

IEEE Std 488.2-1992

(Revision of IEEE Std 488.2-1987)

IEEE Standard Codes, Formats,
Protocols, and Common Commands for
Use With IEEE Std 488.1-1987, IEEE
Standard Digital Interface for
Programmable Instrumentation

Sponsor

Automated Instrumentation Committee
of the
IEEE Instrumentation and Measurement Society

Approved June 18, 1992

IEEE Standards Board

Approved January 4, 1993

American National Standards Institute

Abstract:

A set of codes and formats to be used by devices connected via the IEEE 488.1 bus is specified.
This standard also defines communication protocols that are necessary to effect application-independent
and device-dependent message exchanges, and further defines common commands and characteristics
useful in instrument system applications. It is intended to apply to small-scale to medium-scale instrument
systems comprised mainly of measurement, stimulus, and interconnect devices outside the scope of the
instrument system environment. IEEE 488.1 subsets, standard message-handling protocols including error
handling, unambiguous program and response-message syntactic structures, common commands useful
in a wide range of instrument system applications, standard status reporting structures, and system
configuration and synchronization protocols are covered.

Keywords:

controller, device, system, system bus, system interface

Copyright © 1992 by The Institute of Electrical and Electronics Engineers, Inc.

345 East 47th Street, New York, NY 10017-2394, USA

ISBN 1-55937-238-9

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the
prior written permission of the publisher.

IEEE Standards

 documents are developed within the Technical Committees of the IEEE Societies and the Standards
Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a
consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change
brought about through developments in the state of the art and comments received from users of the standard. Every
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason
IEEE and the members of its technical committees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE Standards documents are adopted by the Institute of Electrical and Electronics Engineers without regard to
whether their adoption may involve patents on articles, materials, or processes. Such adoption does not assume
any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards
documents.

iii

Foreword

(This foreword is not a part of IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common Commands for Use
With IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation.)

IEEE Std 488 has been in existence for seventeen years, during which time its power and versatility have been proven
decisively. Probably its most important contribution to test system automation has been the standardization of system
interconnection and communication. A large and growing base of design and application experience has allowed this
further standardization of the IEEE Std 488 bus. The additional standardization sought by the original IEEE Std 488.2-
1987 was founded on the premise that the existing investment in IEEE Std 488 resources must be protected. Thus,
IEEE Std 488.2 describes functionality that complements and is based upon IEEE Std 488.1-1987. Every effort has
been made to reap the benefits of standardization without limiting the freedom and creativity of the device designer.

Since the introduction of IEEE Std 488-1978, individual manufacturers of devices have developed internal standards
that address the code, format, protocol, syntax, and semantic concepts. System integrators have identified
requirements useful in configuring systems. All these sources have been used and refined in developing this standard.

This revision of the original 1987 document contains many minor changes, too numerous to list, plus a few major
changes. The changes are intended to be optional additions and clarifications to the 1987 standard. The goal of the
working group was to allow devices and controllers designed in compliance with IEEE Std 488.2-1978 to remain in
compliance with IEEE Std 488.2-1992.

Major new features include the addition of an <EXPRESSION RESPONSE DATA> element; the expanded use of
<SUFFIX PROGRAM DATA>; the addition of the *RMC, Remove Individual Macro Command; the addition of the
*SDS, Save Default Device Settings Command; the modification of *DDT, *DMC, *PUD, and *RDT commands to
accept block or string data; and a new appendix on Reset Guidelines. There are many clarifications including a macro
expansion algorithm; the removal of ambiguity in the definition of suffixes; and the scope of *LRN?, *SAV, *RCL, and
*RST, to name a few.

The hope is that this new revision, incorporating five years of experience with IEEE Std 488.2-1987, will provide an
even more solid foundation for the standardized communication of test and measurement systems.

At the time that this standard was completed, the working group had the following membership:

Bob Cram

, Chair

L. Atchison
G. Blyth
M. Brindle
R. Chojnacki
J. A. Colby
G. Cushing
P. D

¢

Angelo
P. Davis
S. Greer

W. B. Groseclose
C. Hagerling
M. G. Harrison
M. Hinds
K. E. Johansen
S. G. Klaud
S. Lomas
D. Lyons
G. Meldrum

B. Nowlin
R. Oblad
J. Pieper
A. Preuss
L. Sollman
S. Tarr
D. Taylor
A. Tracht

At the time that it balloted and approved this standard for submission to the IEEE Standards Board, the balloting
committee had the following membership:

L. Atchison
S. E. Barryte
D. Boyle
R. Cram
G. Cushing

P. D

¢

Angelo
P. Davis
C. G. Gorss, Jr.
B. Gould
S. Greer

W. B. Groseclose
M. Harrison
D. C. Hart
S. G. Klaud
S. Lomas

iv

D. Lyons
M. Maciejewski
A. Meloni
R. H. Nesson

W. Nowlin
R. Oishi
E. Sacher
J. M. Schachner

L. Sollman
P. Stuckert
C. Thomsen
A. Tracht

When the IEEE Standards Board approved this standard on June 18, 1992, it had the following membership:

Marco W. Migliaro

, Chair

Donald C. Loughry

, Vice Chair

Andrew G. Salem

, Secretary

Dennis Bodson
Paul L. Borrill
Clyde Camp
Donald C. Fleckenstein
Jay Forster *
David F. Franklin
Ramiro Garcia
Thomas L. Hannan

Donald N. Heirman
Ben C. Johnson
Walter J. Karplus
Ivor N. Knight
Joseph Koepfinger *
Irving Kolodny
D. N. “Jim” Logothetis
Lawrence V. McCall

T. Don Michael *
John L. Rankine
Wallace S. Read
Ronald H. Reimer
Gary S. Robinson
Martin V. Schneider
Terrance R. Whittemore
Donald W. Zipse

* Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

Satish K. Aggarwal
James Beall

Richard B. Engelman
David E. Soffrin

Stanley Warshaw

Adam Sicker

IEEE Standards Project Editor

v

CLAUSE PAGE

1. Introduction ...1

1.1 Scope.. 1
1.2 Objectives... 2
1.3 Notation.. 2

2. References ...2

3. System Considerations ..3

3.1 Definitions.. 3
3.2 System Message Traffic... 4
3.3 Functional Layers... 5

4. Device Compliance Criteria..6

4.1 IEEE 488.1 Requirements.. 7
4.2 Message Exchange Requirements.. 7
4.3 Syntax Requirements ... 7
4.4 Status Reporting Requirements.. 9
4.5 Common Commands.. 12
4.6 Synchronization Requirements .. 15
4.7 System Configuration Capability... 15
4.8 Controller Capability.. 16
4.9 Device Documentation Requirements.. 16

5. Device Interface Function Requirements..17

5.1 Handshake Requirements... 17
5.2 Address Requirements ... 18
5.3 Talker Requirements .. 18
5.4 Listener Requirements ... 18
5.5 Service Request Requirements... 19
5.6 Remote/Local Requirements.. 19
5.7 Parallel Poll Requirements... 21
5.8 Device Clear Requirements ... 22
5.9 Device Trigger Requirements .. 22
5.10 Controller Function Requirements... 22
5.11 Electrical Requirements ... 22
5.12 Power-On Requirements .. 23

6. Message Exchange Control Protocol ..24

6.1 Functional Elements... 24
6.2 Protocol Overview ... 36
6.3 Message Exchange Control Operation... 38
6.4 Protocol Rules .. 43
6.5 Protocol Exceptions ... 46

7. Device Listening Formats ...48

7.1 Overview.. 48
7.2 Notation.. 49
7.3 Terminated Program Messages — Functional Syntax... 52

vi

CLAUSE PAGE

7.4 Separator Functional Elements .. 56
7.5 <PROGRAM MESSAGE TERMINATOR>... 58
7.6 Program Header Functional Elements ... 58
7.7 <PROGRAM DATA> Functional Elements ... 63

8. Device Talking Elements ..78

8.1 Overview.. 78
8.2 Notation.. 79
8.3 Terminated Response Messages — Functional Syntax ... 79
8.4 Separator Functional Elements .. 83
8.5 <RESPONSE MESSAGE TERMINATOR> .. 84
8.6 <RESPONSE HEADER>.. 85
8.7 <RESPONSE DATA> Functional Elements ... 86

9. Message Data Coding ...97

9.1 ASCII 7 bit Codes .. 98
9.2 Binary 8 Bit Integer Codes... 100
9.3 Binary Floating Point Code.. 101

10. Common Commands and Queries ..104

10.1 *AAD, Accept Address Command.. 107
10.2 *CAL?, Calibration Query ... 107
10.3 *CLS, Clear Status Command ... 108
10.4 *DDT, Define Device Trigger Command.. 109
10.5 *DDT?, Define Device Trigger Query... 110
10.6 *DLF, Disable Listener Function Command... 111
10.7 *DMC, Define Macro Command... 111
10.8 *EMC, Enable Macro Command... 114
10.9 *EMC?, Enable Macro Query.. 115
10.10 *ESE, Standard Event Status Enable Command ... 116
10.11 *ESE?, Standard Event Status Enable Query .. 116
10.12 *ESR?, Standard Event Status Register Query .. 117
10.13 *GMC?, Get Macro Contents Query ... 117
10.14 *IDN?., Identification Query 118
10.15 *IST?, Individual Status Query.. 120
10.16 *LMC?, Learn Macro Query.. 120
10.17 *LRN?, Learn Device Setup Query ... 121
10.18 *OPC, Operation Complete Command.. 122
10.19 *OPC?, Operation Complete Query... 122
10.20 *OPT?, Option Identification Query.. 123
10.21 *PCB, Pass Control Back... 124
10.22 *PMC, Purge Macros Command ... 125
10.23 *PRE, Parallel Poll Enable Register Command... 125
10.24 *PRE?, Parallel Poll Enable Register Query.. 126
10.25 *PSC, Power-On Status Clear Command .. 127
10.26 *PSC?, Power-On Status Clear Query ... 128
10.27 *PUD, Protected User Data Command.. 128
10.28 *PUD?, Protected User Data Query... 129
10.29 *RCL, Recall Command .. 130
10.30 *RDT, Resource Description Transfer Command... 131

vii

CLAUSE PAGE

10.31 *RDT?, Resource Description Transfer Query.. 132
10.32 *RST, Reset Command.. 133
10.33 *SAV, Save Command .. 134
10.34 *SRE, Service Request Enable Command... 134
10.35 *SRE?, Service Request Enable Query.. 135
10.36 *STB?, Read Status Byte Query .. 136
10.37 *TRG, Trigger Command .. 136
10.38 *TST?, Self-Test Query ... 137
10.39 *WAI, Wait-to-Continue Command.. 138
10.40 *RMC, Remove Individual Macro Command... 138
10.41 *SDS, Save Default Device Settings Command.. 139

11. Device Status Reporting..140

11.1 Overview.. 140
11.2 Status Byte Register ... 141
11.3 Service Request Enabling .. 146
11.4 Status Data Structures .. 152
11.5 Standard Status Data Structure .. 157
11.6 Parallel Poll Response Handling.. 164

12. Device/Controller Synchronization Techniques ...165

12.1 Overview.. 165
12.2 Sequential and Overlapped Commands ... 166
12.3 Pending-Operation Flag ... 167
12.4 No-Operation-Pending Flag ... 167
12.5 Controller/Device Synchronization Commands .. 167
12.6 Synchronization With External-Control-Signals ... 171
12.7 Improper Usage of *OPC and *OPC? ... 172
12.8 Design Considerations ... 173

13. Automatic System Configuration..175

13.1 Introduction .. 175
13.2 Overview.. 176
13.3 Generic Approach to Automatic System Configuration .. 177
13.4 Detailed Requirements of the Auto Configuration Commands ... 182
13.5 Additional Automatic Configuration Techniques.. 188
13.6 Examples .. 188

14. Controller Compliance Criteria...188

14.1 IEEE 488.1 Requirements.. 188
14.2 Message Exchange Requirements.. 189
14.3 Protocols... 190
14.4 Functional Element Handling .. 191
14.5 Controller Specification Requirements .. 191

15. IEEE 488.2 Controller Requirements ...191

15.1 Controller Interface Function Requirements.. 191
15.2 Additional IEEE 488.2 Controller Requirements .. 192
15.3 IEEE 488.2 Controller Recommendations... 193

viii

CLAUSE PAGE

16. Controller Message Exchange Protocols ..193

16.1 Definitions.. 194
16.2 Control Sequences.. 196

17. Common Controller Protocols ..204

17.1 Reset Protocol .. 205
17.2 Find Device Requesting Service Protocol ... 206
17.3 Serial Poll All Devices Protocol .. 207
17.4 Pass Control Protocol... 209
17.5 Requesting Control .. 210
17.6 Find Listeners Protocol .. 211
17.7 Set Address Protocol .. 212
17.8 Test System Protocol ... 217

Annex A Compound Headers — Usage and Examples (Informative) ...219

Annex B Device/Controller Synchronization Techniques (Informative) ...223

Annex C Automatic System Configuration Example (Informative)...235

Annex D Reset Guidelines (Informative) ...241

Copyright © 1992 IEEE All Rights Reserved

1

IEEE Standard Codes, Formats,
Protocols, and Common Commands for
Use With IEEE Std 488.1-1987, IEEE
Standard Digital Interface for
Programmable Instrumentation

1. Introduction

1.1 Scope

This standard specifies a set of codes and formats to be used by

devices

 connected via the IEEE 488.1 bus. This
standard also defines communication protocols necessary to effect application independent device-dependent message
exchanges and further defines common commands and characteristics useful in instrument

system

 applications.

This standard is intended to apply directly to small-scale to medium-scale instrument

systems

. It applies to

systems

comprised mainly of measurement, stimulus, and interconnect

devices

 with an instrumentation

controller

. The
standard may also apply to certain

devices

 outside the scope of the instrument

system

 environment.

As well as defining a variety of device-dependent messages, this standard extends and further interprets certain
interface functions contained in IEEE Std 488.1-1987 [4]

1

 while remaining compatible with that standard.

This standard covers the following topics:

1) IEEE 488.1 subsets
2) Standard message handling protocols including error handling
3) Unambiguous program and response message syntactic structures
4) Common commands useful in a wide range of instrument

system

 applications
5) Standard status reporting structures
6)

System

 configuration and synchronization protocols

1

The numbers in brackets correspond to those of the references in Section 2..

2

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Use of this standard does not relieve the user from the burden of responsibility for

system

 compatibility at the
application level. The user must be familiar with the characteristics of all the

system

 components in order to configure
an optimum

system

.

The intended readers of this standard include both

controller

 and

device

 designers.

1.2 Objectives

The objectives of this standard are

1) To provide a well-defined and unambiguous structure of codes, formats, protocols, and common commands
2) To retain generality to accommodate the needs of a wide variety of applications within the scope of the

standard
3) To promote the degree to which

devices

 from different manufacturers may be interconnected and used,
without modification

4) To enable the interconnection of instrumentation and related

devices

 with both limited and extensive
capability to generate, process, and interpret a variety of different message types

5) To define codes, formats, protocols, and common commands that will reduce the costs of generating
application software and the costs of

system

 integration
6) To permit direct communication among instrument

system devices

 without extraordinary translation and
conversion of special codes and formats

1.3 Notation

This standard defines several common English words that have special meaning in the context of this standard. These
words have different connotations in IEEE Std 488.1-1987 [4], but are, for reasons of readability and conciseness of
text, the preferred words for use in this standard. To avoid confusion, these words always appear in bold type when
referenced in this document. Words that appear in bold type are:

system, device, controller, system bus,

 and

system
interface

. Local messages peculiar to IEEE 488.2 will also appear in lowercase bold type.

This standard also defines syntactic elements that are used to describe messages transferred on the bus. Syntactic
elements are enclosed by angle brackets, for example, <syntactic element>, to set them off from local messages,
remote messages, and normal text.

2. References

This standard shall be used in conjunction with the following publications:

[1] ANSI X3.4-1986, American National Standard Code for Information Interchange Coded Character Set—7-Bit.

2

[2] ANSI X3.42-1990, American National Standard Representation of Numeric Values in Character Strings for
Information Interchange.

[3] IEEE Std 260-1978, (Reaff 1985). IEEE Standard Letter Symbols for Units of Measurement (SI Units, Customary
Inch-Pound Units, and Certain Other Units) (ANSI, DoD).

3

[4] IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation (ANSI).

2

ANSI publications are available from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York,
NY 10036, USA.

3

IEEE publications are available from the Institute of Electrical and Electronics Engineers, Service Center, 445 Hoes Lane, P.O. Box 1331,
Piscataway, NJ 08855-1331, USA.

Copyright © 1992 IEEE All Rights Reserved

3

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

[5] IEEE Std 754-1985 (Reaff 1991), IEEE Standard for Binary Floating-Point Arithmetic.

[6] ISO 31-1: 1992, Quantities and units — Part 1: Space and time.

4

[7] ISO 31-2: 1992, Quanities and units — Part 2: Periodic and related phenomena.

[8] ISO 31-3: 1992, Quantities and units — Part 3: Mechanics.

[9] ISO 31-4: 1992, Quanitites and units — Part 4: Heat.

[10] ISO 31-5: 1992, Quanitites and units — Part 5: Electricity and magnetism.

[11] ISO 31-6: 1992, Quantities and units — Part 6: Light and related electromagnetic radiations.

[12] ISO 31-7: 1992, Quantities and units — Part 7: Acoustics.

[13] ISO 31-8 : 1992, Quantities and units — Part 8: Physical chemistry and molecular physics.

[14] ISO 31-9: 1992, Quantities and units — Part 9: Atomic and nuclear physics.

[15] ISO 31-10: 1992, Quantities and units — Part 10: Nuclear reactions and ionizing radiations.

[16] ISO 31-11: 1992, Quantities and units — Part 11: Mathematical signs and symbols for use in the physical sciences
and technology.

[17] ISO 31-12: 1992, Quantities and units — Part 12: Characteristic numbers.

[18] ISO 1000: 1981, SI units and recommendations for the use of their multiples and certain other units.

[19] ISO 2955: 1983, Information processing—Representation of SI and other units in systems with limited character
sets.

[20] Mueller, J. E., “Efficient Instrument Design Using IEEE 488.2,”

IEEE Transactions on Instrumentation and
Measurement

, vol. IM-39, pp. 146–150, Feb. 1990.

3. System Considerations

3.1 Definitions

The following definitions apply for the purpose of this standard. This section contains only general definitions.
Detailed definitions are given in further sections, as appropriate. For definitions relating specifically to IEEE Std
488.1-1987 [4], see 1.3 of that standard.

controller:

. The component of a

system

that functions as the

system controller

. A

controller

typically sends program
messages to and receives response messages from

devices

. A controller may pass and receive control per the protocols
in this standard. A controller meets all the requirements stated in Section 14. of this standard.

default:

. The choice used when no specification is given.

