numeric_value> {,<numeric_value>}
	13.11.18.1 :POINts?

	13.11.19 :POWer
	13.11.19.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.19.1.1 :POINts?

	13.11.20 :RAW <numeric_value> {,<numeric_value>}
	13.11.20.1 :POINts?

	13.11.21 :RESistance
	13.11.21.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.21.1.1 :POINts?

	13.11.22 :SELect <name>
	13.11.23 :SPEed
	13.11.23.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.23.1.1 :POINts?

	13.11.24 :TIME
	13.11.24.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.24.1.1 :POINts?

	13.11.25 :TOLerance <numeric_value> {,<numeric_value>}
	13.11.25.1 :POINts?

	13.11.26 :ULIMit <numeric_value> {,<numeric_value>}
	13.11.26.1 :POINts?

	13.11.27 :VOLTage
	13.11.27.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	13.11.27.1.1 :POINts?

	13.11.27.2 :PHASe <numeric_value>{,<numeric_value>}
	13.11.27.2.1 :POINts?

	13.11.28 :WFACtor <numeric_value> {,<numeric_value>}
	13.11.28.1 :POINts?

	14 MMEMory Subsystem
	14.1 :CATalog? [<msus>]
	14.2 :CDIRectory [<directory_name>]
	14.3 :CLOSe
	14.4 :COPY <file_source>,<file_destination>
	14.5 :DATA <file_name>, <data>
	14.6 :DELete <file_name>[,<msus>]
	14.7 :FEED <data_handle>
	14.8 :INITialize [<msus>[,(LIF|DOS|HFS)[,<numeric_value>]]]
	14.9 :LOAD and :STORe
	14.9.1 :DINTerchange <label>,<file_name>[,<msus>]
	14.9.1.1 :TRACe <label>,<file_name>[,<msus>]

	14.9.2 :MACRo <label>,<file_name>[,<msus>]
	14.9.3 :STATe <numeric_value>,<file_name>[,<msus>]
	14.9.4 :TABLe <label>,<file_name>[,<msus>]
	14.9.5 :TRACe <label>,<file_name>[,<msus>]

	14.10 :MSIS [<msus>]
	14.11 :MOVE (<src_file>,<dest_file>)
	14.12 :NAME <file_name>[,<msus>]
	14.13 :OPEN
	14.14 :PACK [<msus>]

	15 OUTPut Subsystem
	15.1 :ATTenuation <numeric_value>
	15.2 :COUPling AC|DC
	15.3 :FILTer
	15.3.1 :AUTO <Boolean> | ONCE
	15.3.2 :EXTernal
	15.3.2.1 [:STATe] <Boolean>

	15.3.3 :HPASs
	15.3.3.1 :FREQuency <numeric_value>
	15.3.3.2 [:STATe] <Boolean>
	15.3.3.3 :TYPE BESSel | CHEByshev

	15.3.4 [:LPASs]
	15.3.4.1 :FREQuency <numeric_value>
	15.3.4.2 [:STATe] <Boolean>
	15.3.4.3 :TYPE BESSel | CHEByshev

	15.4 :IMPedance <numeric_value>
	15.5 :LOW FLOat|GROund
	15.6 :POLarity NORMal | INVerted
	15.7 :POLarization <numeric_value>
	15.7.1 :HORizontal
	15.7.2 :VERTical

	15.8 :POSition
	15.8.1 [:X]
	15.8.1.1 :ANGLe
	15.8.1.1.1 :DIRection UP|DOWN
	15.8.1.1.2 [:IMMediate] <numeric_value>
	15.8.1.1.3 :LIMit
	15.8.1.1.3.1 :HIGH <numeric_value>
	15.8.1.1.3.2 :LOW <numeric_value>
	15.8.1.1.3.3 :STATe <Boolean>

	15.8.1.1.4 :OFFSet <numeric_value>
	15.8.1.1.5 :VELocity <numeric_value>

	15.8.1.2 [:DISTance]
	15.8.1.2.1 :DIRection UP|DOWN
	15.8.1.2.2 [:IMMediate] <numeric_value>
	15.8.1.2.3 :LIMit
	15.8.1.2.3.1 :HIGH <numeric_value>
	15.8.1.2.3.2 :LOW <numeric_value>
	15.8.1.2.3.3 :STATe <Boolean>

	15.8.1.2.4 :OFFSet <numeric_value>
	15.8.1.2.5 :VELocity <numeric_value>

	15.8.2 :Y
	15.8.2.1 :ANGLe
	15.8.2.1.1 :DIRection UP|DOWN
	15.8.2.1.2 [:IMMediate] <numeric_value>
	15.8.2.1.3 :LIMit
	15.8.2.1.3.1 :HIGH <numeric_value>
	15.8.2.1.3.2 :LOW <numeric_value>
	15.8.2.1.3.3 :STATe <Boolean>

	15.8.2.1.4 :OFFSet <numeric_value>
	15.8.2.1.5 :VELocity <numeric_value>

	15.8.2.2 [:DISTance]
	15.8.2.2.1 :DIRection UP|DOWN
	15.8.2.2.2 [:IMMediate] <numeric_value>
	15.8.2.2.3 :LIMit
	15.8.2.2.3.1 :HIGH <numeric_value>
	15.8.2.2.3.2 :LOW <numeric_value>
	15.8.2.2.3.3 :STATe <Boolean>

	15.8.2.2.4 :OFFSet <numeric_value>
	15.8.2.2.5 :VELocity <numeric_value>

	15.8.3 :Z
	15.8.3.1 :ANGLe
	15.8.3.1.1 :DIRection UP|DOWN
	15.8.3.1.2 [:IMMediate] <numeric_value>
	15.8.3.1.3 :LIMit
	15.8.3.1.3.1 :HIGH <numeric_value>
	15.8.3.1.3.2 :LOW <numeric_value>
	15.8.3.1.3.3 :STATe <Boolean>

	15.8.3.1.4 :OFFSet <numeric_value>
	15.8.3.1.5 :VELocity <numeric_value>

	15.8.3.2 [:DISTance]
	15.8.3.2.1 :DIRection UP|DOWN
	15.8.3.2.2 [:IMMediate] <numeric_value>
	15.8.3.2.3 :LIMit
	15.8.3.2.3.1 :HIGH <numeric_value>
	15.8.3.2.3.2 :LOW <numeric_value>
	15.8.3.2.3.3 :STATe <Boolean>

	15.8.3.2.4 :OFFSet <numeric_value>
	15.8.3.2.5 :VELocity <numeric_value>

	15.9 :PROTection
	15.9.1 :DELay <numeric_value>
	15.9.2 [:STATe] <Boolean>
	15.9.3 :TRIPped?
	15.9.4 :CLEar

	15.10 :ROSCillator
	15.10.1 [:STATe] <Boolean>

	15.11 :TTLTrg<n>|:ECLTrg<n>
	15.11.1 :IMMediate
	15.11.2 :LEVel <Boolean>
	15.11.3 :POLarity NORMal|INVerted
	15.11.4 :PROTocol SYNChronous|SSYNchronous|ASYNchronous
	15.11.5 :WIDTh <numeric_value>
	15.11.6 [:STATe] <Boolean>
	15.11.7 :SOURce <character data>

	15.12 [:STATe] <Boolean>
	15.13 :TYPE <character data>

	16 PROGram Subsystem
	16.1 :CATalog?
	16.2 [:SELected]
	16.2.1 :DEFine <program>
	16.2.2 :DELete
	16.2.2.1 [:SELected]
	16.2.2.2 :ALL

	16.2.3 :EXECute <program_command>
	16.2.4 :MALLocate <nbytes>|DEFault
	16.2.5 :NAME <progname>
	16.2.6 :NUMBer <varname>{,<nvalues>}
	16.2.7 :STATe RUN|PAUSe|STOP|CONTinue
	16.2.8 :STRing <varname>{,<svalues>}
	16.2.9 :WAIT

	16.3 :EXPLicit
	16.3.1 :DEFine <progname>,<program>
	16.3.2 :DELete <progname>
	16.3.3 :EXECute <progname>,<program_command>
	16.3.4 :MALLocate <progname>,(<nbytes>|DEFault)
	16.3.5 :NUMBer <progname>,<varname>{,<nvalues>}
	16.3.6 :STATe <progname>,(RUN|PAUSe|STOP|CONTinue)
	16.3.7 :STRing <progname>,<varname>{,<svalues>}
	16.3.8 :WAIT <progname>

	17 ROUTe Subsystem
	17.1 :CLOSe <channel_list>
	17.1.1 :STATe?

	17.2 :MODule
	17.2.1 :CATalog?
	17.2.2 [:DEFine] <module_name>,<module_address>
	17.2.3 :DELete
	17.2.3.1 :ALL
	17.2.3.2 [:NAME] <module_name>

	17.3 :OPEN <channel_list>
	17.3.1 :ALL

	17.4 :PATH
	17.4.1 :CATalog?
	17.4.2 [:DEFine] <path_name>,<channel_list>
	17.4.3 :DELete
	17.4.3.1 :ALL
	17.4.3.2 [:NAME] <path_name>

	17.5 :SAMPle
	17.5.1 :CATalog?
	17.5.2 [:OPEN] BAG|DILute|PRE|POST|MID|CEFFiciency|NONE|ZERO|SPAN

	17.6 :SCAN <channel_list>
	17.7 TERMinals FRONt|REAR|BOTH|NONE

	18 SENSe Subsystem
	18.1 AM Subsystem
	18.1.1 [:DEPTh]
	18.1.1.1 :RANGe
	18.1.1.1.1 :AUTO <Boolean> | ONCE
	18.1.1.1.2 [:UPPer] <numeric_value>
	18.1.1.1.3 :LOWer <numeric_value>

	18.1.2 :TYPE LINear|LOGarithmic

	18.2 AVERage Subsystem
	18.2.1 A typical device action for SENS:AVERage
	18.2.2 :COUNt <numeric_value>
	18.2.2.1 :AUTO <Boolean> | ONCE

	18.2.3 [:STATE] <Boolean>
	18.2.4 :TCONtrol EXPonential | MOVing | NORMal | REPeat
	18.2.5 :TYPE COMPlex | ENVelope | MAXimum | MINimum | RMS | SCALar

	18.3 BANDwidth|BWIDth Subsystem
	18.3.1 [:RESolution] <numeric_value>
	18.3.1.1 :AUTO <Boolean>|ONCE
	18.3.1.2 :RATio <numeric_value>
	18.3.1.3 :TRACk <Boolean>

	18.3.2 :VIDeo <numeric_value>
	18.3.2.1 :AUTO <Boolean>|ONCE
	18.3.2.2 :RATio <numeric_value>

	18.4 CONCentration Subsystem
	18.4.1 :CSET <numeric_value>,<numeric_value>
	18.4.2 :LOWer <numeric_value>
	18.4.3 :LSET POLYnomial<n> | SRATional<n>,<numeric_value>{,<numeric_value>}
	18.4.4 :RANGe
	18.4.4.1 :AUTO
	18.4.4.1.1 :LOWer <numeric_value>
	18.4.4.1.2 [:STATe] <Boolean>
	18.4.4.1.3 :UPPer <numeric_value>