4

ISO publications are available from ISO, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzerland/Suisse. ISO publications are also
available in the United States from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY
10036, USA.

4

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

device:

A component of a

system

that does not function as the

system controller

 but typically receives program
messages from and sends response messages to the

controller

. A

device

 may optionally have the capability to receive
control from the

controller

 and become the controller-in-charge of the

system.

 A

device

meets all the requirements
stated in Section 4. of this standard.

system:

. A group of

devices

 and a

controller

interconnected with a

system interface

.

system bus:

The IEEE 488.1 bus and protocols that interconnect the

devices

and

controllers

in a

system.

The content
of this standard applies to device-dependent traffic over this bus.

system interface:

An interface that connects a

device

 or

controller

to the

system bus

. A “non-IEEE 488.2 system
interface” is any interface other than the

system interface

that may happen to be connected to a

device

 or

controller

3.2 System Message Traffic

This standard is optimized for a

system

 in which the

devices

 do not become controller-in-charge. The usual message
traffic is assumed to be from “controller-to-device” or from “device-to-controller” (see Fig 3-1).

The flexibility of the program message syntax, see Section 7., also may allow the use of an IEEE 488.2 component in
a

system

 that contains non-IEEE 488.2 components.

In a

system

 with a

device

 and a noncompliant

controller

, the flexible listening formats allow the achievement of a
higher degree of compatibility. This compatibility is realized by requiring minor variations in syntax to be accepted by
the

device.

 These variations are designed to be syntactically easy to generate on a variety of

controllers.

 They may
even be the noncompliant

controller’s

 default syntax. Such

systems

 are beyond the scope of this standard and may not
perform their intended functions.

3.2.1 Program and Response Message Relationships

Subsequent sections of this standard will describe, in detail, the allowed syntax and semantics for

system

 message
traffic. The philosophy of this standard is that

devices

 receive in a more flexible manner than they send.

Thus, a range of variations of syntax defined by this standard must be accepted when

devices

 listen. Likewise, a
precise syntax also identified by this standard is required when

devices

 talk.

These controller-to-device (program) and device-to-controller (response) messages are composed of syntactic
elements that are described in Sections 7. and 8., respectively.

The following example demonstrates this relationship among program and response messages for a

device

 that has a
range that may be programmed and queried. The

device

 has discrete ranges of 1.2, 12, and 120.

Figure 3-1—Usual Message Traffic

Copyright © 1992 IEEE All Rights Reserved

5

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The following is an example of flexible reception of range programming with the

device

 listening.

Example of Flexible Reception

The syntactic rules of Section 7. provide for this flexibility of interpretation.

The following is an example of precise response to range status request with the

device

 talking.

Example of Precise Response

Controller

The syntactic rules of Section 8. ensure that the

device

 responds with a precise format.

3.2.2 Other Message Traffic

In addition to controller-to-device and device-to-controller messages, protocols are defined to facilitate passing
control, see Section 17.. Device-to-device protocols are not explicitly defined in this document. However, message
traffic between

devices

 shall follow the syntax for <RESPONSE MESSAGES> defined in Section 8.

3.3 Functional Layers

The purpose of an interface

system

 is to support the

system

 application of the user. In the schema of which this
standard is a part, the

system

 contains successive, independent “levels” of communication protocol, as shown in Fig
3-2.

Each layer shown has associated common “messages” that form protocols to communicate between itself and the
corresponding layer in the participating

system

 components.

The protocols are designed for communication between nonpeer entities due to the requirements of IEEE 488.1-1987
[4]. No attempt has been made to associate the protocol layering with the ISO Model for Open Systems
Interconnection (OSI).

Controller Sends
Device

Interprets

RANGE 12.45 RANGE 12

or RANGE 12 RANGE 12

or RANGE 1.2E+1 RANGE 12

Controller Sends Device Sends

RANGE? 12

6

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 3-2—IEEE 488.1 and IEEE 488.2 Functional Protocol Layers

4. Device Compliance Criteria

A

device

 shall have certain capabilities. This section lists the capabilities that this standard requires in a

device.

 A

device

 may optionally contain additional capabilities. Any optional

device

 capabilities that are described by this
standard are also listed in this section.

Compliance for a

device

 is divided into several areas that are considered separately. A

device

 shall satisfy all the
required functionality in each of the areas in order to comply with this standard. This section summarizes requirements

Copyright © 1992 IEEE All Rights Reserved

7

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

that are fully specified in the referenced section. The

device

 designer shall use the requirements stated in later sections
when actually designing a

device.

4.1 IEEE 488.1 Requirements

A

device shall contain the IEEE 488.1 subsets listed in Table 4-1 and no others.

Table 4-1—IEEE 488.1 Interface Requirement for Devices

A device shall comply with IEEE 488.1. It shall also meet all requirements stated in Section 5. of this standard.

4.2 Message Exchange Requirements

A device shall follow all the requirements listed in Section 6. of this standard.

A device's Input Buffer may take on several forms. The Input Buffer's length may be a fixed number of bytes. It may
contain a fixed number of complete <PROGRAM MESSAGE> elements. Its length in bytes or <PROGRAM
MESSAGE> elements may vary with the device's state. See 6.1.5.

Certain query messages may generate the actual response message when the query is received. Other query messages
may generate the actual response when the controller reads the response. See 6.4.5.4.

Execution of individual parsable elements may be done as they are received. The device may also wait until either a
<PROGRAM MESSAGE UNIT SEPARATOR> or a <PROGRAM MESSAGE TERMINATOR> is parsed before
executing preceding <PROGRAM MESSAGE UNIT> elements. A device may contain a mix of these types of
commands. See 6.4.5.1.

4.3 Syntax Requirements

Sections 7. and 8. describe a set of functional elements that the device designer uses to describe the programming
language for a specific device. The entire syntax described in Sections 7. and 8. is not required in every device. Some
functional elements are required and some are optional.

IEEE 488.1 Interface
Function IEEE 488.1 Subsets

IEEE 488.2
Section

Source Handshake SH1 5.1.1

Acceptor Handshake AH1 5.1.2

Talker T5, T6, TE5, or TE6 5.3

Listener L3, L4, LE3, or LE4 5.4

Service Request SR1 5.5

Remote Local RL0 or RL1 5.6

Parallel Poll PP0 or PP1 5.7

Device Clear DC1 5.8

Device Trigger DT0 or DT1 5.9

Controller C0, or C4 with C5, C7, C9, or C11 5.10

Electrical Interface E1 or E2 5.11

8 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

4.3.1 Required Functional Elements

Table 4-2 lists the required functional elements.

Table 4-2—Required Functional Elements for Devices

4.3.2 Optional Functional Elements

Table 4-3 lists the optional functional elements.

Device Listening Functional Element Section

<PROGRAM MESSAGE> 7.3.2

<PROGRAM MESSAGE TERMINATOR> 7.5.0

<PROGRAM MESSAGE UNIT> 7.3.2

<PROGRAM MESSAGE UNIT SEPARATOR> 7.4.1

<COMMAND MESSAGE UNIT> 7.3.2

<QUERY MESSAGE UNIT> 7.3.2

<COMMAND PROGRAM HEADER>*

* NOTE — <compound command program header> and <compound
query program header> are not required encoding elements.

7.6.1

<QUERY PROGRAM HEADER> 7.6.2

<PROGRAM HEADER SEPARATOR> 7.4.3

<PROGRAM DATA SEPARATOR> 7.4.2

<PROGRAM DATA> 7.3.2

<DECIMAL NUMERIC PROGRAM DATA> 7.7.2

Device Talking Functional Element Section

<RESPONSE MESSAGE> 8.3.2

<RESPONSE MESSAGE TERMINATOR> 8.5.0

<RESPONSE MESSAGE UNIT> 8.3.2

<RESPONSE MESSAGE UNIT SEPARATOR> 8.4.1

<RESPONSE DATA> 8.7.0

<RESPONSE DATA SEPARATOR> 8.4.2

<NR1 NUMERIC RESPONSE DATA> 8.7.2

<ARBITRARY ASCII RESPONSE DATA> 8.7.11

Copyright © 1992 IEEE All Rights Reserved 9

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 4-3—Optional Functional Elements for Devices

4.4 Status Reporting Requirements

4.4.1 Required Status Reporting Capability

A device shall follow the status reporting model presented in Section 11. The device shall include those commands
related to status reporting described in Section 10. and listed in Table 4-4.

A device shall implement the status byte register, the Service Request Enable Register, the Standard Event Status
Register, and the Standard Event Status Enable Register illustrated in Fig 4-1.

Device Listening Functional Element Section

<COMMAND PROGRAM HEADER>*

* NOTE — If a device implements <compound command program header> and
<compound query program header> elements, it does not implement <simple command
program header> and <simple query program header> elements. See 7.6.1 and 7.6.2.

7.6.1

<QUERY PROGRAM HEADER> 7.6.2

<CHARACTER PROGRAM DATA> 7.7.1

<SUFFIX PROGRAM DATA> 7.7.3

<NONDECIMAL NUMERIC PROGRAM DATA> 7.7.4

<STRING PROGRAM DATA> 7.7.5

<ARBITRARY BLOCK PROGRAM DATA> 7.7.6

<EXPRESSION PROGRAM DATA> 7.7.7

Device Talking Functional Element Section

<RESPONSE HEADER SEPARATOR> 8.4.3

<RESPONSE HEADER> 8.6

<CHARACTER RESPONSE DATA> 8.7.1

<NR2 NUMERIC RESPONSE DATA> 8.7.3

<NR3 NUMERIC RESPONSE DATA> 8.7.4

<HEXADECIMAL NUMERIC RESPONSE DATA> 8.7.5

<OCTAL NUMERIC RESPONSE DATA> 8.7.6

<BINARY NUMERIC RESPONSE DATA> 8.7.7

<STRING RESPONSE DATA> 8.7.8

<DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> 8.7.9

<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> 8.7.10

<EXPRESSION RESPONSE DATA> 8.7.12

10 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 4-1—Required Status Reporting Capabilities

Copyright © 1992 IEEE All Rights Reserved 11

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 4-4—Required Status Reporting Common Commands

4.4.2 Optional Status Reporting Capability

A device may include any number of condition registers, event registers, enable registers, and queues, provided that
they follow the model presented in Section 11.

The device may optionally include the ability to save enable registers when power is cycled. This capability also
requires nonvolatile memory and all of the commands listed in Table 4-5.

Table 4-5—Optional Power-On Common Commands

The device may optionally include the ability to respond to a parallel poll. This capability also requires the IEEE 488.1
subset PP1 and all of the commands listed in Table 4-6.

Status Reporting

Command Section

*CLS 10.3

*ESE? 10.10

*ESE? 10.11

*ESR? 10.12

*SRE? 10.34

*SRE? 10.35

*STB? 10.36

The asterisk symbol(*), preceding
CLS in the above table and through-
out the text, is meant to literally
represent the 1st character of a com-
mon command or query (see also
7.6.1.2, 8.6.2, and Table 9-2).

Power On

Command Section

*PSC 10.25

*PSC? 10.26

12 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 4-6—Optional Parallel Poll Common Commands

4.5 Common Commands

This standard lists some reserved commands. Some of the commands are required, some are optional, and some shall
be implemented in groups.

4.5.1 Required Common Commands

The common commands listed in 4.4.1 that are related to status reporting and the common commands listed in 4.6 that
are related to synchronization are required. The commands that relate to internal operations are listed in Table 4-7 and
are required.

Table 4-7—Required Internal Operation Common Commands

4.5.2 Optional Common Commands

In some cases, the implementation of a common command is independent of other common commands or device
capabilities. In other cases, common commands shall be implemented in groups or in conjunction with some other
device capability.

4.5.2.1 Resource Description Commands

The resource description commands, listed in Table 4-8, are optional and loosely coupled. If the resource description
can be written into the device (*RDT), then the device shall also include the capability to read the resource description
(*RDT?). The *RDT? query, however, may be included without the *RDT command.

Parallel Poll

Command Section

*IST? 10.15

*PRE 10.23

*PRE? 10.24

Internal Operations

Command Section

*IDN? 10.14

*RST 10.32

*TST? 10.38

Copyright © 1992 IEEE All Rights Reserved 13

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 4-8—Optional Resource Description Common Commands

4.5.2.2 Protected User Data Commands

The protected user data commands, listed in Table 4-9, are optional. If either command is implemented, then both
commands shall be implemented.

Table 4-9—Optional Protected User Data Commands

4.5.2.3 Calibration Command

The self-calibration command, listed in Table 4-10, is optional.

Table 4-10—Optional Calibration Command

4.5.2.4 Trigger Command

The trigger command, listed in Table 4-11, is optional. It is required, however, if the device has DT1 capability. If the
trigger command is implemented, the device shall also have DT1 capability.

Table 4-11—Optional Trigger Command

4.5.2.5 Trigger Macro Commands

The trigger macro commands, listed in Table 4-12, are optional. Implementing either command requires the device to
have DT1 capability. Implementing *DDT requires the device to implement *DDT?.

Resource Description

Command Section

*RDT 10.30

*RDT? 10.31

Protected Data

Command Section

*PUD 10.27

*PUD? 10.28

Calibration

Command Section

*CAL? 10.2

Trigger

Command Section

*TRG 10.37

14 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 4-12—Optional Trigger Macro Commands

If the trigger macro commands are implemented, the device shall also include the <ARBITRARY BLOCK
PROGRAM DATA> and <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> functional elements.

4.5.2.6 Macro Commands

The macro commands, listed in Table 4-13, are optional. If any commands in this group are implemented, however,
then all commands in this group shall be implemented.

If the macro commands are implemented, the device shall also include the <STRING PROGRAM DATA>,
<ARBITRARY BLOCK PROGRAM DATA>, <STRING RESPONSE DATA>, and <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA> functional elements.

4.5.2.7 Option Identification command

The option identification command, listed in Table 4-14, is optional.

Table 4-13—Optional Macro Commands

Table 4-14—Optional Option Identification Command

4.5.2.8 Stored Setting Commands

The stored setting commands, listed in Table 4-15, are optional. If either command is implemented, then both
commands shall be implemented.

Trigger Macro

Command Section

*DDT 10.4

*DDT? 10.5

Macros

Command Section

*DMC 10.7

*EMC 10.8

*EMC? 10.9

*GMC? 10.13

*LMC? 10.16

*PMC 10.22

Options

Command Section

*OPT? 10.20

Copyright © 1992 IEEE All Rights Reserved 15

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 4-15—Optional Stored Setting Commands

4.5.2.9 Learn Command

The learn command, listed in Table 4-16, is optional.

Table 4-16—Optional Learn Command

4.6 Synchronization Requirements

Section 12. describes the capability that is required in all devices for synchronization. A device designer may choose
which operations have pending-operation flags associated with them in accordance with the rules in Section 12.

The required common commands related to synchronization are listed in Table 4-17.

Table 4-17—Required Synchronization Commands

4.7 System Configuration Capability

Section 13. describes the optional capability that is used to configure the IEEE 488.1 addresses of devices. This
capability is implemented by including the common commands in Table 4-18.

Stored Settings

Command Section

*RCL 10.29

*SAV 10.33

Learn

Command Section

*LRN? 10.17

Synchronization

Command Section

*OPC 10.18

*OPC? 10.19

*WAI 10.39

16 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 4-18—Optional System Configuration Commands

If either command is implemented, then both commands shall be implemented.

These commands cause the device to suspend temporarily normal message exchange protocols and to use different
protocols. To ensure compatibility with other devices, the device designer must carefully adhere to these different
protocols.

4.8 Controller Capability

4.8.1 Required Controller Capability

A device is not required to have any controller capability.

4.8.2 Optional Controller Capability

If a device has any controller capability, it shall include the IEEE 488.1 C4 subset and the pass control back command
listed in Table 4-19. It shall obey the passing control protocol described in 17.4 and it shall obey the requesting control
protocol described in 17.5.

Table 4-19—Optional Passing Control Command

4.9 Device Documentation Requirements

The documentation provided with a device shall describe how the device has implemented this standard. This
documentation is required and shall include

1) A list of IEEE 488.1 Interface Functions subsets implemented, see Section 5.
2) A description of device behavior when the address is set outside the range of 0–30, see 5.2.
3) A description of when a user-initiated address change is recognized by the device.
4) A description of the device setting at power-on, see 5.12. Any commands that modify the power-on settings

shall also be included. A list of device-specific enable registers affected by the *PSC common command shall
be included.

5) A description of message exchange options:
a) The size and behavior of the Input Buffer, see 6.1.5.
b) Which queries return more than one <RESPONSE MESSAGE UNIT>, see 6.4.3.
c) Which queries generate a response when parsed, see 6.4.5.4.
d) Which queries generate a response when read, see 6.4.5.4.
e) Which commands are coupled, see 6.4.5.3.

Auto Configure

Command Section

*AAD 10.1

*DLF 10.6

Stored Settings

Command Section

*PCB 10.21

Copyright © 1992 IEEE All Rights Reserved 17

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6) A list of functional elements used in constructing the device-specific commands. Whether <compound
command program header> elements are used must also be included, see 7.1.1 and 7.3.3.

7) A description of any buffer size limitations related to block data, see 7.7.6.5.
8) A list of the <PROGRAM DATA> elements that may appear within an <expression> as well as the maximum

subexpression nesting depth. Any additional syntax restrictions that the device may place on the
<expression> shall also be included.

9) A description of the response syntax for every query, see Section 8.
10) A description of any device-to-device message transfer traffic that does not follow the rules for <RESPONSE

MESSAGE> elements, see 8.1.
11) The size of any block data responses, see 8.7.9.4.
12) A list of common commands and queries that are implemented, including, where appropriate, indications of

any optional functional elements implemented, see Section 10..
13) A description of the state of the device after successful completion of the Calibration query, see 10.2.
14) The maximum length of the block used to define the trigger macro (see 10.4.6.1) and the method of

interpreting *TRG within a *DDT command sequence (see 10.4.6.3).
15) The maximum length and complexity of macro labels; the maximum length of the block used to define a

macro; and how recursion is handled during macro expansion, if the macro commands are implemented, see
10.7.