	18.4.4.2 [:FIXed] <numeric_value>

	18.4.5 :TALign <numeric_value>
	18.4.6 :UPPer <numeric_value>

	18.5 CONDition Subsystem
	18.5.1 :LEVel <numeric_value> | TTL ECL

	18.6 CORRection Subsystem
	18.6.1 :AUTO
	18.6.2 :CALCulate
	18.6.3 :COLLect
	18.6.3.1 [:ACQuire] STANdard
	18.6.3.2 :METHod TPORt
	18.6.3.3 :SAVE [<trace_name>]

	18.6.4 :CSET
	18.6.4.1 [:SELect] <name>
	18.6.4.2 :STATe <Boolean>

	18.6.5 :EDELay
	18.6.5.1 :DISTance <numeric_value>
	18.6.5.2 :STATe <Boolean>
	18.6.5.3 [:TIME] <numeric_value>

	18.6.6 :IMPedance
	18.6.6.1 [:INPut]|:OUTPut
	18.6.6.1.1 [:MAGNitude] <numeric_value>

	18.6.6.2 :STATe <Boolean>

	18.6.7 :LOSS|:GAIN|:SLOPe
	18.6.7.1 [:INPut]|:OUTPut
	18.6.7.1.1 :AUTO ON|OFF
	18.6.7.1.2 [:MAGNitude] <numeric_value>
	18.6.7.1.3 :PHASe <numeric_value>

	18.6.7.2 :STATe <Boolean>

	18.6.8 :OFFSet
	18.6.8.1 [:MAGNitude] <numeric_value>
	18.6.8.2 :PHASe <numeric_value>
	18.6.8.3 :STATe <Boolean>

	18.6.9 :RVELocity
	18.6.9.1 :COAX <numeric_value>
	18.6.9.2 :MEDium COAX|WAVeguide
	18.6.9.3 :STATe <Boolean>
	18.6.9.4 :WAVeguide <numeric_value>
	18.6.9.4.1 :FCUToff <numeric_value>

	18.6.10 :SPOint
	18.6.10.1 :ACQuire
	18.6.10.2 :DTOLerance <numeric_value>

	18.6.11 [:STATe] <Boolean>
	18.6.12 :ZERO
	18.6.12.1 :ACQuire
	18.6.12.2 :DTOLerance <numeric_value>

	18.7 CURRent Subsystem
	18.7.1 :AC|[:DC]
	18.7.1.1 :APERture <numeric_value>
	18.7.1.2 :NPLCycles <numeric_value>
	18.7.1.3 :ATTenuation <numeric_value>
	18.7.1.3.1 :AUTO <Boolean>

	18.7.1.4 :PROTection
	18.7.1.4.1 [:LEVel] <numeric_value>
	18.7.1.4.2 :STATe <Boolean>
	18.7.1.4.3 :TRIPped?
	18.7.1.4.4 :CLEar

	18.7.1.5 :RANGe
	18.7.1.5.1 [:UPPer] <numeric_value>
	18.7.1.5.2 :LOWer <numeric_value>
	18.7.1.5.3 :AUTO <Boolean>|ONCE
	18.7.1.5.3.1 :DIRection UP|DOWN|EITHer
	18.7.1.5.3.2 :LLIMit <numeric_value>
	18.7.1.5.3.3 :ULIMit <numeric_value>

	18.7.1.5.4 :OFFSet <numeric_value>
	18.7.1.5.5 :PTPeak <numeric_value>

	18.7.1.6 :REFerence <numeric_value>
	18.7.1.6.1 :STATe <Boolean>

	18.7.1.7 :RESolution <numeric_value>
	18.7.1.7.1 :AUTO <Boolean>|ONCE

	18.7.2 :DETector INTernal | EXTernal

	18.8 DETector Subsystem
	18.8.1 :BANDwidth | BWIDth
	18.8.2 [:FUNCtion] <detector function>
	18.8.2.1 :AUTO <Boolean>|ONCE

	18.8.3 :SHAPe LINear|LOGarithmic

	18.9 DISTance Subsystem
	18.9.1 :RESet

	18.10 FILTer Subsystem
	18.10.1 [:LPASs]
	18.10.1.1 [:STATe] <Boolean>
	18.10.1.2 :FREQuency <numeric_value>

	18.10.2 :HPASs
	18.10.2.1 [:STATe] <Boolean>
	18.10.2.2 :FREQuency <numeric_value>

	18.10.3 :DEMPhasis
	18.10.3.1 [:STATe] <Boolean>
	18.10.3.2 :TCONstant <numeric_value>

	18.10.4 :CCITt
	18.10.4.1 [:STATe] <Boolean>

	18.10.5 :CMESsage
	18.10.5.1 [:STATe] <Boolean>

	18.10.6 :CCIR
	18.10.6.1 [:STATe] <Boolean>

	18.10.7 :CARM
	18.10.7.1 [:STATe] <Boolean>

	18.10.8 :AWEighting
	18.10.8.1 [:STATe] <Boolean>

	18.11 FM Subsystem
	18.11.1 [:DEViation]
	18.11.1.1 :RANGe
	18.11.1.1.1 :AUTO <Boolean> | ONCE
	18.11.1.1.2 [:UPPer] <numeric_value>
	18.11.1.1.3 :LOWer <numeric_value>

	18.12 FREQuency Subsystem
	18.12.1 :APERture <numeric_value>
	18.12.2 :CENTer <numeric_value>
	18.12.3 [:CW|:FIXed] <numeric_value>
	18.12.3.1 :AFC <Boolean>|ONCE
	18.12.3.2 :AUTO <Boolean>|ONCE

	18.12.4 :MANual <numeric_value>
	18.12.5 :MODE CW|FIXed|SWEep|LIST|SOURce
	18.12.6 :MULTiplier <numeric_value>
	18.12.7 :OFFSet <numeric_value>
	18.12.8 :RANGe
	18.12.8.1 [:UPPer] <numeric_value>
	18.12.8.2 :LOWer <numeric_value>
	18.12.8.3 :AUTO <Boolean>|ONCE

	18.12.9 :RESolution <numeric_value>
	18.12.9.1 :AUTO <Boolean>|ONCE

	18.12.10 :SPAN <numeric_value>
	18.12.10.1 :HOLD <Boolean>
	18.12.10.2 :LINK CENTer|STARt|STOP
	18.12.10.3 :FULL

	18.12.11 :STARt <numeric_value>
	18.12.12 :STOP <numeric_value>

	18.13 FUNCtion & DATA Subsystem
	18.13.1 DATA? [<data_handle>]
	18.13.1.1 SENSe <data_handle>s
	18.13.1.2 :PREamble? [<data_handle>]

	18.13.2 :FUNCtion
	18.13.2.1 :CONCurrent <Boolean>
	18.13.2.2 :OFF <sensor_function>{,<sensor_function>}
	18.13.2.2.1 :ALL
	18.13.2.2.2 :COUNt?

	18.13.2.3 [:ON] <sensor_function>{,<sensor_function>}
	18.13.2.3.1 :ALL
	18.13.2.3.2 :COUNt?

	18.13.2.4 :STATe? <sensor_function>
	18.13.2.5 <sensor_function>
	18.13.2.6 <presentation_layer> 1991
	18.13.2.6.1 [XNONe:]
	18.13.2.6.2 XTIMe:
	18.13.2.6.3 XFRequency:
	18.13.2.6.4 XPOWer:
	18.13.2.6.5 XVOLtage:
	18.13.2.6.6 XCURrent:

	18.13.2.7 <function_name>
	18.13.2.8 <function>
	18.13.2.8.1 ACCeleration
	18.13.2.8.2 AM
	18.13.2.8.2.1 [:DEPTh]
	18.13.2.8.2.2 :DISTortion
	18.13.2.8.2.3 :FREQuency
	18.13.2.8.2.4 :SNDRatio
	18.13.2.8.2.5 :SNR
	18.13.2.8.2.6 :THD

	18.13.2.8.3 CONCentration
	18.13.2.8.3.1 :RAW
	18.13.2.8.3.2 :SDEViation
	18.13.2.8.3.3 :TALign

	18.13.2.8.4 CONDition
	18.13.2.8.5 CURRent
	18.13.2.8.5.1 [:DC]
	18.13.2.8.5.2 :AC

	18.13.2.8.6 DISTance
	18.13.2.8.7 FM
	18.13.2.8.7.1 :[DEViation]
	18.13.2.8.7.2 :DISTortion
	18.13.2.8.7.3 :FREQuency
	18.13.2.8.7.4 :SNDRatio
	18.13.2.8.7.5 :SNR
	18.13.2.8.7.6 :THD

	18.13.2.8.8 FERRor
	18.13.2.8.9 FORCe
	18.13.2.8.10 FREQuency
	18.13.2.8.11 FRESistance
	18.13.2.8.12 PERiod
	18.13.2.8.13 PHASe
	18.13.2.8.14 PM
	18.13.2.8.14.1 [:DEViation]
	18.13.2.8.14.2 :DISTortion
	18.13.2.8.14.3 :FREQuency
	18.13.2.8.14.4 :SNDRatio
	18.13.2.8.14.5 :SNR
	18.13.2.8.14.6 :THD

	18.13.2.8.15 POWer
	18.13.2.8.15.1 :AC
	18.13.2.8.15.2 :ACHannel
	18.13.2.8.15.2.1 :LOWer
	18.13.2.8.15.2.2 [:UPPer]

	18.13.2.8.15.3 :COHerence
	18.13.2.8.15.4 :CROSs
	18.13.2.8.15.5 [:DC]
	18.13.2.8.15.6 :DISTortion
	18.13.2.8.15.7 :PSDensity
	18.13.2.8.15.8 :S11|:S12|:S22|:S21
	18.13.2.8.15.9 :SNDRatio
	18.13.2.8.15.10 :SNR
	18.13.2.8.15.11 :THD

	18.13.2.8.16 PULM
	18.13.2.8.17 RESistance
	18.13.2.8.18 SPEed
	18.13.2.8.18.1 :FRONt
	18.13.2.8.18.2 [:REAR]

	18.13.2.8.19 SSB
	18.13.2.8.20 TEMPerature
	18.13.2.8.21 TIMer
	18.13.2.8.21.1 COUNt

	18.13.2.8.22 TINTerval
	18.13.2.8.23 TOTalize
	18.13.2.8.24 TPLoss
	18.13.2.8.25 VOLTage
	18.13.2.8.25.1 :AC
	18.13.2.8.25.2 :CDFunction
	18.13.2.8.25.3 [:DC]
	18.13.2.8.25.4 :HISTogram
	18.13.2.8.25.5 :PDFunction

	18.14 LIST Subsystem
	18.14.1 :COUNt <numeric_value>
	18.14.2 :DIRection UP|DOWN
	18.14.3 :DWELl <numeric_value>{,<numeric_value>}
	18.14.3.1 :POINts?

	18.14.4 :FREQuency <numeric_value>{,<numeric_value>}
	18.14.4.1 :POINts?

	18.14.5 :SEQuence <numeric_value>{,<numeric_value>}
	18.14.5.1 :AUTO <Boolean>|ONCE
	18.14.5.2 :POINts?