16) A description of the response to the identification common query, *IDN?, see 10.14.
17) If the *DDT command is implemented,

a) The maximum length of the block used to define the trigger macro, see 10.4.
b) The command sequence sent with the *DDT command has the same effect as *RST on the action

performed by GET, see 10.4.1 and 10.4.6.3.
18) The size of the resource description, if the *RDT command or *RDT? query are implemented, see 10.30 and

10.31.
19) A description of the states affected by *RST (see 10.32), *LRN? (see 10.17), *RCL (see 10.29), and *SAV

(see 10.33).
20) A description of the scope of the self-test performed by the *TST? query, see 10.38.
21) A description of additional status data structures used in the device's status reporting, see Section 11.
22) For each command, a statement describing whether it is overlapped or sequential.
23) For each command, the device documentation shall specify the functional criteria that are met when an

operation complete message is generated in response to that command, see 12.8.3.
24) A description of the representations, if any, used for infinity and not-a-number, see 7.7.2.4.5 and 8.7.4.4.

5. Device Interface Function Requirements

This section describes the IEEE 488.1 interface function requirements of a device. It specifies the additional
requirements of a device that are directly associated with the ten IEEE 488.1 interface functions. These requirements
are intended to supplement the IEEE 488.1 specification for the IEEE 488.2 system environment as described in this
standard.

5.1 Handshake Requirements

5.1.1 Source Handshake Requirements

A device shall contain the SH1 (complete capability) subset. It shall make the transition from Source Delay State
(SDYS) to Source Transfer State (STRS) only if the ready for data (RFD) message is TRUE and the data accepted
(DAC) message is FALSE, see 6.5.3.

18 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

5.1.2 Acceptor Handshake Requirements

A device shall contain the AH1 (complete capability) subset and shall additionally follow the requirement of the
following paragraph.

A device shall enter Acceptor Idle State (AIDS) of the AH function within i ms after ATN assumes the FALSE state if
the device was in Listener Idle State (LIDS) when ATN was TRUE. This requirement ensures that the device will
operate reliably with the Find Listeners common controller protocol, see 17.6.

5.2 Address Requirements

A device shall have the same talk and listen addresses. The lower 5 bits of the MTA and MLA codes, the primary
address of the device, shall be identical. (See IEEE Std 488.1-1987 [4], 6.3.) If the device utilizes extended
addressing, the talk and listen secondary addresses (MSAs) shall also be identical.

A device shall have a single primary address that may be set by the user to any value within the range of 0 to 30. If the
device utilizes extended addressing, the user shall also be able to set the single secondary address within the same
range.

The address of a device shall be settable independent from any other device's address even if the devices share
common physical resources such as the same enclosure.

A device shall have a local means of selecting its IEEE 488.1 primary address (and secondary address if extended
addressing is used) that shall be retained during power-off. The device operator shall be capable of altering this
address.

The physical configuration, labeling, and positioning of the address selection mechanism shall follow the guidelines of
IEEE Std 488.1-1987 [4], Appendix I.

The device designer should avoid using address settings outside the range of 0-30. Any exceptions to this
recommendation shall be documented with the associated behavior.

If hard switches are used to set the address, and the address is apparently set to 31, the device shall operate in a manner
that does not disrupt system bus traffic.

Device documentation shall state when a user-initiated address change is recognized by the device. A device shall
update its address at power-on.

5.3 Talker Requirements

A device shall contain either the T5, T6, TE5, or TE6 subsets. These subsets require the basic talker with serial poll and
unaddress if MLA.

This standard assumes that the controller performs all talker addressing via MTA and unaddressing via MLA, OTA,
and UNT. Talk-only mode capability is, therefore, not a requirement of this specification. The presence of a talk-only
mode of operation (for example, in a controller-less system) is allowable, but operation in this mode is considered
beyond the scope of this standard.

5.4 Listener Requirements

A device shall contain either the L3, L4, LE3, or LE4 subsets. These subsets require the basic listener with unaddress
if MTA.

Copyright © 1992 IEEE All Rights Reserved 19

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

This standard assumes the controller performs all listener addressing via MLA and unaddressing via MTA and UNL.
Listen-only mode capability is, therefore, not a requirement of this specification. The presence of a listen-only mode
of operation (for example, in a controller-less system) is allowable, but operation in this mode is considered beyond
the scope of this standard.

NOTE — the additional requirement for inactivating the Acceptor Handshake function on an ATN FALSE transition in Listener
Idle State (LIDS). See 5.1.2.

5.5 Service Request Requirements

A device shall contain the SR1 (complete capability) subset and shall conform to the status handling requirements of
Section 11.

5.6 Remote/Local Requirements

5.6.1 Control and Operation Definitions

IEEE 488.2 control functions and operations are classified using the source of control and method of annunciation.

5.6.1.1 IEEE 488.2 Remote Operation

An IEEE 488.2 remote operation is any operation of a device function in a system that is effected via program
messages over the system interface.

5.6.1.2 IEEE 488.2 Local Operation

An IEEE 488.2 local operation is any operation of a device function that is not an IEEE 488.2 remote operation.

An example is the actuation of a user-accessible switch, knob, button, touch-screen location, etc., that is physically
attached to a device and used locally to control or program the device.

Operation of a device via any other bus or interface connected to the device is considered to be local operation from
the standpoint of the system.

5.6.1.3 Local Control

A local control effects IEEE 488.2 local operation of a device.

Local controls include device inputs that are designed for control.

Local controls and the accompanying Remote/Local requirements of this section are intended to apply only to local
controls whose function can also be effected via IEEE 488.2 remote operation.

Local controls whose function cannot be effected via IEEE 488.2 remote operation or whose function is to protect the
safety of the user or equipment are beyond the scope of this standard.

The following control functions are explicitly excluded from categorization as local controls.

1) Switching line power.
2) The generation of the user request (URQ) message.

20 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

5.6.1.4 External-Control-Signal

An external-control-signal invokes device actions using a device port other than the system interface. External-
control-signals are beyond the scope of this standard, but may optionally function as local controls. External-control-
signals, however, shall not violate the message exchange protocols of Section 6.

An example of an external-control-signal is a digital voltmeter's external trigger, which initiates a measurement. The
results may then be read from the device.

5.6.1.5 Hard Local Control

Hard local controls on a device have indicators (mechanical, positional, etc.) that cannot be changed by IEEE-488.2
remote operation of the device.

For example, an instrument may have a mechanical rotary switch that is used to select among three different modes of
operation. The state of this switch is indicated by printed labels on the front panel of the device, but remote messages
cannot rotate the switch.

5.6.1.6 Soft Local Control

Any local control that is not a hard local control is a soft local control. For example, a physical (momentary contact)
key on a device may be used to turn a device function on or off with alternate pushes. The on/off state is indicated by
a light located by the switch. The light is controlled by the actual state of the device function.

5.6.1.7 Programmable Local Control

A local control of a device function that can be affected by IEEE 488.2 remote operation as well as by IEEE 488.2
local operation is a programmable local control. Programmable local controls may be hard or soft local controls.

5.6.2 IEEE 488.1 Subset Requirements

A device that is capable of IEEE 488.2 local and remote operation and that utilizes programmable local controls shall
contain the RL1 (complete capability including local lockout) subset of the IEEE 488.1 Remote/Local function.

A device that is incapable of IEEE 488.2 local operation or that does not utilize programmable local controls may
contain the RL0 (no capability) subset of the IEEE 488.1 Remote/Local function. A device containing the RL0 subset
shall ignore all IEEE 488.1 interface messages related to Remote/Local function state changes.

5.6.3 Local-to-Remote State Transition Requirements

The transition from Local State (LOCS) or Local With Lockout State (LWLS) to Remote State (REMS) or Remote
With Lockout State (RWLS) shall disable local operation of all programmable local controls.

5.6.4 Remote-to-Local State Transition Requirements

The transition from REMS or RWLS to LOCS or LWLS shall enable local operation of all programmable local
controls of the device.

The transition shall also alter any hard local control functions so that they match the hard local control indicator. After
the transition, the device's front panel and state of control shall agree.

The transition shall not alter any soft local control functions.

Copyright © 1992 IEEE All Rights Reserved 21

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Setting the rtl local message TRUE with LLO false or Accept Data State (ACDS) inactive shall cause a device in
REMS to change to LOCS (see IEEE Std 488.1-1987 [4], 2.8.3.3).

5.6.5 Local State Operation

In LOCS or LWLS, a device shall process all program messages so as to maintain consistency between the information
presented to the local user and the actual state of the device.

To avoid an inconsistency, a device shall do one of the following:

1) Correct the inconsistent information presented to the local user
2) Remove the inconsistent information
3) Generate an execution error and discard the responsible <PROGRAM MESSAGE UNIT> (See IEEE 488.2

status reporting protocols in Section 11.)

Alternative (1) is the preferred choice.

In LOCS or LWLS, a device shall not be inhibited from sending a <RESPONSE MESSAGE> in response to a query
previously received by the device.

When a device is sent program messages while in local, there are potential arbitration problems if front panel controls
are manipulated. Application programs can avoid such problems by placing the device in remote.

5.6.6 Remote State Operation

In REMS or RWLS, a device shall process all program messages.

In REMS or RWLS, device-specific messages (not defined by this standard) may be sent to selectively enable specific
local controls. Under this circumstance, the specified local controls are no longer locally inoperative. If specific hard
local controls are enabled, the device's state of control and these hard local controls shall agree.

In REMS or RWLS, a device shall not be inhibited from sending a <RESPONSE MESSAGE> in response to a query
previously received by the device.

5.6.7 Operation Independent of Remote/Local State

The Remote/Local function shall be associated only with the enabling and disabling of local controls as defined in this
section. Other device operation, such as updating the device state and associated local annunciation, shall function
independent of the Remote/Local state of the device.

5.6.8 Remote/Local Indicator Requirements

Devices with hard local controls shall incorporate a “Remote” indicator (see IEEE Std 488.1-1987 [4], Appendix H).

For devices without hard local controls, the Remote indicator is optional. All indicators relating to Remote/Local
transitions shall be labeled and shall function in accordance with the requirements of IEEE Std 488.1-1987 [4],
Appendix H.

5.7 Parallel Poll Requirements

A device shall have either the PP0 (no capability) or the PP1 (remote configuration) subset. A device with the PP1
subset shall conform to the requirements of 11.6.

22 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

5.8 Device Clear Requirements

A device shall contain the DC1 (complete capability including selective device clear) subset. Specific IEEE 488.2
requirements for the device's response to entering DCAS are specified in Section 6. and summarized in the following:

A device entering Device Clear Active State (DCAS) via a DCL or SDC command shall:

1) Clear the Input Buffer and Output Queue.
2) Reset the Parser, Execution Control, and Response Formatter (see 6.1.4.2.6).
3) Clear any command that prevents processing a *RST or other device commands.
4) Discard all commands and queries deferred due to coupled parameters (see 6.4.5.3).
5) Put the device into Operation Complete Command Idle State (OCIS) and into Operation Complete Query

Idle State (OQIS) (see 12.5.2.1.1 and 12.5.3.1.1).
6) Abort the *AAD and *DLF common commands (see Section 13.).
7) Put the device in the message exchange IDLE state (see 6.3.1.1).

Shall not:

1) Change any settings or stored data in the device except as stated earlier.
2) Interrupt front panel I/O.
3) Interrupt or affect any device operation in progress except as stated earlier.
4) Change the status byte other than clearing the MAV bit as a consequence of clearing the Output Queue, (see

11.2.1.2).

See Appendix D for a discussion of the resetting actions of dcas as they relate to other reset commands.

5.9 Device Trigger Requirements

A device may contain either the DT0 (no capability) or the DT1 (complete capability) IEEE 488.1 device trigger
function. A device containing the DT1 subset shall implement the associated common command, *TRG, as defined in
10.37. Use of the optional *DDT common command, see 10.4, affects the operation of *TRG and Group Execute
Trigger (GET).

5.10 Controller Function Requirements

A device shall contain either no Controller function capability (CO) or shall contain a Controller function with the
following subset options: C4 with C5, C7, C9, or Cll. These subsets provide the capability to respond to SRQ, send IF
messages, receive control, pass control, and take control synchronously. They specifically prohibit system controller
capability, that is, sending the IFC and REN interface messages. They optionally permit the capability of passing
control to self and conducting a parallel poll.

If a device contains any Controller function subset other than CO, then it shall also be able to pass and receive control
by means of the protocols described in 17.4 and 17.5.

See Section 15. for controller (as contrasted to device) requirements.

5.11 Electrical Requirements

Implementation of the E2 electrical interface option (see IEEE Std 488.1-1987 {4}, Appendix C2) is recommended.
Open collector drivers shall be used to drive the SRQ, NRFD, and NDAC signal lines. Three-state drivers should be
used to drive the DAV, EOI, and ATN signal lines. A device is not allowed to drive REN or IFC. If the device is in
Parallel Poll Active State (PPAS), the device shall use open collector drivers to drive the DIO1-8 signal lines. When not

Copyright © 1992 IEEE All Rights Reserved 23

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

in PPAS, the device should use three-state drivers to drive the DIO1-8 signal lines. If a device needs to source
handshake data bytes at a rate greater than 250 000 bytes per second, the E2 option is required (see IEEE Std 488.1-
1987 {4}, 5.2).

NOTE — Some integrated circuits may require external hardware to avoid driving the DIO lines during a parallel poll, even though
the PP0 subset is implemented.

5.12 Power-On Requirements

At power-on, device settings shall be either restored to their values when the device was last powered off, set to known
states that are explicitly stated in the device documentation, or set to a state defined by the user and stored in local
nonvolatile memory.

Device-specific commands may be provided to select whether device settings are restored or set to a known state at
power-on. This standard defines one such command, power-on status clear (*PSC, see 10.25.4), which sets and clears
the power-on-status-clear flag.

See Appendix D for a discussion of the resetting actions of power-on and *PSC as they relate to other reset commands.

5.12.1 Items Not Affected by Power-On

A device shall not alter the following due solely to a power-on (receipt of the IEEE 488.1 pon local message):

1) The bus address
2) Pertinent calibration data
3) Data or device states that cause a change in the response to the following common queries:

a) *IDN? (Identification Query, see 10.14)
b) *OPT? (Option Identification Query, see 10.20)
c) *PSC? (Power-On Status Clear Query, see 10.26)
d) *PUD? (Protected User Data Query, see 10.28)
e) *RDT? (Resource Description Transfer Query, see 10.31)

5.12.2 Items Dependent Upon Power-On-Status-Clear Flag

If the power-on-status-clear flag is FALSE, the Service Request Enable Register, the Standard Event Status Enable
Register, and the Parallel Poll Enable Register shall not be affected by power-on. See *PSC command in 10.25.

A device shall clear the Service Request Enable Register, the Standard Event Status Enable Register, the Parallel Poll
Enable Register, and device-specific event enable registers at power-on if the power-on-status-clear flag is TRUE or if
the *PSC command is not implemented.

The device designer may use the state of the power-on-status-clear flag to control whether other status registers are
cleared at power-on.

5.12.3 Items That May be Affected by Power-On

At the discretion of the device designer, a device may alter the following at power-on:

1) Current device function states
2) Status information, see 5.12.2 and 11
3) *SAV/*RCL registers, see 10.33 and 10.29
4) Macro definition defined with the *DDT command, see 10.4
5) Macro definitions defined with the *DMC command, see 10.7

24 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6) Macro enabling with the *EMC command, see 10.8
7) Address received with last *PCB command, see 10.21

6. Message Exchange Control Protocol

The device message exchange protocol specifies how a device handles program and response messages.

The term controller refers to the system element that is exchanging messages with the device. The requirements of
this section also apply to device-to-device communication.

The phrase “... the device shall (not) ...” defines a requirement of this standard. The phrase “... the controller should
(not) ...” refers to conditions that will (not) happen under normal conditions. The device's response to both normal and
exceptional conditions is defined by this standard.

The term “Query Message,” as used in this section, is a <PROGRAM MESSAGE> that contains one or more
<QUERY MESSAGE UNIT> elements. Note that all bracketed syntactic elements are defined in Sections 7. and 8.

The terms “Command Error,” “Execution Error,” “Query Error,” and “Standard Event Status Register” are defined in
Section 11.

6.1 Functional Elements

Fig 6-1 presents the relationship between the IEEE 488.1 bus, the Message Exchange Interface described in this
section, the Status Reporting functions described in Section 11., and the device-specific functions provided by the
device designer.

Figure 6-1—Device Status and Message Exchange Overview

Copyright © 1992 IEEE All Rights Reserved 25

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6.1.1 IEEE 488.1 Bus

The IEEE 488.1 bus, shown in both Figs 6-1 and 6-2, represents the physical IEEE 488.1 interface cable and drivers
as defined in IEEE Std 488.1-1987 [4].

Figure 6-2—Message Exchange Control Interface Functional Blocks

6.1.2 Status Reporting

The Status Reporting block appears only in Fig 6-1. Fig 6-2 does, however, display the status messages sent from the
Message Exchange Interface and the messages sent to the I/O Control.

The Status Reporting block receives error and status messages from the Message Exchange Interface and Device
Functions blocks. It also sends the STB, reqt, reqf, and IEEE 488.1 ist messages to the I/O Control, so that it can

26 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

respond to IEEE 488.1 Serial Poll and Parallel Poll requests. The Status Reporting block is described completely in
Section 11..

6.1.3 Message Exchange Interface

The Message Exchange Interface deals with all IEEE 488.1 device-dependent messages to and from the device.

Fig 6-2 presents a logical model that describes the operation of the device's Message Exchange Interface. It is not
intended to imply a particular physical implementation. Some handshaking signals between blocks have been omitted
to reduce the complexity of the diagram.

NOTE — For an example of an implementation of the Message Exchange Interface, see [20].

6.1.4 I/O Control

The I/O Control, shown in Figs 6-1 and 6-2, interprets and decodes IEEE 488.1 remote messages. Many of the
functions of this block are provided by commercial integrated circuits that have been designed to implement the
requirements of IEEE 488.1.

The I/O Control responds to IEEE 488.1 Serial Poll and Parallel Poll requests as directed by the STB, reqt, reqf, and
ist messages from the Status Reporting block, see Section 11. It generates the dcas, DAB, END, get, bav, and brq
messages that are sent to the Message Exchange Interface, and receives the DAB and END messages from the
Message Exchange Interface.

6.1.4.1 I/O Control Rules

6.1.4.1.1 I/O Control Sending Data Bytes

When brq is TRUE and oq-empty is FALSE, the I/O Control shall remove one byte from the Output Queue, set brq
FALSE, and send the byte to the controller using the IEEE 488.1 Source Handshake (SH) function. See 6.1.4.2.3.

6.1.4.1.2 I/O Control Receiving Data Bytes

When bav is TRUE and ib-full is FALSE, the I/O Control shall set bav FALSE and then place the associated DAB and
any accompanying END message into the Input Buffer using the IEEE 488.1 Acceptor Handshake (AH) function. See
6.1.4.2.4.

6.1.4.1.3 I/O Control Receiving IEEE 488.1 GET Message

When get is TRUE and ib-full is FALSE, the I/O Control shall set get FALSE and then place a GET message in the
Input Buffer.

NOTE — If the optional Trigger Control is implemented, the get message shall be sent to the Trigger Control rather than the Input
buffer. The get can be executed directly under certain conditions, see 6.1.11.

6.1.4.1.4 I/O Control Ordering of Received Messages

The I/O control shall preserve the order of received messages, including data bytes (DABs), END messages, Group
Execute Trigger, Device Clear, and Selected Device Clear.

The following example shows a design technique for preserving the order of received data bytes and the IEEE 488.1
remote interface messages: DCL, SDC, and GET.

Design the device's message interface for Device Clear handling as follows:

Copyright © 1992 IEEE All Rights Reserved 27

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

1) Design the IEEE 488.1 AH function to wait in ACDS when the Device Clear (DC) function enters the Device
Clear Active State (DCAS) until the I/O Control sets the dcas message TRUE.

2) Ensure that the I/O Control sets bav FALSE and discards the DAB before it releases the bus holdoff and
allows the device's AH function to accept a new data byte. Since the new data byte associated with the bav
message must have been received first with the bus being in a holdoff state during the receipt of the DCL or
SDC messages, proper sequencing is guaranteed.

Design the device's message interface for Device Trigger handling as follows:

1) Design the IEEE 488.1 AH function to wait in Accept Data State (ACDS) when the Device Trigger (DT)
function enters the Device Trigger Active State (DTAS) after a GET is received and until the I/O Control sets
the get message TRUE. This action is often called “NDAC bus holdoff.”

2) Have the I/O Control set bav FALSE and place the data byte in the Input Buffer before accepting the GET
message when the bav and get messages are both TRUE. Since the new data byte associated with the bav
message must have been received first with the bus being in a holdoff state during the receipt of the GET
message, proper sequencing is guaranteed.

3) Ensure that the I/O Control accepts the GET message (sets get TRUE) before it releases the bus holdoff and
allows the device's IEEE 488.1 AH function to accept a new data byte.

NOTE — The use of NDAC holdoff on GET allows the following situation when the Input Buffer is full. The device will assert
NDAC as long as the Input Buffer is full. The controller cannot communicate with the device. A Device Clear cannot
be sent. The only way to remove this condition is to have

The parser remove a DAB, END, or GET from the Input Buffer, or

The Device Function send the pon message to the Message Exchange Control

6.1.4.2 I/O Control Messages

This section describes the action of the I/O control IEEE 488.2 local messages.

6.1.4.2.1 Data Byte Message (DAB)

The DAB message is defined in IEEE 488.1. It consists of eight bits that are either sent or received by the device while
ATN is FALSE.

6.1.4.2.2 End Message (END)

The END message is defined in IEEE 488.1. It is sent with a DAB by setting EOI TRUE and ATN FALSE.

6.1.4.2.3 Byte Requested Message (brq)

The brq message indicates the readiness of the I/O Control to send a data byte to the controller.

The I/O Control shall set brq TRUE after the IEEE 488.1 SH function enters the IEEE 488.1 Source Generate state
(SGNS) and the T or TE function is in the Talker Active State (TACS). The brq message shall be set TRUE once and
only once for each transition into SGNS.

The I/O Control shall set brq FALSE when any of the following conditions occur:

1) The I/O Control sends a data byte from the Output Queue to the controller (see 6.1.4.1.1).
2) The device performs the INTERRUPTED action described in 6.3.2.3.
3) The device performs the UNTERMINATED action described in 6.3.2.2.
4) The I/O Control sets the dcas message TRUE.

28 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

5) The Message Exchange Control enters the IDLE state from the DONE or DEADLOCK states. No other
device or interface condition shall cause brq to be set FALSE.

6.1.4.2.4 Byte Available Message (bav)

The bav message indicates that the I/O Control has received a data byte and is ready to place it in the Input Buffer.

The I/O Control shall set bav TRUE after the IEEE 488.1 L or LE function is in the Listener Active State (LACS) and
the IEEE 488.1 Acceptor Handshake function enters the Accept Data State (ACDS). The bav message shall be set
TRUE once and only once for each transition from the Acceptor Ready State (ACRS) to ACDS.

The I/O Control shall set bav FALSE when any of the following conditions occur:

1) A data byte is placed in the Input Buffer. (If the device has a zero length Input Buffer, the I/O Control shall
set bav FALSE when the data byte is sent to the Parser.) See 6.1.4.1.2.

2) The dcas message is set TRUE. The associated data byte shall be discarded.

No other device or interface condition shall cause bav to be set FALSE. See 6.1.4.1.3.

6.1.4.2.5 Group Execute Trigger Message (get)

The IEEE 488.2 get message signals the transition of the IEEE 488.1 Device Trigger (DT) function to the Device
Trigger Active State (DTAS). This transition occurs when a IEEE 488.1 Group Execute Trigger (GET) remote
interface message is received while the device was addressed to listen. The get message can be used to initiate a
device-defined action or the action defined by the *DDT common command, see 10.4.

The device shall process data bytes and GET messages in the order received, see 6.1.4.1.4.

This standard specifies two methods for device triggering, the common command *TRG, see 10.37, and the IEEE
488.1 interface message GET. Typically, device triggering is used for two distinct purposes:

1) For the properly sequenced initiation of a device-defined or user-defined action within a single addressed
device

2) For the synchronized initiation of device-defined or user-defined actions within multiple addressed devices

For purpose (1), either GET or *TRG may be used for device triggering. The storage of either one in the Input Buffer
ensures that the trigger will be executed in the correct sequence in relation to other commands.

For purpose (2), where the required synchronization could be compromised by the software/ firmware processing
overhead, the optional Trigger Control Block may be used. When the Trigger Control Block receive a get message
from the I/O Control Block, it generates a trigger local message for immediate execution by the device, provided that
the Input Buffer is empty and the Parser and Execution Control are idle.

If the Input Buffer is not empty or if the Parser or Execution Control are not idle, the alternative GET message shall be
placed in the Input Buffer, and execution of the trigger shall be deferred until previous commands have been executed.

If the optional Trigger Control block (see 6.1.11) is implemented, the I/O Control shall send the get message to it.
Otherwise, the I/O Control shall place the GET message directly in the Input Buffer.

6.1.4.2.6 Device Clear Active State Message (dcas)

The I/O Control shall set the dcas message TRUE after the device enters the Device Clear Active State (DCAS)
defined by IEEE 488.1 . The device enters DCAS whenever it receives the Device Clear (DCL) remote command or it
receives the Selected Device Clear (SDC) remote command while it is addressed to listen.

Copyright © 1992 IEEE All Rights Reserved 29

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

When dcas is set TRUE, the Input Buffer and Output Queue shall be cleared; the Parser, Execution Control, and
Response Formatter shall be reset; and the device shall enter the Message Exchange IDLE state. The device also enters
Operation Complete Command Idle State (OCIS) and Operation Complete Query Idle State (OQIS), see 12.5, and
returns to normal operation after the *AAD or *DLF commands, see Section 13.

The I/O Control shall set the dcas message FALSE when these actions are completed and the Message Exchange
Control enters the IDLE state. Device Clear requirements are summarized in 5.8.

The device shall ensure that data bytes and DCL or SDC are processed in the order received. If the device receives a
new data byte while dcas is TRUE, it shall not discard the data byte or set bav FALSE.

6.1.4.2.7 Response Message Terminator Sent Message (RMT-sent)

The I/O Control block shall set the RMT-sent message TRUE when it has sent the <RESPONSE MESSAGE
TERMINATOR>.

Receipt of TRUE bav or brq messages shall cause the I/O Control to set the RMT-sent message FALSE.

6.1.5 Input Buffer

The Input Buffer, shown in Fig 6-2, stores DABs, GET messages, and END messages. The Input Buffer then delivers
these messages to the Parser in the order that they were received from the I/0 Control. The dcas message shall not be
stored in the Input Buffer, as this could result in the device not being able to immediately respond to dcas.

The Input Buffer shall be implemented as a first-in first-out data structure. Data bytes, END, and GET messages are
placed into the Input Buffer by the I/O Control as the device handshakes them from the IEEE 488.1 bus. The details
of when and how items are placed into the Input Buffer are described in 6.1.4.1.2, 6.1.4.1.3, and 6.1.4.1.4 on I/O
Control Receiving. DABs, END, and GET messages are removed from the Input Buffer by the Parser at a rate
consistent with the capabilities of the Parser and the associated execution of commands.

6.1.5.1 Input Buffer Rules

6.1.5.1.1 Input Buffer Length

The Input Buffer shall be equal to or greater than zero in length. The Input Buffer's length may be fixed at some
number of bytes or program messages, or its length may vary. The Input Buffer length shall be specified in the user
documentation.

The operation of the Input Buffer is transparent to application programs, except as a performance improvement.
Devices that can accept program messages faster than they can execute them should have Input Buffers long enough
to allow the storing of a reasonably sized program message. This buffering will allow application programs to send
messages to the device and then continue to use the system bus for other purposes while the device is taking the time
it needs to respond.

For example, a digital plotter responds to commands slowly due to the need to allow for pen movement. If a typical
length program message for the device is 80 bytes, the device should have an Input Buffer of at least 80 bytes.

The device designer must consider the application of the device when choosing an Input Buffer length. A larger Input
Buffer is useful in smart, highly-independent test instruments that use complex <PROGRAM MESSAGE> elements.
These complex <PROGRAM MESSAGE> elements may require a significant time to process. In some systems, this
time can be used for tasks other than waiting for this device to finish processing a <PROGRAM MESSAGE>.
Increasing buffer length, however, requires the user to be more careful about synchronization within the system.

30 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

If a zero length Input Buffer is used, the system interface provides a source of synchronization. With this very short
Input Buffer, the device can never fall behind the controller. If a DAB or GET is sent, it will be processed immediately
by the device.

NOTE — Most commercial integrated circuits that implement the requirements of IEEE 488.1 provide at least a 1 byte internal
data buffer.

6.1.5.1.2 Input Buffer Overflow

The Input Buffer shall not overflow. If the buffer is full, the device shall not enter the IEEE 488.1 Acceptor Ready
State (ACRS) while in Listener Active State (LACS) (NRFD holdoff). After the Parser removes an item from the Input
Buffer, the I/O control may accept another item from the system interface. No error shall be reported when the Input
Buffer fills unless the device becomes deadlocked, see 6.3.1.7 and 6.5.7.4.

6.1.5.1.3 Input Buffer Clearing

The Input Buffer shall be cleared when pon or dcas is TRUE. No device or interface condition is allowed to keep the
clear operation from taking place. Except for the emptying during normal message processing and the actions of pon
and dcas, no other interface or device condition shall be allowed to clear the Input Buffer. The Input Buffer is cleared
to ensure that the device will be ready to receive and execute new <PROGRAM MESSAGE> elements following
dcas.

6.1.5.2 Input Buffer Messages

6.1.5.2.1 Input Buffer Empty Message (ib-empty)

The Input Buffer Empty message, ib-empty, shall be TRUE when the parser attempts to remove an item from the Input
Buffer and the Input Buffer is empty. The ib-empty message shall be set FALSE when I/O Control Block places a
DAB, END, or GET message into the Input Buffer.

6.1.5.2.2 Input Buffer Full Message (ib-full)

The Input Buffer Full message, ib-full, shall be TRUE when the Input Buffer is full. The ib-full message shall be
FALSE at all other times.

6.1.6 Parser

The Parser, shown in Fig 6-2, is the logical portion of a device that takes DABs, END messages, and GET messages
from the Input Buffer and analyzes them by separating out the various IEEE 488.2 syntactic elements. It reports invalid
syntax or headers to the Status Reporting block as Command Errors. The Parser converts syntactic elements into an
internal representation which is sent to the Execution Control. The Parser also generates the eom and query messages
when it recognizes these syntactic elements.

A <PROGRAM MESSAGE> or <PROGRAM MESSAGE UNIT> is considered “parsed” when it has been analyzed
by the Parser and the Parser is ready to continue analyzing other <PROGRAM MESSAGE UNIT> elements.

6.1.6.1 Parser Rules

6.1.6.1.1 Parser Errors

The Parser shall detect Command Errors and report them to the Status Reporting block by setting the Command Error
bit in the Standard Event Status Register, see 11.5.1.1.4.

Copyright © 1992 IEEE All Rights Reserved 31

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The Parser shall report a Command Error if it finds a syntax error in a <PROGRAM MESSAGE>, if it finds an
unrecognized header, if it finds a parameter (<PROGRAM DATA> element) that is of the wrong type for its associated
header, or if it encounters a GET message between the first byte of a <PROGRAM MESSAGE> and the <PROGRAM
MESSAGE TERMINATOR>.

When a Command Error is detected, the device shall determine what will be done with any prior parsable elements of
the same <PROGRAM MESSAGE>. The device is allowed to either discard or attempt to execute any such parsable
elements.

When a Command Error occurs, the Parser shall discard all subsequent DABs and GET messages until either

1) dcas is TRUE.
2) pon is TRUE.
3) eom is TRUE.
4) brq is TRUE and ib-empty is TRUE.

The device designer may also choose to stop discarding DABs and GET messages for other device-defined conditions
such as receipt of a comma, semicolon, or NL. The Parser is reset when any of these conditions is met.

NOTE — The device does not empty the Input Buffer after a Command Error. The Parser discards DABs and GET messages until
it has detected one of the above conditions. The device will then resume normal parsing and executing of messages.

6.1.6.1.2 Parser Resetting

When the Parser is reset, it shall interpret the next data byte it receives as the first byte of a <PROGRAM MESSAGE>.
The Parser shall be reset when dcas or pon is TRUE. No device or interface condition is allowed to keep the reset
operation from taking place. Other conditions that can reset the Parser are described in 6.1.6.1.1.

6.1.6.2 Parser Messages

6.1.6.2.1 Parsed Message Element

A Parsed Message Element represents the device's internal representation of all or part of a <PROGRAM
MESSAGE>.

6.1.6.2.2 End of Message Detected Message (eom)

The Parser shall set the End of Message Detected message, eom, TRUE when any of the following conditions occurs:

1) When it receives an END message or a sequence of data bytes making up a <PROGRAM MESSAGE
TERMINATOR>, see 7.5, from the Input Buffer

2) After it parses a GET message, except when the GET occurs between the first byte of a <PROGRAM
MESSAGE> and the <PROGRAM MESSAGE TERMINATOR>, see 6.1.6.1.1.

3) When the Trigger Control block has passed the trigger message to the Device Functions block

The Parser shall set the eom message FALSE when any of the following conditions occurs:

1) When it is reset
2) When it receives any other DAB or GET message from the Input Buffer

When the Parser has received a GET message from the Input Buffer or the Trigger Control block has passed a trigger
message to the Device Functions block, any associated query message shall be set TRUE prior to setting the eom
message TRUE. This ensures a proper sequence of execution of Message Exchange block transitions, see Fig 6-4.

32 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.1.6.2.3 Query Detected Message (query)

The Parser shall set the Query Detected message, query, TRUE when it receives any of the following:

1) A sequence of data bytes making up a valid <QUERY PROGRAM HEADER> that is not a macro label
2) A valid <COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER> that is a macro label,

where the macro is defined to include a <QUERY MESSAGE UNIT>
3) A GET message or *TRG command (or, if implemented, the trigger message), where the device implements

the *DDT common command and the device trigger action defined by the *DDT command includes a
<QUERY MESSAGE UNIT>

4) A GET message or *TRG command (or, if implemented, the trigger message), where the device does not
implement the *DDT common command and the device trigger action specified by the device designer is to
generate a <RESPONSE MESSAGE>

“Valid <QUERY PROGRAM HEADER>” means that all characters up to and including the “?” represent a valid
query mnemonic or macro label, and the characters immediately following the “?” form a legal separator or terminator.

“Valid <COMMAND PROGRAM HEADER>” means that the header represents a valid command mnemonic or
macro label, and the characters immediately following the mnemonic form a legal separator or terminator.

For example,

*XYZ? is not a valid <QUERY PROGRAM HEADER> because there is no “*XYZ?” common query.

*ESR?X is not a valid <QUERY PROGRAM HEADER> because “X” is not a separator or terminator.

*IDN? 42 is a valid <QUERY PROGRAM HEADER>, although the argument is incorrect. A Command Error will be
generated for all of the three conditions listed above.

The Parser shall set query FALSE when it is reset or when it receives any other DAB or GET message from the Input
Buffer.

6.1.6.2.4 Parser Idle Message (p-idle)

The Parser shall set the Parser Idle message, p-idle, TRUE when the Parser has parsed all prior messages and is not
actively processing a valid <COMMAND PROGRAM MESSAGE> or a valid <QUERY PROGRAM MESSAGE>.
The Parser shall set p-idle FALSE at all other times.

6.1.6.2.5 Parser Blocked message (p-blocked)

The Parser shall set the Parser Blocked message, p-blocked, TRUE when the Parser is waiting for the Execution
Control to finish processing the previous. Parsed Message Element. The Parser shall set p-blocked FALSE at all other
times.

6.1.7 Execution Control

The Execution Control block, shown in Fig 6-2, deals with coupled parameters (see 6.4.5.3), queries that require a
device action before they can generate a <RESPONSE MESSAGE>, and the device synchronization commands
described in Section 12.. The Execution Control determines when the device has enough information to execute a
command. When the Execution Control has gathered enough information to initiate a device action, it sends an
Executable Message Element to the Device Functions block. The Execution Control may wait for the resulting device
actions to complete .(Sequential Command) or may continue processing commands (Overlapped Command),
depending on the command. See 12.2. A <PROGRAM MESSAGE UNIT> is considered “executed” when it has been

Copyright © 1992 IEEE All Rights Reserved 33

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

parsed and all corresponding device operations have been either completed (Sequential Command) or initiated
(Overlapped Command).

6.1.7.1 Execution Control Rules

6.1.7.1.1 Execution Control Errors

The Execution Control shall detect Execution Errors and report them to the Status Reporting block, see 11.5.1.1.5.

6.1.7.1.2 Execution Control Resetting

When the Execution Control is reset, prior history will not affect the execution of new <PROGRAM MESSAGE>
elements received after dcas or pen. The Execution Control shall be reset when INTERRUPTED, or when dcas or pen
is TRUE. No device or interface condition is allowed to keep the reset operation from taking place. No other interface
or device condition shall reset the Execution Control.