	18.15 MIXer Subsystem
	18.15.1 :BIAS <numeric_value>
	18.15.1.1 :AUTO <Boolean>|ONCE
	18.15.1.2 :LIMit <numeric_value>

	18.15.2 :HARMonic <numeric_value>
	18.15.2.1 :AUTO <Boolean>|ONCE

	18.15.3 :LOSS <numeric_value>
	18.15.3.1 :AUTO <Boolean>

	18.16 PM Subsystem
	18.16.1 [:DEViation]
	18.16.1.1 :RANGe
	18.16.1.1.1 :AUTO <Boolean> | ONCE
	18.16.1.1.2 [:UPPer] <numeric_value>
	18.16.1.1.3 :LOWer <numeric_value>

	18.17 POWer Subsystem
	18.17.1 :ACHannel
	18.17.1.1 :SPACing
	18.17.1.1.1 :LOWer <numeric_value>
	18.17.1.1.1.1 :AUTO <Boolean>

	18.17.1.1.2 [:UPPer] <numeric_value>

	18.17.2 :AC|[:DC]
	18.17.2.1 :APERture <numeric_value>
	18.17.2.2 :NPLCycles <numeric_value>
	18.17.2.3 :ATTenuation <numeric_value>
	18.17.2.3.1 :AUTO <Boolean>

	18.17.2.4 :PROTection
	18.17.2.4.1 [:LEVel] <numeric_value>
	18.17.2.4.2 :STATe <Boolean>
	18.17.2.4.3 :TRIPped?
	18.17.2.4.4 :CLEar

	18.17.2.5 :RANGe
	18.17.2.5.1 [:UPPer] <numeric_value>
	18.17.2.5.2 :LOWer <numeric_value>
	18.17.2.5.3 :AUTO <Boolean>|ONCE
	18.17.2.5.3.1 :DIRection UP|DOWN|EITHer
	18.17.2.5.3.2 :LLIMit <numeric_value>
	18.17.2.5.3.3 :ULIMit <numeric_value>

	18.17.2.5.4 :OFFSet <numeric_value>
	18.17.2.5.5 :PTPeak <numeric_value>

	18.17.2.6 :REFerence <numeric_value>
	18.17.2.6.1 :STATe <Boolean>

	18.17.2.7 :RESolution <numeric_value>
	18.17.2.7.1 :AUTO <Boolean>|ONCE

	18.17.3 :DETector INTernal | EXTernal

	18.18 RESistance|FRESistance Subsystem
	18.18.1 :APERture <numeric_value>
	18.18.2 :NPLCycles <numeric_value>
	18.18.3 :OCOMpensated <Boolean>
	18.18.4 :RANGe
	18.18.4.1 [:UPPer] <numeric_value>
	18.18.4.2 :LOWer <numeric_value>
	18.18.4.3 :AUTO <Boolean>|ONCE
	18.18.4.3.1 :DIRection UP|DOWN|EITHer
	18.18.4.3.2 :LLIMit <numeric_value>
	18.18.4.3.3 :ULIMit <numeric_value>

	18.18.5 :REFerence <numeric_value>
	18.18.5.1 :STATe <Boolean>

	18.18.6 :RESolution <numeric_value>
	18.18.6.1 :AUTO <Boolean>|ONCE

	18.19 ROSCillator Subsystem
	18.19.1 [:INTernal]
	18.19.1.1 :FREQuency <numeric_value>

	18.19.2 :EXTernal
	18.19.2.1 :FREQuency <numeric_value>

	18.19.3 :SOURce INTernal|EXTernal|NONE|CLK10|CLK100
	18.19.3.1 :AUTO <Boolean>|ONCE

	18.20 SMOothing Subsystem
	18.20.1 [:STATe] <Boolean>
	18.20.2 :APERture <numeric_value>
	18.20.3 :POINts <numeric_value>

	18.21 SSB Subsystem
	18.21.1 :TYPE USB|LSB|A1

	18.22 STABilize Subsystem
	18.22.1 :NTOLerance <numeric_value>
	18.22.2 [:STATE] < Boolean >
	18.22.3 :TIME<n> <numeric_value>

	18.23 SWEep Subsystem
	18.23.1 :COUNt <numeric_value>
	18.23.2 :DIRection UP|DOWN
	18.23.3 :DWELl <numeric_value>
	18.23.3.1 :AUTO <Boolean>|ONCE

	18.23.4 :GENeration STEPped|ANALog
	18.23.5 :MODE AUTO|MANual
	18.23.6 :OFFSet
	18.23.6.1 :POINts <numeric_value>
	18.23.6.2 :TIME <numeric_value>

	18.23.7 :OREFerence
	18.23.7.1 :LOCation <numeric_value>
	18.23.7.2 :POINts <numeric_value>

	18.23.8 :POINts <numeric_value>
	18.23.9 :REALtime
	18.23.9.1 [:STATe] <Boolean>

	18.23.10 :SPACing LINear|LOGarithmic
	18.23.11 :STEP <numeric_value>
	18.23.12 :TIME <numeric_value>
	18.23.12.1 :AUTO <Boolean>|ONCE
	18.23.12.2 :LLIMit <numeric_value>

	18.23.13 :TINTerval <numeric_value>

	18.24 VOLTage Subsystem
	18.24.1 :AC|[:DC]
	18.24.1.1 :APERture <numeric_value>
	18.24.1.2 :NPLCycles <numeric_value>
	18.24.1.3 :ATTenuation <numeric_value>
	18.24.1.3.1 :AUTO <Boolean>

	18.24.1.4 :PROTection
	18.24.1.4.1 [:LEVel] <numeric_value>
	18.24.1.4.2 :STATe <Boolean>
	18.24.1.4.3 :TRIPped?
	18.24.1.4.4 :CLEar

	18.24.1.5 :RANGe
	18.24.1.5.1 [:UPPer] <numeric_value>
	18.24.1.5.2 :LOWer <numeric_value>
	18.24.1.5.3 :AUTO <Boolean>|ONCE
	18.24.1.5.3.1 :DIRection UP|DOWN|EITHer
	18.24.1.5.3.2 :LLIMit <numeric_value>
	18.24.1.5.3.3 :ULIMit <numeric_value>

	18.24.1.5.4 :OFFSet <numeric_value>
	18.24.1.5.5 :PTPeak <numeric_value>

	18.24.1.6 :REFerence <numeric_value>
	18.24.1.6.1 :STATe <Boolean>

	18.24.1.7 :RESolution <numeric_value>
	18.24.1.7.1 :AUTO <Boolean>|ONCE

	18.24.2 :DETector INTernal | EXTernal

	18.25 WINDow Subsystem
	18.25.1 [:TYPE] RECTangular|UNIForm|FLATtop|HAMMing|HANNing
	18.25.1.1 :KBESsel <numeric_value>
	18.25.1.2 :EXPonential <numeric_value>
	18.25.1.3 :FORCe <numeric_value>

	19 SOURce Subsystem
	19.1 ACCeleration Subsystem
	19.1.1 [:LEVel] <numeric_value>

	19.2 AM Subsystem
	19.2.1 :COUPling AC|DC|GROund
	19.2.2 [:DEPTh] <numeric_value>
	19.2.3 :EXTernal
	19.2.3.1 :COUPling AC|DC|GROund
	19.2.3.2 :IMPedance <numeric_value>
	19.2.3.3 :POLarity NORMal|INVerted

	19.2.4 :INTernal
	19.2.4.1 :FREQuency <numeric_value>

	19.2.5 :MODE
	19.2.6 :POLarity NORMal|INVerted
	19.2.7 :SENSitivity <numeric_value>
	19.2.8 :SOURce EXTernal|INTernal{,EXTernal|,INTernal}
	19.2.9 :STATe <Boolean>
	19.2.10 :TYPE

	19.3 COMBine Subsystem
	19.3.1 :FEED <data_handle>

	19.4 CORRection Subsystem
	19.4.1 [:STATe] <Boolean>
	19.4.2 :COLLect
	19.4.2.1 [:ACQUire]
	19.4.2.2 :METHod PMETer
	19.4.2.3 :SAVE [<name>]

	19.4.3 :CSET
	19.4.3.1 [:SELect] <name>
	19.4.3.2 STATe <Boolean>

	19.4.4 :OFFSet
	19.4.4.1 [:MAGNitude] <numeric_value>
	19.4.4.2 :PHASe <numeric_value>
	19.4.4.3 :STATe <Boolean>

	19.4.5 :LOSS|:GAIN|:SLOPe
	19.4.5.1 :STATe <Boolean>
	19.4.5.2 [:OUTPut]
	19.4.5.2.1 [:MAGNitude] <numeric_value>
	19.4.5.2.2 :PHASe <numeric_value>

	19.4.6 :EDELay
	19.4.6.1 [:TIME] <numeric_value>
	19.4.6.2 :DISTance <numeric_value>
	19.4.6.3 :STATe <Boolean>

	19.4.7 :RVELocity
	19.4.7.1 :MEDIum COAX|WAVeguide
	19.4.7.2 :COAX <numeric_value>
	19.4.7.3 :WAVeguide <numeric_value>
	19.4.7.3.1 :FCUToff <numeric_value>

	19.4.7.4 :STATe <Boolean>

	19.5 CURRent Subsystem
	19.5.1 :ATTenuation <numeric_value>
	19.5.1.1 :AUTO <Boolean>

	19.5.2 :ALC
	19.5.2.1 [:STATe] <Boolean>
	19.5.2.2 :SEARch <Boolean>|ONCE
	19.5.2.3 :SOURce INTernal|DIODe|PMETer|MMHead
	19.5.2.4 :BANDwidth|:BWIDth <numeric_value>
	19.5.2.4.1 :AUTO <Boolean>|ONCE

	19.5.3 :CENTer <numeric_value>
	19.5.4 [:LEVel]
	19.5.4.1 [:IMMediate]
	19.5.4.1.1 [:AMPLitude] <numeric_value>
	19.5.4.1.1.1 :AUTO <Boolean>|ONCE

	19.5.4.1.2 :OFFSet <numeric_value>
	19.5.4.1.3 :HIGH <numeric_value>
	19.5.4.1.4 :LOW <numeric_value>

	19.5.4.2 :TRIGgered
	19.5.4.2.1 [:AMPLitude] <numeric_value>
	19.5.4.2.2 :OFFSet <numeric_value>
	19.5.4.2.3 :HIGH <numeric_value>
	19.5.4.2.4 :LOW <numeric_value>

	19.5.5 :LIMit
	19.5.5.1 [:AMPLitude] <numeric_value>
	19.5.5.2 :OFFSet <numeric_value>
	19.5.5.3 :HIGH <numeric_value>
	19.5.5.4 :LOW <numeric_value>
	19.5.5.5 :STATe <Boolean>

	19.5.6 :MANual <numeric_value>
	19.5.7 :MODE FIXed|SWEep|LIST
	19.5.8 :PROTection
	19.5.8.1 [:LEVel] <numeric_value>
	19.5.8.2 :STATe <Boolean>
	19.5.8.3 :TRIPped?
	19.5.8.4 :CLEar

	19.5.9 :RANGe <numeric_value>
	19.5.9.1 :AUTO <Boolean>|ONCE

	19.5.10 :REFerence <numeric_value>
	19.5.10.1 :STATe <Boolean>

	19.5.11 :SLEW <numeric_value>
	19.5.12 :SPAN <numeric_value>
	19.5.12.1 :FULL
	19.5.12.2 :HOLD <Boolean>
	19.5.12.3 :LINK CENTer|STARt|STOP

	19.5.13 :STARt <numeric_value>
	19.5.14 :STOP <numeric_value>

	19.6 DM Subsystem
	19.6.1 :FORMat <modulation format>
	19.6.2 :STATe <Boolean>
	19.6.3 :SOURce EXTernal|PRBS|CALibrate
	19.6.4 :FILTer
	19.6.4.1 [:SOURce] INTernal|EXTernal
	19.6.4.2 :ICORrection <numeric_value>
	19.6.4.3 :QCORrection <numeric_value>

	19.6.5 :IQRatio
	19.6.5.1 :STATe <Boolean>
	19.6.5.2 [:MAGNitude] <numeric_value>

	19.6.6 :LEAKage
	19.6.6.1 :STATe <Boolean>
	19.6.6.2 [:MAGNitude] <numeric_value>
	19.6.6.3 :ANGLe <numeric_value>

	19.6.7 :QUADrature
	19.6.7.1 :STATe <Boolean>
	19.6.7.2 :ANGLe <numeric_value>

	19.6.8 :COUPling
	19.6.8.1 [:ALL] AC|DC|GROund
	19.6.8.2 :DATA AC|DC|GROund
	19.6.8.3 :CLOCk AC|DC|GROund

	19.6.9 :THReshold
	19.6.9.1 [:ALL] <numeric_value>
	19.6.9.2 :DATA <numeric_value>
	19.6.9.3 :CLOCk <numeric_value>

	19.6.10 :DMODe SERial|PARallel
	19.6.11 :FRAMe
	19.6.11.1 :SOURce INTernal|EXTernal

	19.6.12 :POLarity [:ALL] NORMal|INVerted
	19.6.12.1 :I<n> NORMal|INVerted
	19.6.12.2 :Q<n> NORMal|INVerted
	19.6.12.3 :ICLock NORMal|INVerted
	19.6.12.4 :QCLock NORMal|INVerted

	19.6.13 :CLOCk
	19.6.13.1 :SOURce NONE|INTernal|EXTernal

	19.7 FM Subsystem
	19.7.1 :COUPling AC|DC|GROund
	19.7.2 [:DEViation] <numeric_value>
	19.7.3 :EXTernal
	19.7.3.1 :COUPling AC|DC|GROund
	19.7.3.2 :IMPedance <numeric_value>
	19.7.3.3 :POLarity NORMal|INVerted

	19.7.4 :INTernal
	19.7.4.1 :FREQuency <numeric_value>

	19.7.5 :MODE LOCKed|UNLocked
	19.7.6 :POLarity NORMal|INVerted
	19.7.7 :SENSitivity <numeric_value>
	19.7.8 :SOURce EXTernal|INTernal{,EXTernal|,INTernal}
	19.7.9 :STATe <Boolean>

	19.8 FORCe Subsystem
	19.8.1 :CDOWn
	19.8.1.1 :INITiate
	19.8.1.2 :SOFFset <numeric_value>
	19.8.1.3 :NRUNs <numeric_value>
	19.8.1.4 :RLDerivation
	19.8.1.4.1 :FACCeptance <numeric_value>
	19.8.1.4.2 :INITiate
	19.8.1.4.3 :RMAXimum <numeric_value>
	19.8.1.4.4 :RVERify <numeric_value>

	19.8.2 :CONFigure
	19.8.2.1 :ABRake
	19.8.2.1.1 :GAIN <numeric_value>
	19.8.2.1.2 [:STATe] <Boolean>
	19.8.2.1.3 :THReshold <numeric_value>

	19.8.2.2 :GRADe
	19.8.2.2.1 :LEVel <numeric_value>
	19.8.2.2.2 :SOURce <INTernal|EXTernal>
	19.8.2.2.3 [:STATe] <Boolean>

	19.8.2.3 [:VEHicle]
	19.8.2.3.1 :DCOefficient <numeric_value>,<numeric_value>,<numeric_value>
	19.8.2.3.2 :DINertia <numeric_value>
	19.8.2.3.3 [:STATe] <Boolean>
	19.8.2.3.4 TCOefficient <numeric_value>,<numeric_value>,<numeric_value>
	19.8.2.3.5 :TINertia <numeric_value>
	19.8.2.3.6 :WEIGht <numeric_value>

	19.8.3 :INITiate
	19.8.4 [:LEVel] <numeric_value>
	19.8.5 :RLSimulation
	19.8.5.1 :INITiate

	19.9 FREQuency Subsystem
	19.9.1 :CENTer <numeric_value>
	19.9.2 [:CW|:FIXed] <numeric_value>
	19.9.2.1 :AUTO <Boolean>|ONCE

	19.9.3 :MANual <numeric_value>
	19.9.4 :MODE CW|FIXed|SWEep|LIST|SENSe
	19.9.5 :MULTiplier <numeric_value>
	19.9.6 :OFFSet <numeric_value>
	19.9.7 :RESolution <numeric_value>
	19.9.7.1 AUTO <Boolean> | ONCE

	19.9.8 :SPAN <numeric_value>
	19.9.8.1 :FULL
	19.9.8.2 :HOLD <Boolean>
	19.9.8.3 :LINK CENTer|STARt|STOP

	19.9.9 :STARt <numeric_value>
	19.9.10 :STOP <numeric_value>

	19.10 FUNCtion Subsystem
	19.10.1 [:SHAPe] <source_shape>
	19.10.2 :MODE <source_mode>

	19.11 LIST Subsystem
	19.11.1 :AM
	19.11.1.1 :DEPTh <numeric_value>{,<numeric_value>}
	19.11.1.1.1 :POINts?

	19.11.2 :APRobe <numeric_list>{,<numeric_list>}
	19.11.2.1 :POINts?

	19.11.3 :CONCurrent <numeric_value>{,<numeric_value>}
	19.11.3.1 :AUTO <Boolean>|ONCE
	19.11.3.2 :POINts?

	19.11.4 :CONTrol
	19.11.4.1 :APOWer <Boolean>{,<Boolean>}
	19.11.4.1.1 :POINts?

	19.11.4.2 :BLOWer <Boolean>{,<Boolean>}
	19.11.4.2.1 :POINTs?

	19.11.4.3 :COMPressor <Boolean>{,<Boolean>}
	19.11.4.3.1 :POINTs?

	19.11.5 :COUNt <numeric_value>
	19.11.6 :CURRent <numeric_value>{,<numeric_value>}
	19.11.6.1 :POINts?

	19.11.7 :DIRection UP|DOWN
	19.11.8 :DWELl <numeric_value>{,<numeric_value>}
	19.11.8.1 :POINts?

	19.11.9 :FREQuency <numeric_value>{,<numeric_value>}
	19.11.9.1 :POINts?

	19.11.10 :GENeration DSEQuence|SEQuence|DCONcurrent|CONCurrent
	19.11.11 :PULM
	19.11.11.1 :STATe <Boolean>{,<Boolean>}
	19.11.11.1.1 :POINts?

	19.11.12 :POWer <numeric_value>{,<numeric_value>}
	19.11.12.1 :POINts?

	19.11.13 :RESistance <numeric_value>{,<numeric_value>}
	19.11.13.1 :POINts?

	19.11.14 :RTIMe <numeric_value>{,<numeric_value>}
	19.11.14.1 :POINTs?

	19.11.15 :SEQuence <numeric_value>{,<numeric_value>}
	19.11.15.1 :AUTO <Boolean>|ONCE
	19.11.15.2 :POINts?

	19.11.16 :TEMPerature <numeric_value>{,<numeric_value>}
	19.11.16.1 :POINTs?

	19.11.17 :VOLTage <numeric_value>{,<numeric_value>}
	19.11.17.1 :POINts?

	19.12 MARKer Subsystem
	19.12.1 :AMPLitude <Boolean>
	19.12.2 :AOFF
	19.12.3 :FREQuency <numeric_value>
	19.12.4 :MODE FREQuency|POSition|DELTa
	19.12.5 :POINt <numeric_value>
	19.12.6 :REFerence <numeric_value>
	19.12.7 [:STATe] <Boolean>

	19.13 PHASe Subsystem
	19.13.1 [:ADJust] <numeric_value>
	19.13.1.1 :STEP <numeric_value>

	19.13.2 :SOURce INTernal|EXTernal
	19.13.3 :REFerence

	19.14 PM Subsystem
	19.14.1 [:DEViation] <numeric_value>
	19.14.2 :SENSitivity <numeric_value>
	19.14.3 :MODE LOCKed|UNLocked
	19.14.4 :STATe <Boolean>
	19.14.5 :SOURce EXTernal|INTernal{,EXTernal|,INTernal}
	19.14.6 :COUPling AC|DC|GROund
	19.14.7 :POLarity NORMal|INVerted
	19.14.8 :INTernal
	19.14.8.1 :FREQuency <numeric_value>

	19.14.9 :EXTernal
	19.14.9.1 :IMPedance <numeric_value>
	19.14.9.2 :COUPling AC|DC|GROund
	19.14.9.3 :POLarity NORMal|INVerted

	19.15 POWer Subsystem
	19.15.1 :ATTenuation <numeric_value>
	19.15.1.1 :AUTO <Boolean>

	19.15.2 :ALC
	19.15.2.1 [:STATe] <Boolean>
	19.15.2.2 :SEARch <Boolean>|ONCE
	19.15.2.3 :SOURce INTernal|DIODe|PMETer|MMHead
	19.15.2.4 :BANDwidth|:BWIDth <numeric_value>
	19.15.2.4.1 :AUTO <Boolean>|ONCE

	19.15.3 :CENTer <numeric_value>
	19.15.4 [:LEVel]
	19.15.4.1 [:IMMediate]
	19.15.4.1.1 [:AMPLitude] <numeric_value>
	19.15.4.1.2 :OFFSet <numeric_value>
	19.15.4.1.3 :HIGH <numeric_value>
	19.15.4.1.4 :LOW <numeric_value>

	19.15.4.2 :TRIGgered
	19.15.4.2.1 [:AMPLitude] <numeric_value>
	19.15.4.2.2 :OFFSet <numeric_value>
	19.15.4.2.3 :HIGH <numeric_value>
	19.15.4.2.4 :LOW <numeric_value>

	19.15.5 :LIMit
	19.15.5.1 [:AMPLitude] <numeric_value>
	19.15.5.2 :OFFSet <numeric_value>
	19.15.5.3 :HIGH <numeric_value>
	19.15.5.4 :LOW <numeric_value>
	19.15.5.5 :STATe <Boolean>

	19.15.6 :MANual <numeric_value>
	19.15.7 :MODE FIXed|SWEep|LIST
	19.15.8 :PROTection
	19.15.8.1 [:LEVel] <numeric_value>
	19.15.8.2 :STATe <Boolean>
	19.15.8.3 :TRIPped?
	19.15.8.4 :CLEar

	19.15.9 :RANGe <numeric_value>
	19.15.9.1 :AUTO <Boolean>|ONCE

	19.15.10 :REFerence <numeric_value>
	19.15.10.1 :STATe <Boolean>

	19.15.11 :SLEW <numeric_value>
	19.15.12 :SPAN <numeric_value>
	19.15.12.1 :HOLD <Boolean>
	19.15.12.2 :LINK CENTer|STARt|STOP
	19.15.12.3 :FULL

	19.15.13 :STARt <numeric_value>
	19.15.14 :STOP <numeric_value>

	19.16 PULse Modulation Subsystem
	19.16.1 :EXTernal
	19.16.1.1 :HYSTeresis <numeric_value>
	19.16.1.2 :IMPedance <numeric_value>
	19.16.1.3 :LEVel <numeric_value>
	19.16.1.4 :POLarity NORMal|INVerted