6.1.7.2 Execution Control Messages

6.1.7.2.1 Executable Message Element

An Executable Message Element is a directive to the Device Functions block to perform some device-specific action.
This may take the form of a Valid Query Request or a nonquery Executable Message Element.

A Valid Query Request is an Executable Message Element that causes the Device Functions block to send data to the
Response Formatter. A nonquery element performs device-specific action but does not send Response Data to the
Response Formatter. A single <PROGRAM MESSAGE UNIT> may cause more than one Executable Message
Element to be sent.

For example, a query that starts a measurement and returns the results when the measurement is complete might
require two Executable Message Elements: a nonquery element to start the measurement and a Valid Query Request to
send the results to the Response Formatter.

The Execution Control also shall maintain the order of creating <RESPONSE MESSAGE UNIT> elements, as
required by 6.4.5.4, by sending the Valid Query Requests that are associated with previous received <QUERY
MESSAGE UNITS> that are already sent to the Device Functions block.

6.1.7.2.2 Execution Control Idle Message (ec-idle)

The Execution Control shall set the Execution Control Idle Message, ec-idle, TRUE when the following conditions
occur:

1) All deferred commands have been executed.
2) Execution Control is remedy to accept a new command or query from the Parser, and

a) Execution Control is reset, or
b) All previous commands have been executed

The Execution Control shall set ec-idle FALSE at all other times.

6.1.7.2.3 Execution Control Blocked Message (ec-blocked)

The Execution Control shall set the Execution Control Blocked message, ec-blocked, TRUE when it is ready to send
a Valid Query Request to the Device Functions block but must wait for the Response Formatter and Device Functions
block to process a prior Valid Query Request. The Execution Control shall set ec-blocked FALSE at all other times.

34 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.1.8 Device Functions

The Device Functions block, shown in both Figs 6-1 and 6-2, contains all device-specific features and functions. It
accepts Executable Message Elements from the Execution Control and performs the associated operations.

6.1.8.1 Device Functions Rules

The Device Functions block shall accept Valid Query Requests from the Execution Control and shall send any required
Response Data to the Response Formatter. All implemented IEEE 488.2 common query commands and all device-
specific query commands shall be handled in this manner.

The Device Functions block shall report device status information to the Status Reporting block, Section 11.

6.1.8.2 Device Functions Messages

6.1.8.2.1 Power-On Message (pon)

The Device Functions block shall generate the pon local message as described in IEEE 488.1.

When pon is set TRUE, the Input Buffer and Output Queue shall be cleared; the Parser, Execution Control, and
Response Formatter shall be reset; and the device shall enter the Message Exchange IDLE state. The device also enters
Operation Complete Command Idle State (OCIS) and Operation Complete Query Idle State (OQIS), see 12.5. The pon
message may also affect device-specific settings, see 5.12. The Device Functions block shall set the pon message
FALSE when these actions are completed and the Message Exchange Control enters the IDLE state, see 6.3.1.1.

6.1.8.2.2 Response Data

Response Data is data provided by the device in response to <QUERY MESSAGE UNIT> elements that have been
parsed and sent to the device in the form of Executable Message Elements (Valid Query Requests). Response Data is
unformatted and may only be tokens representing the actual data to be formatted.

6.1.9 Response Formatter

The Response Formatter, shown in Fig 6-2, builds a <RESPONSE MESSAGE> out of Response Message Elements
from Valid Query Requests and response data. The <RESPONSE MESSAGE> is placed into the Output Queue. The
Response Formatter's primary responsibility is to convert the internal representation of data elements into a sequence
of data bytes according to the syntax rules in Section 8.

6.1.9.1 Response Formatter Rules

The Response Formatter shall delimit all but the last <RESPONSE MESSAGE UNIT> in the <RESPONSE
MESSAGE> with a <RESPONSE MESSAGE UNIT SEPARATOR> (“;”, see 8.4.1), and the last <RESPONSE
MESSAGE UNIT> in the <RESPONSE MESSAGE> with the <RESPONSE MESSAGE TERMINATOR>.

The Response Formatter shall be reset when dcas or pon is TRUE. No device or interface condition is allowed to keep
the reset operation from taking place. The Response Formatter is reset so that any new <RESPONSE MESSAGE>
elements will not be affected by conditions that existed before dcas or pon.

6.1.9.2 Response Formatter Messages

6.1.9.2.1 Response Message Element

A Response Message Element represents a device's internal representation of all or part of a <RESPONSE
MESSAGE>.

Copyright © 1992 IEEE All Rights Reserved 35

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6.1.9.2.2 Response Formatter Blocked Message (rf-blocked)

The Response Formatter shall set the Response Formatter Blocked message, rf-blocked, TRUE when it has a
<RESPONSE MESSAGE UNIT> to be placed in the Output Queue and the Output Queue Full message, oq-full, is
TRUE. The Response Formatter shall set rf-blocked FALSE at all other times.

6.1.10 Output Queue

The Output Queue, shown in Fig 6-2, stores device-to-controller messages until the controller reads them. The
Response Formatter places DAB and END messages into the Output Queue in response to query commands. These
bytes are removed from the Output Queue as they are read by the controller.

The Output Queue shown in Fig 6-2 is a logical model. The Output Queue in a real device may store the individual
bytes of the <RESPONSE MESSAGE> or tokens that represent <RESPONSE MESSAGE> elements. The device
designer may also use other means of determining the response to be generated.

The device designer should provide an Output Queue large enough to handle reasonably long <RESPONSE
MESSAGE> elements. The actual length chosen will depend on the characteristics of the device. To avoid overflowing
a physical buffer, the device designer may defer the formatting of lengthy <RESPONSE MESSAGE> elements until
the controller requests output. The device designer should ensure that the size and operation of the Output Queue are
adequate to make a deadlock unlikely, see 6.5.7.4.

NOTE — Certain integrated circuits contain a one byte buffer, which operates as part of the Output Queue when MAV is generated
(see 6.1.10.2) and “Clear the Output Queue” is executed. A device designer cannot disregard this buffer. See 6.3.2.1(2),
6.3.2.2(2), and 6.3.2.3(2).

6.1.10.1 Output Queue Rules

The Output Queue shall be cleared when pon or dcas is TRUE. Note that this is not a Query Error. A Query Error shall
be reported if the contents of the Output Queue are discarded for any other reason, see 6.3.1.7, 6.3.2.2, and 6.3.2.3.

6.1.10.2 Output Queue Messages

6.1.10.2.1 Message Available Message (MAV)

The Output Queue shall send the MAV message to the Status Reporting block. As long as the Output Queue contains
one or more bytes, MAV shall be TRUE. MAV shall be FALSE when the Output Queue is empty, except as indicated
below. See 11.2.1.2.

When the device defers generation of Response Data until brq is TRUE, the MAV message shall be set TRUE when
the device is ready to generate the Response Data. See 6.4.5.4.

6.1.10.2.2 Output Queue Full Message (oq-full)

The Output Queue Full message, oq-full, shall be TRUE when the Output Queue is full. The oq-full message shall be
FALSE at all other times.

6.1.10.2.3 Output Queue Empty Message (oq-empty)

The Output Queue Empty message, oq-empty, shall be TRUE when the Output Queue is empty. The oq-empty
message shall be FALSE at all other times.

36 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.1.11 Trigger Control

The Trigger Control block, shown in Fig 6-2, is optional. It allows for high-speed hardware execution of GET
messages without violating the rules of execution order.

The GET message is commonly used to trigger a device-specific action or set of actions within a single addressed
device. It is also used to trigger synchronized actions across multiple addressed devices. In this and other cases in
which it may be necessary to avoid the software/firmware execution time overhead incurred in the Input Buffer, Parser,
and Execution Control blocks, the device designer may choose to implement the Trigger Control block.

If the Trigger Control block is implemented, GET messages are not sent directly to the Input Buffer from the I/O
Control. Instead, get is sent to the Trigger Control block, which either sends a trigger message directly to the Device
Functions block, or places a GET in the Input Buffer.

6.1.11.1 Trigger Control Rules

The Trigger Control block shall detect the get message and check ib-empty (from the Input Buffer), p-idle (from the
Parser), and ec-idle (from the Execution Control). If all four of these messages are TRUE, the Trigger Control block
shall send the trigger message to the Device Functions block. If either ib-empty, p-idle, or ec-idle is FALSE, the
Trigger Control block shall place the GET message in the Input Buffer.

NOTE — The implementation of this optional Trigger Control block does not affect the device's response to GET nor does it relax
the requirement of sequential processing of GET messages and DABs. This block only facilitates highspeed operation.

6.1.12 Message Exchange Control

The Message Exchange Control represents the interconnection of control messages between the Output Queue,
Response Formatter, Input Buffer, Parser, Execution Control, I/O Control, and Device Functions blocks.

6.2 Protocol Overview

This protocol overview describes the normal operation of the device message exchange protocol. It is not a detailed
specification of the protocol, nor does it cover any protocol exceptions. The detailed specification of the device
message exchange protocol begins in 6.3.

Fig 6-3 shows the Message Exchange states and transitions encountered during normal operation of the device. It does
not show certain required states and transitions associated with error recovery. Paragraph 6.13 and Fig 6-4 describe the
complete Message Exchange State Diagram, with the dashed lines indicating the exception or error cases.

Figs 6-3 and 6-4 use a different format from IEEE 488.1 to reinforce that Message Exchange Control is done at a level
higher than IEEE 488.1 .

6.2.1 Initialization

After power on or dcas, the Message Exchange Control shall wait in the IDLE state for a <PROGRAM MESSAGE>
or GET message from the controller. The device shall not send a <RESPONSE MESSAGE> to the controller until it
receives a valid Query Message from the controller. The controller will not normally attempt to read data from the
device until it has sent a Query Message to the device.

6.2.2 Command Processing

When the device receives a <PROGRAM MESSAGE> from the controller while in the READ state,

1) The I/O Control places the bytes of the message into the Input Buffer.

Copyright © 1992 IEEE All Rights Reserved 37

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

2) The Parser removes the bytes from the Input Buffer and identifies the syntactic components of the message
according to the syntax rules in Section 7.

3) The Execution Control directs the Device Functions block to perform the actions associated with the
message.

The device may accept the bytes of another <PROGRAM MESSAGE> and place them in the Input Buffer before it has
finished processing prior <PROGRAM MESSAGE> elements.

6.2.3 Query Processing

Query Processing is handled in the QUERY, SEND, RESPONSE, and DONE states. If a <PROGRAM MESSAGE>
contains one or more queries, the device prepares a <RESPONSE MESSAGE> for the controller and places it in the
Output Queue. After the controller finishes sending the Query Message to the device, it will address the device to talk
and start reading the <RESPONSE MESSAGE>. The controller will not normally send another <PROGRAM
MESSAGE> to the device until it has finished reading the <RESPONSE MESSAGE>.

Figure 6-3—Message Exchange Control State Diagram (Simplified)

38 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.3 Message Exchange Control Operation

The Message Exchange Control State Diagram, Fig 6-4, precisely defines how messages from the I/0 Control,
described in 6.1.4, cause the device to either receive or send messages. The interactions between the blocks in the
Message Exchange Control Interface, Fig 6-2, are shown in detail. Fig 6-3 includes only those states and transitions
encountered during “normal” operation of the device. Fig 6-4 includes the additional states and transitions necessary
to detect Message Exchange Protocol errors. (These additional states and transitions are shown with dashed lines.)

6.3.1 Message Exchange Control States

At any time, the device is in one of the Message Exchange states. Depending on the state, various functional elements
from Fig 6-2 are active or inactive. Transitions are caused by the logical combination of messages from the functional
elements.

Figure 6-4—Message Exchange control State Diagram (Complete)

Copyright © 1992 IEEE All Rights Reserved 39

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6.3.1.1 IDLE State

In the IDLE state, the device is waiting for a message from the controller. The next data byte received shall be
interpreted as the beginning of a new <PROGRAM MESSAGE>. The Output Queue is empty.

The Message Exchange Control shall enter the READ state when either

1) The I/O Control sets bav TRUE, indicating that a data byte is available.
2) The I/O Control sets get TRUE.
3) ib-empty is FALSE. This condition can occur when the device has entered the IDLE state from the READ or

DEADLOCK state.

The Message Exchange Control shall stay in the IDLE state when

1) brq is TRUE.
2) bav is FALSE.
3) get is FALSE.
4) ib-empty is TRUE.

This occurs when the device has been addressed to talk and has nothing to say. The device shall perform the
UNTERMINATED action described in 6.3.2.2.

The Message Exchange Control shall stay in the IDLE state when either the dcas or pon is TRUE. The device shall
perform the INITIALIZE action described in 6.3.2.1.

6.3.1.2 READ State

In the READ state, the I/O Control shall read data bytes, GET, and END messages from the IEEE 488.1 bus and place
them in the Input Buffer as described in 6.1.4. The Parser and Execution Control are active, and the Output Queue is
empty.

The Message Exchange Control shall enter the IDLE state when either dcas or pon is TRUE. The device shall perform
the INITIALIZE action described in 6.3.2.1.

The Message Exchange Control shall enter the IDLE state when each of the following conditions occur:

1) brq is TRUE.
2) bay is FALSE, and
3) get is FALSE.
4) ib-empty is TRUE.

The device shall perform the UNTERMINATED action described in 6.3.2.2.

NOTE — Entering the IDLE state without terminating the <RESPONSE MESSAGE> could result in a controller time-out when
the expected data is not sent. When this happens, an *ESR? (Standard Event Status Register Query, see 10.12) can be
used to determine that no data was sent because a Query Error had occurred.

The Message Exchange Control shall enter the IDLE state when the Parser sets eom TRUE.

The Message Exchange Control shall enter the QUERY state when the Parser sets query TRUE. See 6.1.6.2.3.

40 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.3.1.3 QUERY State

In the QUERY state the Parser has recognized a valid query within a <PROGRAM MESSAGE>. The I/O Control shall
continue to read data bytes from the IEEE 488.1 bus and place them in the Input Buffer as described in 6.1.4.2.4. The
Parser and Execution Control are active. The device may format its <RESPONSE MESSAGE> at this time, or it may
wait until the Message Exchange Control is in the SEND or RESPONSE states, see 6.4.5.4.

The Message Exchange Control shall enter the SEND state when brq is TRUE and an eom has not been parsed. This
transition indicates that the controller has started to read the response.

The Message Exchange Control shall enter the RESPONSE state when the Parser sets eom TRUE, bav is FALSE, get
is FALSE, and ib-empty is TRUE. This transition indicates that the device has finished processing the Query Message
and is waiting for the controller to read the response.

The Message Exchange Control shall enter the DEADLOCK state when all of the following Occur:

1) The I/O Control sets bav or get TRUE, indicating that the controller is waiting to send data to the device.
2) ib-full is TRUE.
3) p-blocked is TRUE.
4) ec-blocked is TRUE.
5) rf-blocked is TRUE.
6) oq-full is TRUE.

This transition shall cause the device to set the Query Error bit in the Standard Event Status Register, clear the Output
Queue, and reset the Response Formatter.

The Message Exchange Control shall enter the READ state when the following conditions Occur:

1) eom is TRUE, and either
2) bav is TRUE, or
3) get is TRUE, or
4) ib-empty is FALSE.

The device shall perform the INTERRUPTED action described in 6.3.2.3.

The Message Exchange Control shall enter the IDLE state when either dcas or pon is TRUE. The device shall perform
the INITIALIZE action described in 6.3.2.1.

6.3.1.4 SEND State

In the SEND state, the controller has started to read the <RESPONSE MESSAGE> from the device. The device
continues to parse and execute the Query Message stored in the Input Buffer. The Response Formatter prepares the
<RESPONSE MESSAGE> and places it in the Output Queue. The I/O Control shall send data bytes from the Output
Queue to the controller as described in 6.1.4.2.3.

The Message Exchange Control shall enter the RESPONSE state when eom is TRUE, bav is FALSE, get is FALSE,
and ib-empty is TRUE.

The Message Exchange Control shall enter the IDLE state when all of the following conditions occur:

1) eom is FALSE.
2) bay is FALSE.
3) get is FALSE.
4) ib-empty is TRUE.

Copyright © 1992 IEEE All Rights Reserved 41

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The device shall perform the UNTERMINATED action described in 6.3.2.2.

The Message Exchange Control shall enter the READ state when any of the following conditions occur:

1) bav is TRUE.
2) get is TRUE.
3) The Parser sets eom TRUE and ib-empty is FALSE.

This condition indicates that the controller started sending a new message before reading all of the response. The
device shall perform the INTERRUPTED action described in 6.3.2.3.

The device shall enter the IDLE state when either dcas or pon is TRUE. The device shall perform the INITIALIZE
action described in 6.3.2.1.

6.3.1.5 RESPONSE State

In the RESPONSE state, the Parser has received a <PROGRAM MESSAGE TERMINATOR> and the device is
sending the complete <RESPONSE MESSAGE> to the controller. The Response Formatter formats the
<RESPONSE MESSAGE> and the I/O Control sends data bytes from the Output Queue to the controller as described
in 6.1.4.2.3.

The Message Exchange Control shall enter the DONE state when the complete <RESPONSE MESSAGE>, including
the <RESPONSE MESSAGE TERMINATOR>, has been sent.

The Message Exchange Control shall enter the READ state when either of the following conditions occur:

1) bav is TRUE.
2) get is TRUE.

This transition indicates that the controller attempted to send a new message before reading the complete
<RESPONSE MESSAGE>. The device Shall perform the INTERRUPTED action described in 6.3.2.3.

The Message Exchange Control shall enter the IDLE state when either dcas or pon is TRUE. The device shall perform
the INITIALIZE action, see 6.3.2.1.

A device may have nothing to say while the Message Exchange Control is in the RESPONSE state if all of the queries
in the Query Message failed to generate any <RESPONSE DATA> because of syntax (Command), semantic
(Execution), or device-specific errors. The device shall not send a <RESPONSE MESSAGE TERMINATOR> to the
controller. The Message Exchange Control shall remain in the RESPONSE state until it either receives a data byte or
GET message from the controller or the pon or dcas message becomes TRUE.

6.3.1.6 DONE State

In the DONE state, the device has finished sending a <RESPONSE MESSAGE> to the controller and is waiting for
a new <PROGRAM MESSAGE> or GET from the controller The Parser, Execution Control, and Response Formatter
are inactive and the Input Buffer and Output Queue are empty.

The Message Exchange Control shall enter the READ state and set brq FALSE when either

1) bav is TRUE, indicating that a new <PROGRAM MESSAGE> has been started, or
2) get is TRUE.