	19.16.2 :INTernal
	19.16.2.1 :FREQuency <numeric_value>

	19.16.3 MODE
	19.16.4 :POLarity NORMal|INVerted
	19.16.5 :SOURce EXTernal|INTernal{,EXTernal|,INTernal}
	19.16.6 :STATe <Boolean>

	19.17 PULSe Subsystem
	19.17.1 :PERiod <numeric_value>
	19.17.2 :WIDTh <numeric_value>
	19.17.3 :DCYCle <numeric_value>
	19.17.4 :HOLD WIDTh|DCYCle
	19.17.5 :DELay <numeric_value>
	19.17.6 :DOUBle
	19.17.6.1 [:STATE] <Boolean>
	19.17.6.2 :DELay <numeric_value>

	19.17.7 :TRANsition
	19.17.7.1 :STATe <Boolean>
	19.17.7.2 [:LEADing] <numeric_value>
	19.17.7.3 :TRAiling <numeric_value>
	19.17.7.3.1 :AUTO <Boolean>|ONCE

	19.17.8 :COUNt <numeric_value>
	19.17.9 :POLarity NORMal|COMPlement|INVerted

	19.18 RESistance Subsystem
	19.18.1 [:LEVel]
	19.18.1.1 [:IMMediate]
	19.18.1.1.1 [:AMPLitude] <numeric_value>
	19.18.1.1.2 :OFFSet <numeric_value>
	19.18.1.1.3 :HIGH <numeric_value>
	19.18.1.1.4 :LOW <numeric_value>

	19.18.1.2 :TRIGgered
	19.18.1.2.1 [:AMPLitude] <numeric_value>
	19.18.1.2.2 :OFFSet <numeric_value>
	19.18.1.2.3 :HIGH <numeric_value>
	19.18.1.2.4 :LOW <numeric_value>

	19.18.2 :LIMit
	19.18.2.1 [:AMPLitude] <numeric_value>
	19.18.2.2 :OFFSet <numeric_value>
	19.18.2.3 :HIGH <numeric_value>
	19.18.2.4 :LOW <numeric_value>

	19.18.3 :PROTection
	19.18.3.1 [:LEVel] <numeric_value>
	19.18.3.2 :STATe <Boolean>
	19.18.3.3 :TRIPped?
	19.18.3.4 :CLEar

	19.18.4 :SLEW <numeric_value>
	19.18.5 :CENTer <numeric_value>
	19.18.6 :SPAN <numeric_value>
	19.18.6.1 :HOLD <Boolean>
	19.18.6.2 :LINK CENTer|STARt|STOP
	19.18.6.3 :FULL

	19.18.7 :STARt <numeric_value>
	19.18.8 :STOP <numeric_value>
	19.18.9 :MANual <numeric_value>
	19.18.10 :MODE FIXed|SWEep|LIST
	19.18.11 :REFerence <numeric_value>
	19.18.11.1 :STATe <Boolean>

	19.18.12 :RANGe <numeric_value>
	19.18.12.1 :AUTO <Boolean>|ONCE

	19.19 ROSCillator Subsystem
	19.19.1 [:INTernal]
	19.19.1.1 :FREQuency <numeric_value>

	19.19.2 :EXTernal
	19.19.2.1 :FREQuency <numeric_value>

	19.19.3 :SOURce INTernal|EXTernal|NONE
	19.19.3.1 :AUTO <Boolean>|ONCE

	19.20 SPEed Subsystem
	19.20.1 :INITiate
	19.20.2 [:LEVel] <numeric_value>
	19.20.3 :SSDLoss
	19.20.3.1 :INITiate
	19.20.3.2 :LATime <numeric_value>
	19.20.3.3 :STIMe <numeric_value>

	19.21 SWEep Subsystem
	19.21.1 :TIME <numeric_value>
	19.21.1.1 :AUTO <Boolean>|ONCE
	19.21.1.2 :LLIMit <numeric_value>

	19.21.2 :DWELl <numeric_value>
	19.21.2.1 :AUTO <Boolean>|ONCE

	19.21.3 :DIRection UP|DOWN
	19.21.4 :MODE AUTO|MANual
	19.21.5 :SPACing LINear|LOGarithmic
	19.21.6 :GENeration STEPped|ANALog
	19.21.7 :STEP <numeric_value>
	19.21.8 :POINts <numeric_value>
	19.21.9 :COUNt <numeric_value>

	19.22 TEMPeratureSubsystem
	19.22.1 :APRobe <numeric_list>
	19.22.2 :DWELl <numeric_value>
	19.22.3 :LCONstants
	19.22.3.1 :DERivative <numeric_value>
	19.22.3.2 [:GAIN] <numeric_value>
	19.22.3.3 :INTegral <numeric_value>

	19.22.4 :MODE FIXed|LIST|PROGram
	19.22.5 :PROTection
	19.22.5.1 [:HIGH]
	19.22.5.1.1 :CLEar
	19.22.5.1.2 [:LEVel] <numeric_value>
	19.22.5.1.3 :STATe <Boolean>
	19.22.5.1.4 :TOUT <numeric_value>
	19.22.5.1.5 :TRIPped?

	19.22.5.2 :LOW
	19.22.5.2.1 :CLEar
	19.22.5.2.2 [:LEVel] <numeric_value>
	19.22.5.2.3 :STATe <Boolean>
	19.22.5.2.4 :TOUT <numeric_value>
	19.22.5.2.5 :TRIPped?

	19.22.6 :RTIMe <numeric_value>
	19.22.7 [:SPOint] <numeric_value>

	19.23 VOLTage Subsystem
	19.23.1 :ATTenuation <numeric_value>
	19.23.1.1 :AUTO <Boolean>

	19.23.2 :ALC
	19.23.2.1 [:STATe] <Boolean>
	19.23.2.2 :SEARch <Boolean>|ONCE
	19.23.2.3 :SOURce INTernal|DIODe|PMETer|MMHead
	19.23.2.4 :BANDwidth|:BWIDth <numeric_value>
	19.23.2.4.1 :AUTO <Boolean>|ONCE

	19.23.3 :CENTer <numeric_value>
	19.23.4 [:LEVel]
	19.23.4.1 [:IMMediate]
	19.23.4.1.1 [:AMPLitude] <numeric_value>
	19.23.4.1.1.1 :AUTO <Boolean>|ONCE

	19.23.4.1.2 :OFFSet <numeric_value>
	19.23.4.1.3 :HIGH <numeric_value>
	19.23.4.1.4 :LOW <numeric_value>

	19.23.4.2 :TRIGgered
	19.23.4.2.1 [:AMPLitude] <numeric_value>
	19.23.4.2.2 :OFFSet <numeric_value>
	19.23.4.2.3 :HIGH <numeric_value>
	19.23.4.2.4 :LOW <numeric_value>

	19.23.5 :LIMit
	19.23.5.1 [:AMPLitude] <numeric_value>
	19.23.5.2 :OFFSet <numeric_value>
	19.23.5.3 :HIGH <numeric_value>
	19.23.5.4 :LOW <numeric_value>
	19.23.5.5 :STATe <Boolean>

	19.23.6 :MANual <numeric_value>
	19.23.7 :MODE FIXed|SWEep|LIST
	19.23.8 :PROTection
	19.23.8.1 [:LEVel] <numeric_value>
	19.23.8.2 :STATe <Boolean>
	19.23.8.3 :TRIPped?
	19.23.8.4 :CLEar

	19.23.9 :RANGe <numeric_value>
	19.23.9.1 :AUTO <Boolean>|ONCE

	19.23.10 :REFerence <numeric_value>
	19.23.10.1 :STATe <Boolean>

	19.23.11 :SLEW <numeric_value>
	19.23.12 :SPAN <numeric_value>
	19.23.12.1 :HOLD <Boolean>
	19.23.12.2 :LINK CENTer|STARt|STOP
	19.23.12.3 :FULL

	19.23.13 :STARt <numeric_value>
	19.23.14 :STOP <numeric_value>

	20 STATus Subsystem
	20.1 :OPERation
	20.1.1 :BIT<n>
	20.1.2 :CONDition?
	20.1.3 :ENABle <NRf> | <non-decimal numeric>
	20.1.4 [:EVENt]?
	20.1.5 :MAP <NRf>,<NRf>
	20.1.6 :NTRansition <NRf> | <non-decimal numeric>
	20.1.7 :PTRansition <NRf> | <non-decimal numeric>

	20.2 :PRESet
	20.3 :QUEStionable
	20.3.1 :BIT<n>
	20.3.2 :CONDition?
	20.3.3 :ENABle <NRf> | <non-decimal numeric>
	20.3.4 [:EVENt]?
	20.3.5 :MAP <NRf>,<NRf>
	20.3.6 :NTRansition <NRf> | <non-decimal numeric>
	20.3.7 :PTRansition <NRf> | <non-decimal numeric>

	21 SYSTem Subsystem
	21.1 :ALTernate <numeric_value>
	21.1.1 :STATe <Boolean>

	21.2 :BEEPer
	21.2.1 :FREQuency <numeric_value>
	21.2.2 [:IMMediate][<frequency>[,<time>[,<volume>]]]
	21.2.3 :STATe <Boolean>
	21.2.4 :TIME <numeric_value>
	21.2.5 :VOLume <numeric_value>

	21.3 :CAPability?
	21.4 :COMMunicate
	21.4.1 :CENTronics
	21.4.1.1 :FEED <data_handle>

	21.4.2 :GPIB
	21.4.2.1 :RDEVice
	21.4.2.1.1 :ADDRess <numeric_value>[,<numeric_value>]
	21.4.2.1.2 :FEED <data_handle>

	21.4.2.2 [:SELF]
	21.4.2.2.1 :ADDRess <numeric_value>[,<numeric_value>]

	21.4.3 :SERial
	21.4.3.1 :CONTrol
	21.4.3.1.1 :DTR ON|OFF|STANdard|IBFull
	21.4.3.1.2 :RTS ON|OFF|STANdard|IBFull|RFR

	21.4.3.2 :FEED <data_handle>
	21.4.3.3 [:RECeive]
	21.4.3.3.1 :BAUD <numeric_value>
	21.4.3.3.2 :BITS <numeric_value>
	21.4.3.3.3 :PACE XON|ACK|NONE
	21.4.3.3.3.1 :THReshold
	21.4.3.3.3.1.1 :STARt <numeric_value>
	21.4.3.3.3.1.2 :STOP <numeric_value>

	21.4.3.3.4 :PARity
	21.4.3.3.4.1 :CHECk <Boolean>
	21.4.3.3.4.2 [:TYPE] EVEN|ODD|ZERO|ONE|NONE|IGNore

	21.4.3.3.5 :SBITs <numeric_value>

	21.4.3.4 :TRANsmit
	21.4.3.4.1 :AUTO <Boolean>
	21.4.3.4.2 :BAUD <numeric_value>
	21.4.3.4.3 :BITS <numeric_value>
	21.4.3.4.4 :DELay <numeric_value>
	21.4.3.4.5 :PACE XON|ACK|NONE
	21.4.3.4.6 :PARity
	21.4.3.4.6.1 [:TYPE] EVEN|ODD|ZERO|ONE|NONE

	21.4.3.4.7 :SBITs <numeric_value>

	21.4.4 :SOCKet <n>
	21.4.4.1 :ADDRess <string>
	21.4.4.2 :CONNect
	21.4.4.3 :DISConnect
	21.4.4.4 :FEED <n> <data_handle>{,<data_handle>}
	21.4.4.4.1 :OCONdition <event_handle>
	21.4.4.4.2 :SCONdition <event_handle>

	21.4.4.5 :LISTen
	21.4.4.6 :PORT <numeric_value>
	21.4.4.7 :TYPE TCP|UDP

	21.5 :CPON <card_destination>|ALL
	21.6 :CTYPe? <card_destination>
	21.7 :DATE <year>,<month>,<day>
	21.8 :ERRor Subsystem
	21.8.1 The Error/Event Queue
	21.8.2 Error/Event numbers
	21.8.3 No Error
	21.8.4 ALL?
	21.8.5 CODE
	21.8.5.1 ALL?
	21.8.5.2 [NEXT]?