The Message Exchange Control shall enter the IDLE state when either dcas or pon is TRUE. The device shall perform
the INITIALIZE action described in 6.3.2.1.

42 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

6.3.1.7 DEADLOCK State

In the DEADLOCK state, the device has been asked to buffer more data than it has room to store. The Output Queue
is full, blocking the Response Formatter, Execution Control, and Parser. The Input Buffer is full, and the controller is
waiting to send more data bytes. to the device.

The Message Exchange Control breaks the deadlock by clearing the Output Queue and resetting the Response
Formatter as it enters the DEADLOCK state (transition from QUERY to DEADLOCK, see 6.3.1.3). The Message
Exchange Control also sets the Query Error bit in the Standard Event Status Register. While in the DEADLOCK state,
the Message Exchange Control shall continue to parse and execute <PROGRAM MESSAGE UNIT> elements as
usual, except that it shall discard query responses rather than place them into the Output Queue.

The Message Exchange Control shall enter the IDLE state and set brq FALSE when either of the following conditions
occur:

1) The Parser sets eom TRUE. When the controller attempts to read the <RESPONSE MESSAGE>, the device
shall not send any data bytes. Note that not sending any data bytes may cause the controller to time out.
When this happens, an *ESR? (Standard Event Status Register Query, see 10.13.6) can be used to determine
that no data was sent because a Query Error had occurred.

2) Either dcas or pon is TRUE. The device shall perform the INITIALIZE action described in 6.3.2.1.

6.3.2 Message Exchange Control Transition Actions

Certain transitions among the states are important enough to be named. The actions caused by the transitions are
essential for reliable error detection, reporting, and recovery.

6.3.2.1 INITIALIZE Action

The INITIALIZE action is executed when the IEEE 488.2 communication channel is to be cleared.

The device shall perform each of the following actions:

1) Clear the Input Buffer.
2) Clear the Output Queue.
3) Reset the Parser.
4) Reset the Execution Control.
5) Reset the Response Formatter.

No error condition shall be reported.

6.3.2.2 UNTERMINATED Action

The UNTERMINATED action is executed when the controller attempts to read a <RESPONSE MESSAGE> from
the device without first having sent a complete Query Message, including the <PROGRAM MESSAGE
TERMINATOR>, to the device.

The device shall perform each of the following actions:

1) Set the Query Error bit in the Standard Event Status Register.
2) clear the Output Queue.
3) Optionally execute any <PROGRAM MESSAGE UNIT> elements from the incomplete message. If it

executes any of the <PROGRAM MESSAGE UNIT> elements, it shall also execute all previous
<PROGRAM MESSAGE UNIT> elements from the same message.

Copyright © 1992 IEEE All Rights Reserved 43

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

4) Discard any partially parsed <PROGRAM MESSAGE UNIT> so that the Parser will be ready to parse a new
<PROGRAM MESSAGE UNIT>.

5) Set brq FALSE.

6.3.2.3 INTERRUPTED Action

The INTERRUPTED action is executed when the device is interrupted by a new <PROGRAM MESSAGE> before it
finishes sending a <RESPONSE MESSAGE>.

The device shall perform each of the following actions:

1) Set the Query Error bit in the Standard Event Status Register.
2) Clear the Output Queue.
3) Reset the Execution Control and Response Formatter so that, when the device receives a new <QUERY

MESSAGE UNIT>, the correct <RESPONSE MESSAGE> will be sent.
4) Set brq FALSE.

6.4 Protocol Rules

6.4.1 Program Message Transfer

The device shall exchange messages with the controller in accordance with IEEE 488.1 and the syntax rules of
Sections 7. and 8..

The device shall not treat IFC or any ATN-true IEEE 488.1 command or address (except for SDC addressed to the
device, DCL or GET) as a message terminator. The controller may freely intersperse ATN-true commands (except
DCL, SDC, and GET) and messages addressed to other devices among the bytes of messages to or from the device
without affecting the contents or interpretation of a message. Such commands may cause the device to suspend
sending a device-te-controller message; but, when the device reenters TACS, the device shall resume sending the rest
of the message. The device shall also be undisturbed in processing a controller-to-device message that is suspended
due to the conditions mentioned. The device shall resume accepting the rest of a message when the device is again
addressed to listen and ATN is set FALSE.

6.4.2 Message Source Independence

The device shall interpret received messages without reference to the source of the message.

Devices (for example, bus repeaters or diagnostic instruments) may record talker and listener addresses and may return
such a record in response to a query, but they shall not ignore messages or interpret them differently on the basis of
such information.

6.4.3 Message Exchange Sequence

The controller and device exchange complete <PROGRAM MESSAGE> and <RESPONSE MESSAGE> elements
except as described under “Protocol Exceptions,” see 6.5.

Message exchanges are initiated by the controller. The device shall not generate a <RESPONSE MESSAGE> until it
receives one of the following Query Messages:

1) A sequence of data bytes making up a valid <QUERY PROGRAM HEADER> that is not a macro label
2) A valid <COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER> that is a macro label,

where the macro is defined to include a <QUERY MESSAGE UNIT>

44 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

3) A GET message or *TRG command, where the device implements the *DDT common command and the
device trigger action defined by the *DDT command includes a <QUERY MESSAGE UNIT>

4) A GET message or *TRG command, where the device does not implement the *DDT common command and
the device trigger action specified by the device designer is to generate a response message

See 6.1.6.2.3.

The device shall generate exactly one <RESPONSE MESSAGE> for each Query Message it receives. A <QUERY
MESSAGE UNIT> may return one or more <RESPONSE MESSAGE UNIT> elements.

For example:

A DVM is asked to take five separate readings and return them in a single <RESPONSE MESSAGE>.

Command: MEAS FIVE? <PMT>

Response: 6; 2; 9; 2; 4 <RMT>

A DVM is asked to return all its setting information about its OHMS function.

Command: OHMS SET? <PMT>

Response: RANGE 100; AVGS 10;... ;AUTOZERO 1 <RMT>

Device documentation shall clearly indicate any <QUERY MESSAGE UNIT> that returns more than one
<RESPONSE MESSAGE UNIT>.

The device shall interpret a GET message in the same way as a <PROGRAM MESSAGE> element. The device shall
report a Command Error if it encounters a GET message between the first byte of a <PROGRAM MESSAGE> and the
<PROGRAM MESSAGE TERMINATOR>.

The controller should not attempt to read any part of a <RESPONSE MESSAGE> from the device until it has sent the
entire Query Message to the device. The controller should not send any part of another <PROGRAM MESSAGE> to
the device; until it has read the entire <RESPONSE MESSAGE> from the device. The device shall detect the
controller's failure to follow this protocol and shall act as described under “Protocol Exceptions,” see 6.5.

After pon or after receiving dcas, the device shall wait for a <PROGRAM MESSAGE> from the controller. During
this time, it may assert the IEEE 488.1 SRQ (service request) signal and shall interpret and respond to IEEE 488.1
interface messages (for example, Serial Poll); but it shall not automatically generate any <RESPONSE MESSAGE>
elements.

At any given time, the device is doing one of the following things:

1) The device is idle, waiting for a message from the controller. The controller may be idle or may be
communicating with some other device(s) on the system bus. (The Message Exchange Control is in the
IDLE or DONE state.)

2) The device is receiving a message from the controller. The controller may interrupt the transfer to perform a
serial poll or to communicate with other devices, but should not attempt to read data bytes from the device
until it has sent a <PROGRAM MESSAGE TERMINATOR>, see 7.5, to the device. (The Message Exchange
Control is in the READ, QUERY, or DEADLOCK state.)

3) The device is sending a <RESPONSE MESSAGE> to the controller. The controller may interrupt the
transfer to perform a serial poll or to communicate with other devices, but should not attempt to send data
bytes to the device until it has received a <RESPONSE MESSAGE TERMINATOR>, see 8.5, from the
device. (The Message Exchange Control is in the, SEND or RESPONSE state.)

Copyright © 1992 IEEE All Rights Reserved 45

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6.4.4 Compound Queries

One or more <QUERY MESSAGE UNIT> elements can be placed in a single <PROGRAM MESSAGE>, see
Section 7. Also, the device is allowed to generate one or more <RESPONSE MESSAGE UNIT> elements for each
<QUERY MESSAGE UNIT> received. The <RESPONSE MESSAGE UNIT SEPARATOR> [semicolon (;), see
8.4.1] shall be used to separate <RESPONSE MESSAGE UNIT> elements within the complete compound
<RESPONSE MESSAGE>. The <RESPONSE MESSAGE TERMINATOR>, defined in 8.5 as NL^END, shall
terminate the last <RESPONSE MESSAGE UNIT>. Since the required terminator for a <RESPONSE MESSAGE
UNIT> is dependent upon whether a subsequent <RESPONSE MESSAGE UNIT> will be in the same <RESPONSE
MESSAGE>, the device is not able to terminate each <RESPONSE MESSAGE UNIT> until the Parser receives either
another <QUERY MESSAGE UNIT> or a <PROGRAM MESSAGE TERMINATOR>.

Compound queries shall not span more than one complete <PROGRAM MESSAGE>. If a compound query exceeds
a device's ability to hold the associated <RESPONSE MESSAGE> in the Output Queue, the device's Response
Formatter, Execution Control, and Parser may become blocked waiting until room is available. If the Input Buffer
becomes full while the Parser is suspended, a buffer deadlock will occur, see 6.5.7.4.

NOTE — If any of the <QUERY MESSAGE UNIT> elements of a compound query returns more than one <RESPONSE
MESSAGE UNIT>, an application program cannot use the semicolon (;) delimiter to distinguish the end of the response
to each <QUERY MESSAGE UNIT>.

6.4.5 Message Order Requirements

6.4.5.1 Execution Order of Program Messages

The device shall execute <PROGRAM MESSAGE> elements in the order received. (See 6.1.7 for definition of
execute.) Execution of individual parsable elements may be done as they are received. The device may also wait until
either a <PROGRAM MESSAGE UNIT SEPARATOR> or a <PROGRAM MESSAGE TERMINATOR> is parsed
before executing preceding <PROGRAM MESSAGE UNIT> elements. The device shall not execute any
<PROGRAM MESSAGE UNIT> before executing all prior <PROGRAM MESSAGE UNIT> elements, except as
described under “Device Parameter Couplings” in 6.4.5.3. The device shall execute all the <PROGRAM MESSAGE
UNIT> elements of a given <PROGRAM MESSAGE> before executing any <PROGRAM MESSAGE UNIT>
elements of a successive <PROGRAM MESSAGE>.

6.4.5.2 Execution Order of Intermixed GET Messages and <PROGRAM MESSAGE> Elements

The device shall execute GET messages in the same order as <PROGRAM MESSAGE> elements. If the device
receives a GET message while parsing or executing a prior message, execution of the GET message shall be delayed
until the the prior messages have been executed.

6.4.5.3 Device Parameter Couplings

Coupled parameters are device functions that interact with each other in a device-specific manner. Problems can arise
because the prior state of the device can affect the device's response to the programming of a coupled parameter.
Ideally, the device shall guarantee that a complete <PROGRAM MESSAGE> containing a set of valid settings for
coupled parameters will be accepted independent of the prior setting of any of the coupled parameters.

For example, a power supply can have its current and voltage set to a wide range of values with the requirement that
the product of the two parameters shall be less than 100 W. Assume the voltage is set to 100 V and the current set to 1
A. The device should allow the application programmer to send the following message and not have an error reported.

CURRENT 100; VOLTAGE 1 NL^END

46 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

To accomplish sequence independence of coupled parameters, the Execution Control may buffer parsed message units
and defer execution until eom or some device-specific command is received. The device may also use other techniques
to achieve the same goal. The requirement that <PROGRAM MESSAGE UNIT> elements shall be executed in order
of reception is relaxed under these circumstances.

If the coupled parameter <PROGRAM MESSAGE> elements are not contiguous, then the final results are unspecified.
In this case, the device may report an Execution Error if the parameter coupling criterion is violated before the
complete set of coupled parameters has been executed.

Some devices may have parameter couplings that are beyond the scope of the device parameter coupling requirements
of this section.

NOTE — The device designer has the responsibility to ensure that devices incorporate effective checking to prevent execution of
deferred coupled commands after an Execution Error that could result in undesireable conditions. Documentation
should indicate any known conditions that cannot be checked by the device.

6.4.5.4 Generation of Response Message Data

Device designers may choose to generate the bytes of a <RESPONSE MESSAGE> at the time the controller reads a
message rather than immediately following the execution of a Query Message. Sending large amounts of response data
may require this technique. In such cases, the contents of the <RESPONSE MESSAGE> will represent the state of the
device at the time the controller reads the response, rather than at the time the query was parsed. Device
documentation shall indicate the query responses that will be evaluated at the time data is actually read.

When the device designer chooses to defer the generation of response data until brq is TRUE, the device shall set the
MAV message TRUE at the point when the device is ready to respond to the controller's request for data. Thus, an
application program can always rely on receiving the MAV message, via the status reporting capability, as a signal to
begin a device-to-controller transfer, see 11.5.2.1.

<RESPONSE MESSAGE> elements shall be sent to the controller in the same order that their associated <QUERY
MESSAGE UNIT> elements were sent to the device. Under no condition shall the device send the response to a
<QUERY MESSAGE UNIT> before responding to a prior <QUERY MESSAGE UNIT>, except when the prior
response was aborted due to one of the protocol exceptions described in 6.5.

6.5 Protocol Exceptions

6.5.1 Aborted Messages

<PROGRAM MESSAGE> and <RESPONSE MESSAGE> elements shall be aborted by dcas or pon.

6.5.2 Addressed to Talk With Nothing to Say

If the I/O Control sets brq TRUE while the Message Exchange Control is in the READ or IDLE state, the device has
been addressed to talk with nothing to say. The device shall perform as indicated in 6.3.2.2.

If the I/O Control sets brq TRUE while the Message Exchange Control is in the RESPONSE state, but all of the
queries in the Query Message failed to generate any <RESPONSE DATA> because of syntax (Command), semantic
(Execution), or device-specific errors, the device has been addressed to talk with nothing to say. The device shall
perform as indicated in 6.3.1.5.

NOTE — The device may be unable to send data when it is addressed to talk even if no error condition exists. This can occur
because the device has deferred the preparation of the response data until an internal operation is complete or an
“External Control Signal” is received. This is not an error condition and a Query Error shall not be reported. If the
controller continues to wait for the data, the device will send it when it is available.

Copyright © 1992 IEEE All Rights Reserved 47

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6.5.3 No Listener on Bus

If the device's IEEE 488.1 Source Handshake function is in the Source Delay State (SDYS) and the Not Data Accepted
(NDAC) and Not Ready For Data (NRFD) signals are beth passive false, the device shall not send any data bytes or
take any action that would affect subsequent activity on the IEEE 488.1 bus. The device shall wait for a listener to
assert NDAC TRUE or for the controller to take control. The device designer may report this condition to the user by
means other than the system interface.

NOTE — This rule applies only to devices that are not the controller-in-charge. Controllers are required to report this condition
to the application, see 15.3.3.

6.5.4 Command Error

A Command Error is generated under the conditions defined in 6.1.6.1.1. When the Status Reporting Control receives
a Command Error, it shall set the Command Error bit in the Standard Event Status Register, see 11.5.1.1.4.

6.5.5 Execution Error

An Execution Error occurs under the conditions defined in 11.5.1.1.5. When the Execution Control detects an
Execution Error, the Status Reporting Control shall set the Execution Error bit in the Standard Event Status Register.
The device shall continue parsing the input stream. The device may continue executing parsed commands or the
device may discard parsed commands. Devices shall resume execution of parsed commands after a <PROGRAM
MESSAGE TERMINATOR>.

6.5.6 Device-Specific Error

Device-specific errors are defined in 11.5.1.1.6. These errors shall have no effect on the message exchange protocol
defined in this section.

6.5.7 Query Error

Query errors are reported by setting the Query Error bit in the Standard Event Status Register as defined in 11.5.1.1.7.
The device shall report a Query Error when the controller fails to follow the Message Exchange Control Protocol
under any of the conditions defined in 6.3.1.7, 6.3.2.2, and 6.3.2.3.

6.5.7.1 Incomplete Command or Query Received

The device shall detect an incomplete command or query when the I/O Control sets brq TRUE; the Parser has received
at least one byte of a <PROGRAM MESSAGE>, but not eom; and the Input Buffer is empty. The device shall respond
as indicated in 6.3.2.2.

6.5.7.2 Interrupted Response

If the device receives a data byte or a GET message following a Query Message before the device has sent the
<RESPONSE MESSAGE TERMINATOR>, the INTERRUPTED action shall be performed. When this happens, the
device shall abort the rest of the response and respond as indicated in 6.3.2.3.

6.5.7.3 Query Message Units Separated by the Program Message Terminator

When an application program sends a device a Query Message, properly terminated with a <PROGRAM MESSAGE
TERMINATOR>, and sends another <PROGRAM MESSAGE> without first reading the entire <RESPONSE
MESSAGE>, the device shall respond as indicated in 6.3.2.3.

48

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

NOTE — If the application program sends two Query Messages without reading the response from the first, and then attempts to
read the response to the second, it may receive seine data bytes from the first response followed by the complete second
response. The result may or may not be a syntactically correct <RESPONSE MESSAGE>. This happens when the

system

 timing allows the

controller

 to send the second Query Message and begin its read operation before the Parser
detects the end of the first Query Message. In this case, the Message Exchange Control enters the SEND state and starts
to send the first response to the

controller

. When the Parser reaches the end of the first Query Message, the

device

 is
INTERRUPTED and starts to process the second query.

To avoid the above condition, application programs should not send Query Messages to a

device

 without reading the
associated <RESPONSE MESSAGE>. When this cannot be avoided, as in exception handling, a

device

 clear should be
used before a new Query Message is sent. This will assure that any fragmentary response from a prior <RESPONSE
MESSAGE> will not be sent by the

device

.

6.5.7.4 Buffer Deadlock

Under some circumstances, a

device

 may be unable to completely generate a <RESPONSE MESSAGE>. The

device

is deadlocked when it cannot accept another data byte of a <PROGRAM MESSAGE> from the

controller

 because its
Input Buffer and Output Queue are both full, and the controller cannot read the

device's

 <RESPONSE MESSAGE>
until it has completed sending its Query Message.

The

device

 shall respond to a Buffer Deadlock as indicated in 6.3.1.7.