	21.8.6 COUNt?
	21.8.7 :ENABle
	21.8.7.1 :ADD <numeric list>
	21.8.7.2 :DELete <numeric list>
	21.8.7.3 [:LIST] <numeric list>

	21.8.8 [NEXT]?
	21.8.9 Command Error
	21.8.10 Execution Error
	21.8.11 Device-Specific Error
	21.8.12 Query Error
	21.8.13 Power On Event
	21.8.14 User Request Event
	21.8.15 Request Control Event
	21.8.16 Operation Complete Event

	21.9 :HELP
	21.9.1 :HEADers?
	21.9.2 :SYNTax? <command_header>

	21.10 :KEY <numeric_value>
	21.10.1 :CATalog
	21.10.2 :DEFine <numeric_value>,<block>[,<string>]
	21.10.3 :DELete <numeric_value>

	21.11 :KLOCk <Boolean>
	21.12 :LANGuage <string>
	21.13 :LFRequency<numeric_value>
	21.13.1 :AUTO <Boolean> | ONCE

	21.14 :LOCK
	21.14.1 :OWNer?
	21.14.2 :RELease
	21.14.3 :REQuest?

	21.15 :PASSword
	21.15.1 :CDISable <password>
	21.15.2 [:CENable] <password>
	21.15.2.1 :STATe?

	21.15.3 :NEW <current password>,<new password>

	21.16 :PRESet
	21.17 :SECurity
	21.17.1 :IMMediate
	21.17.2 [:STATe] <Boolean>

	21.18 :SET <block data>
	21.19 :TIME <hour>,<minute>,<second>
	21.19.1 :TIMer
	21.19.1.1 :COUNt <numeric_value>
	21.19.1.2 [:STATe] <Boolean>

	21.20 :TZONe <hour> [,<minute>]
	21.21 :VERSion?

	22 TEST Subsystem
	23 TRACe | DATA
	23.1 :CATalog?
	23.2 :COPY <trace_name>, (<trace_name> | <data_handle>)
	23.3 [:DATA] <trace_name>,(<block>|<dif_expression>|
	23.3.1 :LINE <trace_name>,<numeric_value>,<numeric_value>,
	23.3.2 :PREamble? <trace_name>
	23.3.3 :VALue <trace_name>,<numeric_value>,<numeric_value>

	23.4 :DEFine <trace_name>[,(<numeric_value>|<trace_name>)]
	23.5 :DELete
	23.5.1 [:NAME] <trace_name>
	23.5.2 :ALL

	23.6 :FEED <trace_name>, (<data_handle> | NONE)
	23.6.1 :CONTrol <trace_name>, ALWays | OCONdition | NEXT | NEVer
	23.6.2 :OCONdition <trace_name>, <condition_expr>

	23.7 :FREE?
	23.8 :POINts <trace_name>[,<numeric_value>]
	23.8.1 :AUTO <trace_name>,(<Boolean>|ONCE)

	24 TRIGger Subsystem
	24.1 ARM-TRIGger Model
	24.2 Model Layers
	24.2.1 IDLE State
	24.2.2 Initiated
	24.2.3 Event Detection Layer

	24.3 Sequence Event Use
	24.4 Expanded Capability Trigger Model
	24.4.1 LAYer Nomenclature
	24.4.2 Standard SEQuences
	24.4.3 Subservient Sequences

	24.5 ABORt
	24.6 ARM
	24.6.1 [:SEQuence]
	24.6.1.1 :DEFine <sequence_name>
	24.6.1.1.1 MGRules <Boolean>

	24.6.1.2 [:LAYer]
	24.6.1.2.1 :COUNt <numeric_value>
	24.6.1.2.2 :COUPling AC|DC
	24.6.1.2.3 :DELay <numeric_value>
	24.6.1.2.3.1 :AUTO <Boolean>|ONCE

	24.6.1.2.4 :ECL
	24.6.1.2.5 :ECOunt <numeric_value>
	24.6.1.2.6 :FILTer
	24.6.1.2.6.1 :HPASs
	24.6.1.2.6.1.1 :FREQuency <numeric_value>
	24.6.1.2.6.1.2 [:STATe] <Boolean>

	24.6.1.2.6.2 [:LPASs]
	24.6.1.2.6.2.1 :FREQuency <numeric_value>
	24.6.1.2.6.2.2 [:STATe] <Boolean>

	24.6.1.2.7 :HYSTeresis <numeric_value>
	24.6.1.2.8 [:IMMediate]
	24.6.1.2.9 :LEVel <numeric_value>
	24.6.1.2.9.1 :AUTO <Boolean> | ONCE

	24.6.1.2.10 :LINK <event_handle>
	24.6.1.2.11 PROTocol
	24.6.1.2.11.1 VXI SYNChronous|SSYNchronous|ASYNchronous

	24.6.1.2.12 :SIGNal
	24.6.1.2.13 :SLOPe POSitive|NEGative|EITHer
	24.6.1.2.14 :SOURce <parameter>
	24.6.1.2.15 :TIMer <numeric_value>
	24.6.1.2.16 :TTL
	24.6.1.2.17 :TYPE EDGE | VIDeo
	24.6.1.2.18 :VIDeo
	24.6.1.2.18.1 :FIELd
	24.6.1.2.18.1.1 [:NUMBer] <numeric_value>
	24.6.1.2.18.1.2 :SELect ODD | EVEN | ALL | NUMBer

	24.6.1.2.18.2 :FORMat
	24.6.1.2.18.2.1 :LPFRame <numeric_variable>

	24.6.1.2.18.3 :LINE
	24.6.1.2.18.3.1 [:NUMBer] <numeric_value>
	24.6.1.2.18.3.2 :SELect ALL | NUMBer

	24.6.1.2.18.4 :SSIGnal
	24.6.1.2.18.4.1 :POLarity POSitive | NEGative

	24.7 INITiate
	24.7.1 :CONTinuous <Boolean>
	24.7.1.1 [:ALL] <Boolean>
	24.7.1.2 :NAME <sequence_name>,<Boolean>
	24.7.1.3 :SEQuence <Boolean>

	24.7.2 [:IMMediate]
	24.7.2.1 [:ALL]
	24.7.2.2 :NAME <sequence_name>
	24.7.2.3 :SEQuence

	24.7.3 :POFLag INCLude | EXCLude

	24.8 TRIGger
	24.8.1 [:SEQuence]
	24.8.1.1 :ATRigger
	24.8.1.1.1 [:STATe] <Boolean>

	24.8.1.2 :COUNt <numeric_value>
	24.8.1.3 :COUPling AC|DC
	24.8.1.4 : DEFine <sequence_name>
	24.8.1.4.1 MGRules <Boolean>

	24.8.1.5 :DELay <numeric_value>
	24.8.1.5.1 :AUTO <Boolean>|ONCE

	24.8.1.6 :ECL
	24.8.1.7 :ECOunt <numeric_value>
	24.8.1.8 :FILTer
	24.8.1.8.1 :HPASs
	24.8.1.8.1.1 :FREQuency <numeric_value>
	24.8.1.8.1.2 [:STATe] <Boolean>

	24.8.1.8.2 [:LPASs]
	24.8.1.8.2.1 :FREQuency <numeric_value>
	24.8.1.8.2.2 [:STATe] <Boolean>

	24.8.1.9 :HOLDoff <numeric_value>
	24.8.1.10 :HYSTeresis <numeric_value>
	24.8.1.11 [:IMMediate]
	24.8.1.12 :LEVel <numeric_value>
	24.8.1.12.1 :AUTO <Boolean> | ONCE

	24.8.1.13 :LINK <event_handle>
	24.8.1.14 :PROTocol
	24.8.1.14.1 :VXI SYNChronous|SSYNchronous|ASYNchronous

	24.8.1.15 :SIGNal
	24.8.1.16 :SLOPe POSitive|NEGative|EITHer
	24.8.1.17 :SOURce <parameter>
	24.8.1.18 :TIMer <numeric_value>
	24.8.1.19 :TTL
	24.8.1.20 :TYPE EDGE | VIDeo
	24.8.1.21 :VIDeo
	24.8.1.21.1 :FIELd
	24.8.1.21.1.1 [:NUMBer] <numeric_value>
	24.8.1.21.1.2 :SELect ODD | EVEN | ALL | NUMBer

	24.8.1.21.2 :FORMat
	24.8.1.21.2.1 :LPFRame <numeric_variable>

	24.8.1.21.3 :LINE
	24.8.1.21.3.1 [:NUMBer] <numeric_value>
	24.8.1.21.3.2 :SELect ALL | NUMBer

	24.8.1.21.4 :SSIGnal
	24.8.1.21.4.1 :POLarity POSitive | NEGative

	25 UNIT Subsystem
	25.1 :ANGLe DEG|RAD
	25.2 :CURRent, :POWer, and :VOLTage
	25.3 :TEMPerature C|CEL|F|FAR|K
	25.4 :TIME HOUR|MINute|SECond

	26 VXI Subsystem
	26.1 :CONFigure
	26.1.1 :DNUMber?
	26.1.2 :HIERarchy?
	26.1.2.1 :ALL?
	26.1.2.2 :VERBose?
	26.1.2.2.1 :ALL?

	26.1.3 :INFormation?
	26.1.3.1 :ALL?
	26.1.3.2 :VERBose?
	26.1.3.3 :ALL?

	26.1.4 :LADDress?
	26.1.5 :NUMBer?

	26.2 REGister
	26.2.1 :READ? <register>
	26.2.1.1 :VERBose? <register>

	26.2.2 :WRITe (<numeric_value> | <register>), <data>

	26.3 :RESet?
	26.3.1 :VERBose?

	26.4 :SELect <logical_address>
	26.5 :WSPRotocol
	26.5.1 :COMMand
	26.5.1.1 [:ANY] <data>
	26.5.1.2 :AHLine <hand_id>,<line_number>
	26.5.1.3 :AILine <int_id>,<line_number>
	26.5.1.4 :AMControl <response_mask>
	26.5.1.5 :ANO
	26.5.1.6 :BAVailable <Boolean>,<byte>
	26.5.1.7 :BNO <Boolean>
	26.5.1.8 :BRQ
	26.5.1.9 :CEVent <Boolean>,<event_number>
	26.5.1.10 :CLR
	26.5.1.11 :CLOCk
	26.5.1.12 :CRESponse <response_mask>
	26.5.1.13 :ENO
	26.5.1.14 :GDEVice <logical_address>
	26.5.1.15 :ICOMmander <logical_address>
	26.5.1.16 :RDEVice <logical_address>
	26.5.1.17 :RHANdlers
	26.5.1.18 :RHLine <hand_id>
	26.5.1.19 :RILine <int_id>
	26.5.1.20 :RINTerrupter
	26.5.1.21 :RMODid
	26.5.1.22 :RPERror
	26.5.1.23 :RPRotocol
	26.5.1.24 :RSTB
	26.5.1.25 :RSARea
	26.5.1.26 :SLModid <Boolean>,<MODID 6-0>
	26.5.1.27 :SLOCk
	26.5.1.28 :SUModid <Boolean>,<MODID 12-7>
	26.5.1.29 :TRIGger

	26.5.2 :MESSage
	26.5.2.1 :RECeive? <count>|<terminator>
	26.5.2.2 :SEND <message_string> [,(END|NEND)]

	26.5.3 :QUERy
	26.5.3.1 [:ANY]? <data>
	26.5.3.2 :AHLine? <hand_id>,<line_number>
	26.5.3.3 :AILine? <int_id>,<line_number>
	26.5.3.4 :AMControl? <response_mask>
	26.5.3.5 :ANO?
	26.5.3.6 :BNO? <Boolean>
	26.5.3.7 :BRQ?
	26.5.3.8 :CEVent? <Boolean>,<event_number>
	26.5.3.9 :CRESponse? <response_mask>
	26.5.3.10 :ENO?
	26.5.3.11 :RDEVice? <logical_address>
	26.5.3.12 :RHANdlers?
	26.5.3.13 :RHLine? <hand_id>
	26.5.3.14 :RILine? <int_id>
	26.5.3.15 :RINTerrupter?
	26.5.3.16 :RMODid?
	26.5.3.17 :RPERror?
	26.5.3.18 :RPRotocol?
	26.5.3.19 :RSTB?
	26.5.3.20 :RSARea?
	26.5.3.21 :SLModid? <Boolean>,<MODID 6-0>
	26.5.3.22 :SUModid? <Boolean>,<MODID 12-7>

	26.5.4 :RESPonse?

	Index

	Data Interchange Format
	Table of Contents
	1 Introduction
	1.1 Overview
	1.2 Defined Blocks
	1.3 Implicit and Explicit Dimensions

	2 Style
	3 Syntax
	3.1 Character Set
	3.2 White Space
	3.3 Blocks, Block Modifiers, and Keywords
	3.4 Value Types
	3.4.1 <Numeric>
	3.4.2 <+Numeric>
	3.4.3 <0+Numeric>
	3.4.4 <NR1>
	3.4.5 <+NR1>
	3.4.6 <0+NR1>
	3.4.7 <Block>
	3.4.8 <String>
	3.4.9 <Label>
	3.4.10 Enumerated Set

	4 Grammar
	4.1 Grammar Notation
	4.1.1 Non-terminals
	4.1.2 Pseudo-terminals
	4.1.3 Meta-symbols
	4.1.4 Terminal Symbols

	4.2 Grammar Description
	4.3 Required Blocks
	4.4 Required Order
	4.5 Unrecognized Keywords and Blocks

	5 Data Format Extensions
	5.1 Extensions
	5.2 Enhancements
	5.3 Extension Example

	6 Block Descriptions
	6.1 Top Level Block Organization
	6.2 DATA
	6.2.1 NOTE
	6.2.2 DELTa
	6.2.2.1 NOTE
	6.2.2.2 DIMension
	6.2.2.2.1 SCALe
	6.2.2.2.2 OFFSet
	6.2.2.2.3 SIZE

	6.2.2.3 DATE
	6.2.2.4 TIME

	6.2.3 CURVe
	6.2.3.1 NOTE
	6.2.3.2 NAME
	6.2.3.3 CTYPe
	6.2.3.4 VALues
	6.2.3.5 CSUM

	6.2.4 WAVeform
	6.2.4.1 NOTE
	6.2.4.2 NAME
	6.2.4.3 TRACe
	6.2.4.4 HLMethod
	6.2.4.5 HIGH
	6.2.4.6 LOW
	6.2.4.7 REFerence
	6.2.4.7.1 HIGH
	6.2.4.7.2 LOW
	6.2.4.7.3 MID
	6.2.4.7.4 METHod

	6.2.4.8 AMPLitude
	6.2.4.9 PWIDth
	6.2.4.10 NWIDth
	6.2.4.11 PERiod
	6.2.4.12 FREQuency
	6.2.4.13 PDUTycycle | DCYCle
	6.2.4.14 NDUTycycle
	6.2.4.15 RISE
	6.2.4.15.1 TIME
	6.2.4.15.2 OVERshoot
	6.2.4.15.3 PREShoot

	6.2.4.16 FALL
	6.2.4.16.1 TIME
	6.2.4.16.2 OVERshoot
	6.2.4.16.3 PREShoot

	6.2.4.17 MAXimum
	6.2.4.18 MINimum
	6.2.4.19 TMAXimum
	6.2.4.20 TMINimum
	6.2.4.21 MEAN
	6.2.4.22 RMS
	6.2.4.23 SDEViation
	6.2.4.24 PTPeak
	6.2.4.25 CYCLe
	6.2.4.25.1 COUNt
	6.2.4.25.2 MEAN
	6.2.4.25.3 RMS
	6.2.4.25.4 SDEViation

	6.2.5 MEASurement
	6.2.5.1 NOTE
	6.2.5.2 NAME
	6.2.5.3 UNITs
	6.2.5.4 TYPE
	6.2.5.5 TRACe
	6.2.5.6 LOCation
	6.2.5.6.1 LABel
	6.2.5.6.2 INDex

	6.2.5.7 VALues

	6.2.6 DATA Block Example

	6.3 DIMension
	6.3.1 NOTE
	6.3.2 NAME
	6.3.3 TYPE
	6.3.4 SCALe
	6.3.5 OFFSet
	6.3.6 SIZE
	6.3.7 UNITs
	6.3.8 ENCode
	6.3.9 DIMension Block Example

	6.4 ENCode
	6.4.1 NOTE
	6.4.2 FORMat
	6.4.3 NVALue
	6.4.4 ORANge
	6.4.5 URANge
	6.4.6 HRANge
	6.4.7 LRANge
	6.4.8 RESolution
	6.4.9 ENCode Block Example

	6.5 IDENtify
	6.5.1 NOTE
	6.5.2 NAME
	6.5.3 TECHnician
	6.5.4 PROJect
	6.5.5 DATE
	6.5.6 TIME
	6.5.7 UUT
	6.5.7.1 NAME
	6.5.7.2 ID
	6.5.7.3 DESign

	6.5.8 TEST
	6.5.8.1 NAME
	6.5.8.2 SERies
	6.5.8.3 NUMBer

	6.5.9 HISTory
	6.5.10 IDENtify Block Example

	6.6 ORDer
	6.6.1 NOTE
	6.6.2 BY
	6.6.3 Examples

	6.7 REMark
	6.7.1 NOTE
	6.7.2 REMark Block Example

	6.8 DIF
	6.8.1 NOTE
	6.8.2 VERSion
	6.8.3 SCOPe
	6.8.4 DIF Block Example

	6.9 TRACe
	6.9.1 NOTE
	6.9.2 NAME
	6.9.3 SYMMetry
	6.9.4 INDependent
	6.9.4.1 LABel
	6.9.4.2 STARt
	6.9.4.3 STOP

	6.9.5 DEPendent
	6.9.5.1 LABel

	6.9.6 TRACe Block Example

	6.10 VIEW
	6.10.1 NOTE
	6.10.2 NAME
	6.10.3 ENVelope
	6.10.3.1 UPPer
	6.10.3.2 LOWer
	6.10.3.3 FUNCtion

	6.10.4 RCOMPlex
	6.10.4.1 REAL
	6.10.4.2 IMAGinary

	6.10.5 PCOMplex
	6.10.5.1 MAGNitude
	6.10.5.2 PHASe

	6.10.6 VIEW BLOCK EXAMPLE

	7 Data Format Example
	Index

	Instrument Classes
	Table of Contents
	1 Introduction
	1.1 Scope
	1.2 Definition of Terms
	1.3 Purpose
	1.3.1 Guiding Designers
	1.3.2 Achieving Consistency

	1.4 Instrument Classification
	1.4.1 Syntax
	1.4.2 Examples

	1.5 Compliance
	1.6 Chapter Organization

	2 Chassis Dynamometers
	2.1 Base Functionality
	2.1.1 Base Measurement Instructions
	2.1.2 Base Device-oriented Functions
	2.1.2.1 CALibration subsystem
	2.1.2.2 CONTrol subsystem
	2.1.2.3 MEMory subsystem
	2.1.2.4 SENSe subsystem
	2.1.2.5 SOURce subsystem

	2.1.3 STATus Subsystem
	2.1.3.1 OPERation
	2.1.3.1.1 CDYNo:CONDition?<16 bit integer word>

	2.1.3.2 QUEStionable
	2.1.3.2.1 CDYNo:CONDition?<16 bit integer word>

	2.2 Additional Functionality
	2.3 Programming Examples
	2.3.1 Coastdown
	2.3.2 Road Load Simulation

	2.4 New Commands for this Instrument Class
	2.4.1 Dynamometer CALibration Subsystem
	2.4.1.1 :BINertia
	2.4.1.1.1 :AVERage?
	2.4.1.1.2 :HSPeed <numeric_value>
	2.4.1.1.3 :INITiate
	2.4.1.1.4 :LSPeed <numeric_value>
	2.4.1.1.5 :NRUNs <numeric_value>
	2.4.1.1.6 :SDEViation?
	2.4.1.1.7 :UPDate

	2.4.1.2 :PLOSs
	2.4.1.2.1 :APCoeff <numeric_value >,numeric_value>,<numeric_value>...
	2.4.1.2.2 :INITiate
	2.4.1.2.3 :LATime
	2.4.1.2.4 :STIMe <numeric_value>
	2.4.1.2.5 :UPDate

	2.4.1.3 :WARMup
	2.4.1.3.1 :INITiate
	2.4.1.3.2 :SPEed <numeric_value>
	2.4.1.3.3 :TIMeout <numeric_value>

	2.4.1.4 :ZERO
	2.4.1.4.1 :FSENsor
	2.4.1.4.1.1 :INITiate
	2.4.1.4.1.2 :LATime
	2.4.1.4.1.3 :LEVel?
	2.4.1.4.1.4 :SPEed <numeric_value>
	2.4.1.4.1.5 :STIMe <numeric_value>
	2.4.1.4.1.6 :UPDate

	2.4.2 DIAGnostic Subsystem
	2.4.3 MEMory Subsystem
	2.4.3.1 :ARATe
	2.4.3.1.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.1.1.1 :POINts?

	2.4.3.2 :CINertia
	2.4.3.2.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.2.1.1 :POINts?

	2.4.3.3 :DRATe
	2.4.3.3.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.3.1.1 :POINts?

	2.4.3.4 :FORCe
	2.4.3.4.1 :AACCeleration
	2.4.3.4.1.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.4.1.1.1 :POINts?

	2.4.3.4.2 :ADECeleration
	2.4.3.4.2.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.4.2.1.1 :POINts?

	2.4.3.4.3 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.4.3.1 :POINts?