6.5.7.5 Query After Indefinite Response

Certain compound queries may attempt to generate an illegal <RESPONSE MESSAGE>. If a <QUERY MESSAGE
UNIT> that generates an indefinite response (either an INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA or ARBITRARY ASCII RESPONSE DATA) is not the last <QUERY MESSAGE UNIT> in a <PROGRAM
MESSAGE>, the

device

 shall report a Query Error and not send the response from the following <QUERY
MESSAGE UNIT> elements. The

device

 may optionally either format or not format the response data that is
discarded. Once the

device

 recognizes the

eom

 and sends the <RESPONSE MESSAGE TERMINATOR>, the
message exchange protocol is reestablished, see 6.3.

7. Device Listening Formats

7.1 Overview

This section discusses the formatting of programming messages received by a

device

 from its

system interface

. This
formatting occurs on two levels. The higher level is the “functional” level at which each element has functional
importance. This functional level is required for designers of the

device

 command set. The lower level formatting
represents the actual bus “encoding” required to transmit a functional element. This latter information is necessary for
designers of

device

 parsers.

7.1.1 Device Command Set Generation

Allowable IEEE 488.2 program messages are composed of sequences of program message units, each unit
representing a program command or query. Each program command or query is composed of a sequence of functional
syntactic elements. Legal IEEE 488.2 program commands and queries are created from functional element sequences
generated by traversing the functional syntax diagram illustrated in Figs 7-1 through 7-6.

Some commands and queries of universal instrument

system

 application have been defined by this standard. They are
the common commands described in Section 10.. These common commands and queries are specific path selections
through the functional syntax diagram. The remaining commands are device-specific and are generated by the

device

Copyright © 1992 IEEE All Rights Reserved 49

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

designer using the functional syntax diagram and the needs of the device. The functional elements include separators,
terminators, headers, and data types. Each element type is discussed in detail in 7.4 through 7.7.

Legal IEEE 488.2 program command structures at the functional level shall only be generated by traversing the
functional syntax diagram.

7.1.2 Encoding Syntax

7.1.2.1 Allowable Syntax

A device-defined or common program command or query is sent to the device over the system interface as a sequence
of data bytes. The allowable byte sequences for each functional element are defined in the encoding syntax diagram
accompanying each element. Alternate, but semantically equivalent, paths are shown in each of these encoding syntax
diagrams. “Data Fields” are device-definable within specified encoding limits. Allowable sequences for each
functional element are generated by traversing the respective encoding syntax diagram.

For allowable functional element sequences, a device shall accept and correctly interpret functional elements that
follow the encoding sequence. All equivalent paths, as defined for each functional element, shall be accepted by the
device's parser.

7.1.2.2 Illegal Syntax — Command Error

A byte sequence that does not follow encoding syntax rules, as defined in 7.1.2.1, shall not be interpreted as a
functional element, but shall generate a Command Error.

A functional element sequence that is not an allowable IEEE 488.2 program message, as defined in 7.1.1, shall not be
interpreted as a program command or query, but shall result in the generation of a Command Error.

How Command Errors are reported is described in Section 11. Parser interaction with and recovery from Command
Errors are described in Section 6.

7.1.2.3 Rationale for Encoding Syntax Flexibility

For program data, the encoding syntax diagrams are designed to allow a variety of semantically equivalent encodings
of a functional element.

This flexibility is included for

1) Human-readability. Program commands typically appear in program code and thus need a reasonable degree
of readability.

2) Human-generation. Program commands are typically generated by the programmer and not the controller.
Thus, a degree of formatting flexibility is desirable to allow commonly used formatting variations.

7.2 Notation

7.2.1 Diagraming Syntactic Flow

Syntactic elements are connected by lines with directional symbols to indicate the flow. Flow through the syntax
diagrams generally proceeds from left-to-right.

When an element(s) is repeatable, a reverse, right-to-left path will be shown around and above the element(s).

When an element(s) can be bypassed, a left-to-right path will be shown around and below the element(s).

50 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The path branches when there is a choice of elements.

For example,

allows the following combinations of elements A, B, and C:

AC

C

BCCCCC

CCC

NOTE — The element C may be repeated indefinitely.

7.2.2 Syntactic Elements

7.2.2.1 Terminal Syntactic Elements

Terminal elements are the basic, indivisible syntactic constructs. They represent either a basic function in the
functional syntax diagrams or a particular byte-encoding in the encoding syntax diagrams.

All elements in the functional syntax diagrams are represented by an all-uppercase description between brackets inside
an oval.

For example,

In the encoding syntax diagrams, terminal elements are directly defined as 8 bit data bytes or by reference to the 7 bit
ASCII Code Chart shown in Table 9-2. When a device receives 7 bit ASCII characters, the sense of the eighth bit
(DI08) shall be ignored.

For example, a space is represented by the following:

Copyright © 1992 IEEE All Rights Reserved 51

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.2.2.2 Nonterminal Syntactic Elements

Nonterminal elements are intermediate syntactic constructs presented for clarity or emphasis. Nonterminals are
presented in boxes to distinguish them from terminals. A nonterminal is always expandable to a diagram of terminal
elements or (for encoding syntax) is explainable in a statement relating the element to a particular code set. Below the
element name is a section reference to the expansion diagram's location.

For example,

or

In the notation, functional elements are written in uppercase and encoding elements are written in lowercase between
brackets, unless a particular ASCII code is indicated.

7.2.2.3 Rules

Several encoding syntax diagrams require additional text to explain restrictions not easily shown in the diagram. These
restrictions are included in a “Rules” section immediately following the diagram.

7.2.3 Special Symbols

7.2.3.1 Upper/Lowercase Equivalence

To improve presentation, a special notation is used to indicate either uppercase or lowercase alternative representation.
This representation is indicated by enclosing, in a circle, the uppercase ASCII alpha symbol, a slash, and the lowercase
ASCII alpha symbol.

For example,

is equivalent to

52 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

7.2.3.2 END Message

An oval containing “^END” indicates concurrent transmission of the END message with the preceding data byte. This
symbol has no exit path as it always represents the end of a message.

For example,

represents sending NL (newline) with EOI set TRUE and ATN FALSE. In text, this is shown as NL^END.

7.2.3.3 Beginning of Message

The beginning of a message is indicated by a circle with no entry from the left.

7.2.3.4 Diagram Expansion

Leading and trailing arrows indicate that the diagram represents an expansion to a detailed view of a portion of a
higher level diagram.

7.3 Terminated Program Messages — Functional Syntax

7.3.1 Function

Terminated program messages are complete “controller-to-device” messages. They are sequences of zero or more
<PROGRAM MESSAGE UNIT> elements. The <PROGRAM MESSAGE UNIT> element represents a programming
command or data sent to the device from the controller. The terminated message represents a “complete”
transmission and, as such, has certain additional semantic meanings, see 7.5.

7.3.2 Syntax

The command's functional syntax shall match the following set of six diagrams in Figs 7-1 through 7-6.

NOTE — The use of the indefinite form of the <ARBITRARY BLOCK PROGRAM DATA> element, see 7.7.6, forces an
immediate termination of the <PROGRAM MESSAGE>.

Figure 7-1—<TERMINATED PROGRAM MESSAGE> Functional Element Syntax

NOTE — Section 6.4.3 requires the device to interpret a GET message in the same way as a <PROGRAM MESSAGE> element.
The device reports a Command Error if it encounters a GET message between the first byte of a <PROGRAM
MESSAGE> and the <PROGRAM MESSAGE TERMINATOR>. See 6.4.3.

Copyright © 1992 IEEE All Rights Reserved 53

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 7-2—<PROGRAM MESSAGE> Functional Element Syntax

Figure 7-3—<PROGRAM MESSAGE UNIT> Functional Element Syntax

Figure 7-4—<COMMAND MESSAGE UNIT> Functional Element Syntax

54 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 7-5—<QUERY MESSAGE UNIT> Functional Element Syntax

Figure 7-6—<PROGRAM DATA> Functional Element Syntax
NOTE — <ARBITRARY BLOCK PROGRAM DATA>, using the indefinite format, ends with an implicit message terminator. In

this case, the message terminates with no exit. See 7.7.6.

Copyright © 1992 IEEE All Rights Reserved 55

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.3.3 Functional Element Summary

Element Function

<PROGRAM MESSAGE>
Fig 7-2

Represents a sequence of zero or moro <PROGRAM MESSAGE UNIT> elements
separated by <PROGRAM MESSAGE UNIT SEPARATOR> elements.

<PROGRAM MESSAGE
UNIT> Fig 7-3 Represents a single command, programming data, or query received by the device.

<COMMAND MESSAGE
UNIT> Fig 7-4 Represents a single command or programming data received by the device.

<QUERY MESSAGE UNIT>
Fig 7-5 Represents a single query sent from the controller to the device.

<PROGRAM DATA> Fig 7-6 Represents any of the six different program data types.

<PROGRAM MESSAGE
UNIT SEPARATOR> 7.4.1

Separates the <PROGRAM MESSAGE UNIT> elements from one another in a
<PROGRAM MESSAGE>.

<PROGRAM DATA
SEPARATOR> 7.4.2

Separates sequential <PROGRAM DATA> elements that are related to the same
header.

<PROGRAM HEADER
SEPARATOR> 7.4.3 Separates the header from any associated <PROGRAM DATA>.

<PROGRAM MESSAGE
TERMINATOR> 7.5 Terminates a <PROGRAM MESSAGE>.

<COMMAND PROGRAM
HEADER>7.6.1

Specifies function or operation. Used with any associated <PROGRAM DATA>
elements(s).

<QUERY PROGRAM
HEADER> 7.6.2

Similar to <COMMAND PROGRAM HEADER> except a query indicator (?)
shows that a response is expected from the device.

<CHARACTER PROGRAM
DATA> 7.7.1

A data type suitable for sending short mnemonic data, generally where a numeric
data type is not suitable.

<DECIMAL NUMERIC
PROGRAM DATA> 7.7.2

A data type suitable for sending decimal integers or decimal fractions with or
without exponents.

<SUFFIX PROGRAM
DATA> 7.7.3

A data type suitable for sending units and optional multipliers. Also an optional
field following <DECIMAL NUMERIC PROGRAM DATA>.

<NONDECIMAL NUMERIC
PROGRAM DATA> 7.7.4

A data type suitable for sending integer numeric representations in base 16, 8, or 2.
Useful for data that is more easily interpreted when directly expressed in a
nondecimal format.

<STRING PROGRAM
DATA> 7.7.5

A data type suitable for sending 7 bit ASCII character strings where the content
needs to be “hidden” (by delimiters).

<ARBITRARY BLOCK
PROGRAM DATA> 7.7.6 A data type suitable for sending blocks of arbitrary 8 bit information.

<EXPRESSION PROGRAM
DATA> 7.7.7

Data type utilizing nested parentheses with an open format. Useful for struc- tured
data and parameter manipulation applications. Suitable for sending data that is
evaluated as one or more nonexpression data elements before further parsing.

56 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

7.4 Separator Functional Elements

7.4.1 <PROGRAM MESSAGE UNIT SEPARATOR>

7.4.1.1 Function

The <PROGRAM MESSAGE UNIT SEPARATOR> separates sequential <PROGRAM MESSAGE UNIT> elements
from one another within a <PROGRAM MESSAGE>.

7.4.1.2 Encoding Syntax

A <PROGRAM MESSAGE UNIT SEPARATOR> is defined as

where

<white space> is defined as

where

<white-space character> is defined as a single ASCII-encoded byte in the range of 00-09, 0B-20 (0-9, 11-32 decimal).
This range includes the ASCII control characters and the space but excludes the newline.

7.4.1.3 Semantic Equivalence

A device shall process <white space> without semantic interpretation.

A device shall interpret the semicolon (;) as the <PROGRAM MESSAGE UNIT SEPARATOR>. No alternative
encodings are allowed.

7.4.2 <PROGRAM DATA SEPARATOR>

7.4.2.1 Function

The <PROGRAM DATA SEPARATOR> separates sequential <PROGRAM DATA> elements from one another after
a <COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER>. It is used when a <COMMAND
PROGRAM HEADER> or <QUERY PROGRAM HEADER> has multiple parameters.

Copyright © 1992 IEEE All Rights Reserved 57

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.4.2.2 Encoding Syntax

A <PROGRAM DATA SEPARATOR> is defined as

where

<white space> is defined in 7.4.1.2.

7.4.2.3 Semantic Equivalence

A device shall process <white space> without semantic interpretation.

A device shall interpret the comma (,) as the <PROGRAM DATA SEPARATOR>. No alternative encodings are
allowed.

7.4.3 <PROGRAM HEADER SEPARATOR>

7.4.3.1 Function

The <PROGRAM HEADER SEPARATOR> separates the <COMMAND PROGRAM HEADER> or <QUERY
PROGRAM HEADER> from the <PROGRAM DATA> elements.

7.4.3.2 Encoding Syntax

A <PROGRAM HEADER SEPARATOR> is defined as

where

<white space> is defined in 7.4.1.2.

7.4.3.3 Semantic Equivalence

A device shall interpret the first <white space character> as the <PROGRAM HEADER SEPARATOR>. No
alternative encodings are allowed.

Any additional <white space:, shall have no syntactic nor semantic value.

58 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

7.5 <PROGRAM MESSAGE TERMINATOR>

7.5.1 Function

A <PROGRAM MESSAGE TERMINATOR> terminates a sequence of one or more definite length <PROGRAM
MESSAGE UNIT> elements. A <PROGRAM MESSAGE TERMINATOR> is abbreviated in this standard as
<PMT>.

The terminator conveys additional semantic meaning with regard to the execution order of interactive or “coupled”
commands, see 6.4.5.3, to the operation of the Output Queue, see 6.1.10, and to the syntactic use of compound
headers, see 7.6.1.5 and 7.6.2.5.

7.5.2 Encoding Syntax

A <PROGRAM MESSAGE TERMINATOR> is defined as

where

<white space> is defined in 7.4.1.2.

NL is defined as a single ASCII-encoded byte 0A (10 decimal).

NOTE — An END message cannot be sent without an accompanying data byte. See IEEE Std 488.1-1987 [4]. The ̂ END syntactic
element implies the IEEE 488.1 END message is sent with the last data byte of the preceding syntactic element.

7.5.3 Semantic Equivalence

A device shall process <white space> without semantic interpretation.

A device shall interpret any and all of the three terminators (i.e., END message on last data byte, newline with END
message, or newline) as semantically equivalent. No alternative encodings are allowed.

7.6 Program Header Functional Elements

7.6.1 <COMMAND PROGPRAM HEADER>

A device shall not implement both <simple command program header> and <compound command program header>
elements.

Copyright © 1992 IEEE All Rights Reserved 59

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.6.1.1 Function

The <COMMAND PROGRAM HEADER> represents the operation to be performed in a device. This element may
be optionally followed by associated parameters encoded as <PROGRAM DATA>. elements, see 7.7.

Note that a macro label (see *DMC, 10.7) may have the form of a <COMMAND PROGRAM HEADER> but may
label a sequence of <PROGRAM MESSAGE UNIT> elements that contains valid <QUERY PROGRAM HEADER>
elements (see 7.6.2.1), and would thus generate a response when processed. The TRG common command (see 10.37)
may also be specified to generate a response.

A <compound command program header> allows for internal structure in the header. This structure is generally used
by more complex devices to limit the number of unique headers and also to logically organize the device command set.

<compound command program header> elements are useful for handling hierarchically-related command structures.
<compound command program header> elements can provide shorthand mnemonic notation when used within a
<PROGRAM MESSAGE> containing several <PROGRAM MESSAGE UNIT> elements.

7.6.1.2 Encoding Syntax

A <COMMAND PROGRAM HEADER> is defined as

where

<white space> is defined in 7.4.1.2

<simple command program header> is defined as

<compound command program header> is defined as

60 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

<common command program header> is defined as

<program mnemonic> is defined as

where

1) <upper/lowercase alpha> is defined as a single ASCII-encoded byte in the range of 41-5A, 61-7A (65-90, 97-
122 decimal).

2) <digit> is defined as a single ASCII-encoded byte in the range 30-39 (48-57 decimal).
3) (_) represents an “underscore,” a single ASCII-encoded byte with the value 5F (95 decimal).

7.6.1.3 Semantic Equivalence

A device shall

1) Interpret <upper/lowercase alpha> contained within the <program mnemonic> without attaching semantic
meaning to the case of the alpha characters.

2) Interpret the embedded colon (:) as the <program mnemonic> separator in the <compound command
program header> element. No alternative encodings are allowed. For semantics of leading colon, see 7.6.1.5.

3) Process <white space> contained within a <COMMAND PROGRAM HEADER> without semantic
interpretation.

Copyright © 1992 IEEE All Rights Reserved 61

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.6.1.4 Rules

7.6.1.4.1 Length

The <program mnemonic> shall have a maximum length of 12 characters with a preferred length of four characters.

7.6.1.4.2 <COMMAND PROGRAM HEADER> Naming Guidelines

The relation of a <COMMAND PROGRAM HEADER> mnemonic and its associated function shall be readily
apparent. These mnemonics shall be independent of control location on the front panel but shall relate to front panel
or display nomenclature as appropriate.

7.6.1.4.3 <common command program header> Rules

The <common command program header> syntax is reserved for use by this standard and future revisions of this
standard. Defined common commands and queries using this syntax are discussed in Section 10.

Device designers shall not use the <common command program header> defined in Section 10. for purposes other
than those defined in Section 10.

7.6.1.5 Header Compounding Rules

That part of a <compound command program header> that excludes the trailing <program mnemonic> element is
defined as the “header-path.” A <compound command program header> shall be interpreted by a device as if the
header-path in the immediately preceding <compound command program header> or <compound query program
header> was sent immediately preceding that <compound command program header>. The supplied header-path shall
include both any header-path explicitly stated in the immediately preceding command and any header-path supplied to
the immediately preceding command by a previous application of the rule.

This rule shall NOT be applied to:

1) A <compound command program header> that begins a <PROGRAM MESSAGE>
2) A <compound command program header> that begins with a colon (:)

NOTE — The effect of not applying this rule is that the header-path becomes null.

The presence of a <common command program header> or <common query program header> has no effect on the
header-path. See Appendix A for examples. See 10.7.3 for the macro label expansion rule.

7.6.2 <QUERY PROGRAM HEADER>

A device shall not implement both <simple query program header> and <compound query program header> elements.

7.6.2.1 Function

The <QUERY PROGRAM HEADER> represents the operation to be performed in a device. A <QUERY PROGRAM
HEADER> causes the device to generate a response. This element may be optionally followed by associated
parameters encoded as <PROGRAM DATA> elements, see 7.7.

Note that a macro label (see *DMC, 10.7) may have the form of a <QUERY PROGRAM HEADER>, but may label a
sequence of <PROGRAM MESSAGE UNIT> elements that contains no valid <QUERY PROGRAM HEADER>
elements and, thus, would generate no response when processed.