	2.4.3.4.4 ZOFFset
	2.4.3.4.4.1 [:MAGNitude]

	2.4.3.5 :DLOSs
	2.4.3.5.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.5.1.1 :POINts?

	2.4.3.6 :PCOefficients<n>
	2.4.3.6.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.6.1.1 :POINts?

	2.4.3.7 :SPEed
	2.4.3.7.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.7.1.1 :POINts?

	2.4.3.7.2 :STARt
	2.4.3.7.2.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.7.2.1.1 :POINts?

	2.4.3.7.3 :STOP
	2.4.3.7.3.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.7.3.1.1 :POINts?

	2.4.3.8 :TIME
	2.4.3.8.1 :ACCeleration
	2.4.3.8.1.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.8.1.1.1 :POINts?

	2.4.3.8.2 :DECeleration
	2.4.3.8.2.1 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.8.2.1.1 :POINts?

	2.4.3.8.3 [:MAGNitude] <numeric_value>{,<numeric_value>}
	2.4.3.8.3.1 :POINts?

	3 Digital Meters
	3.1 Base Functionality
	3.1.1 Base Measurement Instructions
	3.1.1.1 Effects of MEASure Query and CONFigure
	3.1.1.2 The <expected_value> parameter
	3.1.1.3 The <resolution> parameter

	3.1.2 Base Device-oriented Functions
	3.1.2.1 FORMat Subsystem
	3.1.2.2 SENSe subsystem
	3.1.2.3 TRIGger subsystem

	3.1.3 Base Status Reporting
	3.1.3.1 QUEStionable Status
	3.1.3.2 OPERation Status

	3.2 Additional functionality
	3.2.1 Extended Trigger
	3.2.1.1 ETRIGGER Measurement Instructions
	3.2.1.2 ETRIGGER Device-oriented Functions
	3.2.1.2.1 TRIGger Subsystem

	3.2.1.3 ETRIGGER Status Reporting

	3.2.2 Multiple Terminals
	3.2.2.1 TERMINALS Measurement Instructions
	3.2.2.2 TERMINALS Device-oriented Functions
	3.2.2.2.1 ROUTe Subsystem

	3.2.2.3 TERMINALS Status Reporting

	3.2.3 Offset Compensation
	3.2.3.1 OCOMPENSATED Measurement Instructions
	3.2.3.2 OCOMPENSATED Device-oriented Functions
	3.2.3.2.1 SENSe Subsystem

	3.2.3.3 OCOMPENSATED Status Reporting

	3.3 Various Meter Classes
	3.3.1 DC Voltmeter
	3.3.1.1 Range
	3.3.1.2 SENSe Commands

	3.3.2 AC RMS Voltmeter
	3.3.2.1 Range
	3.3.2.2 SENSe Commands

	3.3.3 Ohmmeter
	3.3.3.1 SENSe Commands
	3.3.3.2 4-wire Ohmmeter
	3.3.3.3 SENSe Commands

	3.3.4 DC Ammeter
	3.3.4.1 Range
	3.3.4.2 SENSe Commands

	3.3.5 AC RMS Ammeter
	3.3.5.1 Range
	3.3.5.2 SENSe Commands

	3.4 Programming Examples
	3.4.1 Simple Measurement
	3.4.2 Time Critical Measurement
	3.4.3 Multiple Measurements

	4 Digitizers
	4.1 Base Functionality
	4.1.1 Base Measurement Instruction
	4.1.2 Base Device-oriented Functions
	4.1.2.1 Input functions
	4.1.2.2 SENSe amplitude functions
	4.1.2.3 SENSE timebase functions
	4.1.2.4 SENSe One-of-N Function Control
	4.1.2.5 Formatting
	4.1.2.6 Trigger functions

	4.1.3 Base Status Reporting
	4.1.3.1 QUEStionable
	4.1.3.2 OPERation

	4.2 Programming Example

	5 Emissions Benches
	5.1 Base Functionality
	5.1.1 Base Measurement Instructions
	5.1.2 Base Device-Oriented Functions
	5.1.2.1 CALibration subsystem
	5.1.2.2 CONTrol subsystem
	5.1.2.3 DIAGnostic subsystem
	5.1.2.4 INSTrument subsystem
	5.1.2.5 MEMory subsystem
	5.1.2.6 ROUTe subsystem
	5.1.2.7 SENSe subsystem
	5.1.2.8 SYSTem subsystem
	5.1.2.9 TRIGger subsystem

	5.1.3 Base Status Reporting
	5.1.3.1 OPERation Status
	5.1.3.2 QUEStionable Status

	5.2 Additional functionality
	5.3 Examples
	5.3.1 Zero/Span/Zero Procedure
	5.3.2 Bag Read Procedure
	5.3.3 Start of Diesel Test Procedure

	5.4 CALibration Subsystem (Bench Commands)
	5.4.1 :LINearize
	5.4.1.1 :ACCept

	5.4.2 :ACQuire
	5.4.2.1 :AUTO ONCE
	5.4.2.2 :CALCulate AUTO|POLYnomial<n>|SRATional<n>
	5.4.2.3 :CURVe
	5.4.2.3.1 [:TYPE] POLYnomial<n> | SRATional<n>, <numeric_value>{,<numeric_value>}
	5.4.2.3.2 :ZFORce <Boolean>

	5.4.2.4 :VERify
	5.4.2.4.1 :ACQuire
	5.4.2.4.2 :TOLerance <numeric_value>
	5.4.2.4.3 :TYPE

	5.5 DIAGnostic Subsystem (Bench Commands)
	5.5.1 :HUP
	5.5.1.1 :ACQuire
	5.5.1.2 :CALCulate

	5.5.2 :LEAK
	5.5.2.1 :ACQuire
	5.5.2.2 :CALCulate

	5.5.3 :NEFFiciency
	5.5.3.1 :ACQuire
	5.5.3.2 :CALCulate

	6 Emission Test Cell
	6.1 Base Functionality
	6.1.1 Base Measurement Instructions
	6.1.2 Base Device-oriented Functions
	6.1.2.1 SYSTem subsystem
	6.1.2.2 TRIGger subsystem

	6.2 Additional Functionality
	6.3 Programming Examples
	6.3.1 Instrument Capability and Version Example
	6.3.2 Command Channel Example
	6.3.3 Two Channel Example
	6.3.4 Returning Data using a Table Example
	6.3.5 Time Example

	7 Power Supplies
	7.1 Base Functionality
	7.1.1 Base Measurement Instructions
	7.1.2 Base Device-oriented Functions
	7.1.2.1 Outputs
	7.1.2.2 SOURce subsystem

	7.1.3 Base Status Reporting
	7.1.3.1 QUEStionable
	7.1.3.2 OPERation

	7.2 Additional Functionality
	7.2.1 Measurement capability
	7.2.1.1 MEASURE Measurement Instructions
	7.2.1.2 MEASURE Device-oriented Functions
	7.2.1.3 MEASURE Status Reporting

	7.2.2 Multiple supplies
	7.2.2.1 MULTIPLE Measurement Instructions
	7.2.2.2 MULTIPLE Device-oriented Functions
	7.2.2.3 MULTIPLE Status Reporting

	7.2.3 Triggering Capability
	7.2.3.1 TRIGGER Measurement Instructions
	7.2.3.2 TRIGGER Device-oriented Functions
	7.2.3.3 TRIGGER Status Reporting

	7.3 Programming Examples
	7.3.1 Simple
	7.3.2 Time Critical
	7.3.3 Level Verification
	7.3.4 Multiple Supplies

	8 RF & Microwave Sources
	8.1 Base Functionality
	8.1.1 Base Measurement Instructions
	8.1.2 Base Device-oriented Functions
	8.1.2.1 SOURce subsystem
	8.1.2.2 OUTPut Subsystem
	8.1.2.3 UNIT Subsystem

	8.1.3 Base Status Reporting
	8.1.3.1 QUEStionable Status
	8.1.3.2 OPERation Status

	8.2 Additional functionality
	8.2.1 Amplitude Modulation
	8.2.1.1 AM Measurement Instructions
	8.2.1.2 AM Device Oriented Commands
	8.2.1.3 AM Status Reporting

	8.2.2 Frequency Modulation
	8.2.2.1 FM Measurement Instructions
	8.2.2.2 FM Device Oriented Commands
	8.2.2.3 Status Reporting

	8.2.3 Pulse Modulation
	8.2.3.1 PULM Measurement Instructions
	8.2.3.2 PULM Device Oriented Commands
	8.2.3.3 PULM Status Reporting

	8.2.4 Analog Frequency Sweeping
	8.2.4.1 FASWEEP Measurement Instructions
	8.2.4.2 FASWEEP Device Oriented Commands
	8.2.4.3 FASWEEP Status Reporting

	8.2.5 Stepped Frequency Sweeping
	8.2.5.1 FSSWEEP Measurement Instructions
	8.2.5.2 FSSWEEP Device Oriented Commands
	8.2.5.3 FSSWEEP Status Reporting

	8.2.6 Analog Power Sweeping
	8.2.6.1 PASWEEP Measurement Instructions
	8.2.6.2 PASWEEP Device Oriented Commands
	8.2.6.3 PASWEEP Status Reporting

	8.2.7 Stepped Power Sweeping
	8.2.7.1 PSSWEEP Measurement Instructions
	8.2.7.2 PSSWEEP Device Oriented Commands
	8.2.7.3 PSSWEEP Status Reporting

	8.2.8 Frequency List
	8.2.8.1 FLIST Measurement Instructions
	8.2.8.2 FLIST Device Oriented Commands
	8.2.8.3 FLIST Status Reporting

	8.2.9 Marker Function
	8.2.9.1 MARKER Measurement Instructions
	8.2.9.2 MARKER Device Oriented Commands
	8.2.9.3 MARKER Status Reporting

	8.2.10 Trigger Function
	8.2.10.1 TRIGGER Measurement Instructions
	8.2.10.2 TRIGGER Device Oriented Commands
	8.2.10.3 TRIGGER Status Reporting

	8.2.11 Reference Oscillator
	8.2.11.1 REFERENCE Measurement Instructions
	8.2.11.2 REFERENCE Device Oriented Commands
	8.2.11.3 REFERENCE Status Reporting

	8.3 Programming Examples
	8.3.1 Simple
	8.3.2 Modulation
	8.3.3 Analog Sweep
	8.3.4 Triggered Analog Sweep
	8.3.5 Sweep with Marker
	8.3.6 Reference oscillator

	9 Signal Switchers
	9.1 Base Functionality
	9.1.1 Base Measurement Instructions
	9.1.2 Base Device-oriented Functions
	9.1.2.1 ROUTe Subsystem

	9.1.3 Base Status Reporting

	9.2 Additional Functionality
	9.2.1 Scanning
	9.2.1.1 SCAN Measurement Instructions
	9.2.1.2 SCAN Device-oriented Functions
	9.2.1.2.1 ROUTe Subsystem
	9.2.1.2.2 TRIGger Subsystem

	9.2.1.3 SCAN Status Reporting

	9.2.2 Extended Trigger
	9.2.2.1 ETRIGGER Measurement Instructions
	9.2.2.2 ETRIGGER Device-oriented Functions
	9.2.2.2.1 TRIGger Subsystem

	9.2.2.3 ETRIGGER Status Reporting

	9.3 Programming Examples
	9.3.1 Making and Breaking Connections
	9.3.2 Programmed Connection Sequences