62 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The <compound query program header> represents the function to be performed in conjunction with possible
following data elements to form a program command. A <compound query program header> allows for internal
structure in the header.

This structure is generally used by more complex devices to limit the number of unique headers and also to logically
organize the device command set for easier control and more-readable code. <compound query program header>
elements are useful for handling command structures that are hierarchically related. <compound query program
header> elements are capable of providing a shorthand mnemonic notation when used within multimessage-unit
<PROGRAM MESSAGE> elements.

7.6.2.2 Encoding Syntax

A <QUERY PROGRAM HEADER> is defined as

where

<white space> is defined in 7.4.1.2.

<simple query program header> is defined as

<compound query program header> is defined as

Copyright © 1992 IEEE All Rights Reserved 63

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

<common query program header> is defined as

<program mnemonic> is defined in 7.6.1.2

7.6.2.3 Semantic Equivalence

Semantic equivalence rules for <QUERY PROGRAM HEADER> are the same as for <COMMAND PROGRAM
HEADER>, see 7.6.1.3.

A device shall process <white space> contained within a <COMMAND PROGRAM HEADER>or <QUERY
PROGRAM HEADER> without semantic interpretation.

7.6.2.4 Rules

General rules for <QUERY PROGRAM HEADER> are the same as for <COMMAND PROGRAM HEADER>, see
7.6.1.4.

7.6.2.5 Header Compounding Rules

Rules for <compound query program headers> are the same as the rules for <compound command program headers>,
see 7.6.1.5. See Appendix A for examples.

7.7 <PROGRAM DATA> Functional Elements

A <PROGRAM DATA> functional element is used to convey a variety of types of parameter information related to the
program header.

7.7.1 <CHARACTER PROGRAM DATA>

7.7.1.1 Function

The <CHARACTER PROGRAM DATA> functional element is used to convey parameter information best expressed
mnemonically as a short alpha or alphanumeric string. It is useful in those cases where numeric parameters are
inappropriate.

7.7.1.2 Encoding Syntax

A <CHARACTER PROGRAM DATA> element is defined as

where

64 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

<program mnemonic> is defined in 7.6.1.2.

7.7.1.3 Semantic Equivalence

The <program mnemonic>, as used in the <CHARACTER PROGRAM DATA> functional element, shall follow the
same semantic equivalence rules as when it is used in <COMMAND PROGRAM HEADER> element, see 7.6.1.3.

7.7.1.4 Rules

The <program mnemonic>, as used in the <CHARACTER PROGRAM DATA> functional element, shall follow the
same general rules as when it is used in the <COMMAND PROGRAM HEADER> element, see 7.6.1.4.

7.7.2 <DECIMAL NUMERIC PROGRAM DATA>

7.7.2.1 Function

The <DECIMAL NUMERIC PROGRAM DATA> is a flexible version of the three numeric representations (NR1,2,
and 3) as defined in ANSI X3.42-1975 [5].

This element is also denoted by NRf (flexible numeric representation) in subsequent sections.

7.7.2.2 Encoding Syntax

A <DECIMAL NUMERIC PROGRAM DATA> element is defined as

where

<mantissa> is defined as

<digit> is defined in 7.6.1.2.

Copyright © 1992 IEEE All Rights Reserved 65

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

<optional digits> is defined as

where

<exponent> is defined as

where

<digit> is defined in 7.6.1.2.

<white space> is defined in 7.4.1.2.

7.7.2.3 Semantic Equivalence

A device shall process <white space> without semantic interpretation.

A device shall interpret all other ASCII-encoded characters as comprising a decimal numeric format generally
following any of the NR1, NR2, and NR3 formats of ANSI X3. 42-1990 [2], as allowed by the diagram in 7.7.2.2. The
interpreted value shall be subject to the rounding rule as stated in 7.7.2.4.2.

7.7.2.4 Rules

7.7.2.4.1 Range

The mantissa of a <DECIMAL NUMERIC PROGRAM DATA> element shall contain no more than 255 characters
excluding any leading zeros.

<DECIMAL NUMERIC PROGRAM DATA> elements shall have an exponent value in the range -32000 through
+32000.

If the <DECIMAL NUMERIC PROGRAM DATA> element violates either of these rules, a Command Error shall be
generated.

66 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

7.7.2.4.2 Numeric Element Rounding

A device may receive a <DECIMAL NUMERIC PROGRAM DATA> element that has greater precision than the
device can handle internally. In this case, the device shall round the number, not truncate the number, before
interpretation. When rounding, the device shall ignore the sign of the number and round up on values greater than or
equal to exact half values. Values less than exact half values shall be rounded down.

7.7.2.4.3 Error Reporting

Any error conditions reported shall be based on the result of the interpreted value after rounding.

7.7.2.4.4 Numeric Out-of-Range Guidelines

If a <DECIMAL NUMERIC PROGRAM DATA> element's value is outside the range allowed for the associated
header, an Execution Error shall be reported.

7.7.2.4.5 Infinity and Not-a-Number Representations

It is recommended that positive infinity be represented as 9.9E+37 and negative infinity as -9.9E+37. It is also
recommended that not-a-number be represented by 9.91E+37.

These numeric values were chosen to fit into a single 32 bit IEEE 754 floating point number, see 9.3.2.1. Devices
employing 64 bit double format numbers with a greater exponent range should take care to ensure that the above
numbers are outside of the range of real numeric response data.

7.7.3 <SUFFIX PROGRAM DATA>

7.7.3.1 Function

A <SUFFIX PROGRAM DATA> element is used to express units and (optional) multipliers. Where <SUFFIX
PROGRAM DATA> is used following a <DECIMAL NUMBERIC PROGRAM DATA> (NRf), the suffix expresses
how the preceding NRf is interpreted by the device.

As shown in the functional syntax in Fig 7-6, the presence of a <SUFFIX PROGRAM DATA> after an NRf is always
optional. No particular <COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER> in a device shall
require the use of a <SUFFIX PROGRAM DATA> element.

7.7.3.2 Encoding Syntax

A <SUFFIX PROGRAM DATA> element is defined as

Copyright © 1992 IEEE All Rights Reserved 67

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

where

1) <digit> is defined in 7.6.1.2.
2) <suffix mult.>, suffix multiplier, is defined as a sequence of one, two, or three <upper/ lowercase alpha>

characters.
3) <suffix unit> is defined as a sequence of one to four <upper/lowercase alpha> characters. <upper/lowercase

alpha> is defined in 7.6.1.2.

7.7.3.3 Semantic Equivalence

A device shall process <white space> without semantic interpretation.

A device shall interpret all alpha characters with upper/lowercase semantic equivalence.

All other ASCII-encoded bytes in this functional element may or may not have semantic equivalence at the discretion
of the device designer.

The bypass within the <SUFFIX PROGRAM DATA> element shall be interpreted by the device as if a default <suffix
multiplier> and <suffix unit> had been received. This default suffix is specified by the device designer. The default
suffix unit is to be mentioned explicitly in the device documentation.

7.7.3.4 Rules

If a device uses suffixes, it should make use of the <suffix multiplier> and <suffix unit> elements defined in this
section. Guidelines presented here for the use of <SUFFIX PROGRAM DATA> elements have been defined in ISO
2955 : 1983 [19] and have been expanded to include non-SI derived units in IEEE Std 260-1978 [3].

Any <SUFFIX PROGRAM DATA> element not specifically listed in this standard shall contain mnemonic value to
assist the user in relating the associated conversion to the suffix.

Numeric rounding may be done before or after the conversion algorithm is applied.

68 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

A <SUFFIX PROGRAM DATA> element shall contain no more than twelve characters, excluding the leading <white
space>. All units that are defined or identified by ISO 1000 :1981 [18] are included in Table 7-1.

7.7.3.4.1 <suffix unit> Selection

Table 7-1 presents some of the most common <suffix unit> elements used in devices along with several preferred and
allowed secondary <suffix unit> elements for a variety of applications.

<suffix unit> elements should use the “primary unit” mnemonics from Table 7-1. Alternate <suffix unit> elements,
however, are included in Table 7-1 as “secondary units” for use by the casual user who tends to think in measurement
units. If unit is not specified, the referenced standards or ISO 31 :1992 [6]—[17] should be consulted.

The use of “E<digit>” or “E-<digit>” as a <SUFFIX PROGRAM DATA> element or as the leading characters of a
<SUFFIX PROGRAM DATA> element is specifically disallowed because of possible confusion with the exponent of
the preceding NRf.

Copyright © 1992 IEEE All Rights Reserved 69

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 7-1—<suffix unit> Elements

 Quantity
Preferred Suffix
(Primary Unit)

Allowed Suffix
(Secondary Unit)

Referenced
Unit

Absorbed dose GY Gray

Activity of a
radionuclide BQ Becquerel

Amount of substance MOL Mole

Angle

— plane DEG Degree

— plane GON Grade

— plane MNT Minute

— plane RAD Radian

— plane SEC Second

— plane REV Revolution

— solid SR Steradian

Dose equivalent SV Sievert

Electric

— Capacitance F Farad

— Charge C Coulomb

— Conductance SIE Siemens

— Current A Ampere

— Potential (diff.) V Volt

— Resistance OHM Ohm

MOHM* Megaohm

Energy

— EV Electron-volt

— J Joule

Force N Newton

Frequency HZ Hertz

MHZ Megahertz

Illuminance LX Lux

Inductance H Henry

Length

— ASU Astronomic unit

— IN Inch

— FT Foot

— M Meter

— PRS Parsec

— MI Mile

— NAMI Nautical mile

Luminous Flux LM Lumen

Luminous Intensity CD Candela

Magnetic

70 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

— Flux WB Weber

— Induction T Tesla

Mass

—Atomic U Atomic mass
unit

— G Gram†

— TNE Tonne

Power

— W Watt

— DBM DBMW dBs ref to 1 mW

Pressure

— ATM Atmosphere

— INHG Inch of mercury

— MMHG mm of mercury

— PAL Pascal

— TORR Tort

—(Fluid) BAR Bar

Ratio‡

— DB Decibel

— PCT Percent

— PPM Parts per million

Temperature

— Celsius CEL Degree Celsius

— Fahrenheit FAR Degree
Fahrenheit

— Thermodynamic K Kelvin

Time

— S Second

— D Day

— HR Hour

— MIN Minute

— ANN Year

Viscosity

— Kinematic ST Strokes

— Dynamic P Poise

Volume L Liter

*Because of accepted industry practice, in combination with the suffix unit OHM and HZ, M may be used instead
of MA as a suffix multiplier for mega. In the case of OHM and HZ, the use of M for milli is disallowed to prevent
a potential confusion between mego and milli. This practice does not follow ISO 2955 :1983 [19]. Neither suffix,
MOHM or MHZ, may be used with a suffix multiplier.
†The kilogram (KG) is the SI unit for mass.
‡Ratios are inherently unitless. Several terms are used to make the values associated with ratios more tractable to
the user.

 Quantity
Preferred Suffix
(Primary Unit)

Allowed Suffix
(Secondary Unit)

Referenced
Unit

Copyright © 1992 IEEE All Rights Reserved 71

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.7.3.4.2 DB referencing

To reference a relative unit (dB) to an absolute level, the absolute level ia appended to the DB according to the
following syntax.

Thus, decibels referenced to 1 mW becomes DBMW. For historical reasons, DBM is allowed as an alias for DBMW.

For example,

DBUW means DB referenced to 1 mW.

DBUV means DB referenced to 1 mV.

NOTE — A provision in the appendix of IEEE Std 260-1978 {3} states that when a DB unit is referenced, the reference should be
placed in parentheses. A search of common practice shows that the form proposed here is the common usage and does
not introduce ambiguity.

7.7.3.4.3 <suffix mult.> Selection Rules

The <suffix mult.> is used to modify the value of the <suffix unit>. The <suffix mult.> allows the user to enter values
in common measurement units. Thus, in some applications, 1 kHZ is preferable to 1E3 HZ. Table 7-2 lists the allowed
<suffix mult.>'s.

NOTE: Only engineering unit multipliers are allowed.

7.7.3.4.4 Use of Units Made Up of Combinations of SI Rules

When a need arises for complex units (that is, newton-meter or meter per second) the following rules should apply.
When the complex unit is the quotient of two units, then the character “/”, should be used to separate the units. Thus,
M/S is the allowed representation for meter/second.

When the complex unit is the product of two units, the character “.” should be used to separate the units. Thus, N.M is
the allowed representation for newton-meter.

Suffix exponents are represented by a <digit>. They are used for units that appear more than once in a complex unit.
When a suffix exponent is used, it should appear as a <digit> and should be appended to the unit without a space. An
example is the SI unit of acceleration, meters per second squared, written as M/S2.

72

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 7-2—Allowed <suffix mult.> Mnemonics

NOTES:

1 — The suffix units, MHZ and MOHM, are special cases that should not be confused with <suffix mult.> HZ or <suffix muir.>
OHM. These special case <suffix units> are included in Table 7-6 because of accepted industry practice.

2 — In most cases, a range of <suffix mult.> and <suffix unit> mnemonic combinations can be freely picked from Tables 7-6 and
7-1. There are, however, inherent ambiguities between the two tables, i.e., Femto and Farads have the same mnemonic, as do
Atto and Amperes, Kilo and Degree Kelvin, Tera and Tesla, Giga and Gram, Mega and Meter, and nano and Newton. A
method of resolving these ambiguities is to design the

device

 to accept only selected <suffix mult.> <suffix unit>
combinations based on the requirements of the particular command.

7.7.3.4.5 Use as an Entire <PROGRAM DATA ELEMENT>

Where <SUFFIX PROGRAM DATA> elements are used without an accompanying <DECIMAL NUMERIC
PROGRAM DATA> element, the allowed contents shall be the same as those allowed for <SUFFIX PROGRAM
DATA> elements used in conjunction with a <DECIMAL NUMERIC PROGRAM DATA> element. The <SUFFD[
PROGRAM DATA> element sets the default for <DECIMAL NUMERIC PROGRAM DATA> and <DECIMAL
NUMERIC RESPONSE DATA>. This element shall not be considered an extension to <CHARACTER PROGRAM
DATA>.

7.7.4 <NONDECIMAL NUMERIC PROGRAM DATA>

7.7.4.1 Function

The <NONDECIMAL NUMERIC PROGRAM DATA> element allows passing numeric information in bases other
than ten. These formats facilitate direct interpretation by

system

 users and application programs for those applications
where nondecimal numbers have direct significance. The use of this format may simplify conversion routines in
application software.

Definition Mnemonic

1E18 EX

1E15 PE

1E12 T

1E9 G

1E6 MA (see Note)

1E3 K

1E-3 M (see Note)

1E-6 U

1E-9 N

1E-12 P

1E-15 F

1E-18 A

Copyright © 1992 IEEE All Rights Reserved 73

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.7.4.2 Encoding Syntax

A <NONDECIMAL NUMERIC PROGRAM DATA> element is defined as

74 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

where

<digit> is defined in 7.6.1.2.

7.7.4.3 Semantic Equivalence

A device shall interpret any and all of the three specified nondecimal numeric formats as semantically equivalent
numeric values.

A device shall interpret <upper/lowercase alpha> without attaching semantic meaning to the case of the alpha
characters.

7.7.4.4 Rules

7.7.4.4.1 Hexadecimal Encoding

The characters following a #H or #h preamble shall be interpreted as an unsigned implicit radix point hexadecimal
number.

The radix for hexadecimal numbers is 16. The decimal values and related ASCII code representations are as follows:

Nonhex characters shall generate a Command Error.

7.7.4.4.2 Octal Encoding

The characters following a #Q or #q preamble shall be interpreted as an unsigned implicit radix point octal number.

The radix for octal numbers is eight. The decimal values and related ASCII code representations are as follows:

Nonoctal characters shall generate a Command Error.

7.7.4.4.3 Binary Encoding

The characters following a #B or #b preamble shall be interpreted as an unsigned implicit radix point binary number.

The radix for binary numbers is two. The decimal values and related ASCII code representations are as follows:

Decimal Value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ASCII Code: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Alternate

ASCII Code: 0 1 2 3 4 5 6 7 8 9 a b c d e f

Decimal Value: 0 1 2 3 4 5 6 7

ASCII Code: 0 1 2 3 4 5 6 7

Copyright © 1992 IEEE All Rights Reserved 75

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Nonbinary characters shall generate a Command Error.

7.7.5 <STRING PROGRAM DATA>

7.7.5.1 Function

The <STRING PROGRAM DATA> element allows any character in the ASCII 7 bit code (including nonprintable
characters) to be transmitted as a message. This data field is particularly useful where text is to be displayed (for
example, on a printer or CRT type device). The <STRING PROGRAM DATA> permits the use of format effectors,
such as carriage return, newline, or space to correctly format text.

7.7.5.2 Encoding Syntax

A <STRING PROGRAM DATA> element is defined as

where

1) <inserted '> is defined as a single ASCII character with the value 27 (39 decimal).
2) <nonsingle quote char> is defined as a single ASCII character of any value except 27 (29 decimal).
3) <inserted ”> is defined as a single ASCII character with the value 22 (34 decimal).
4) <nondouble quote char> is defined as a single ASCII character of any value except 22 (34 decimal).

Decimal Value: 0 1

ASCII Code: 0 1

76 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

7.7.5.3 Semantic Equivalence

A device shall interpret string data encapsulated in either of the two specified delimited-string formats (that is, the use
of double quotes or single quotes) as semantically equivalent.

7.7.5.4 Rules

7.7.5.4.1 Single Quote Delimiting

A single quote (') followed directly by an <inserted '> is used to represent a single' within a <STRING PROGRAM
DATA> delimited by single quotes.

7.7.5.4.2 Double Quote Delimiting

A double quote (“) followed directly by an <inserted “> is used to represent a single ” within a <STRING PROGRAM
DATA> delimited by double quotes.

7.7.6 <ARBITRARY BLOCK PROGRAM DATA>

7.7.6.1 Function

The <ARBITRARY BLOCK PROGRAM DATA> element allows any 8 bit bytes (including extended ASCII codes) to
be transmitted in a message. This element is particularly useful for sending large quantities of data.

This element represents a general purpose solution to the transmission of 8 bit binary data. Specific binary coding is
described in 9.2 and 9.3.

7.7.6.2 Encoding Syntax

An <ARBITRARY BLOCK PROGRAM DATA> element is defined as

where

1) <digit> is defined in 7.6.1.2.
2) <nonzero digit> is defined as a single ASCII encoded byte in the range of 31-39 (49-57 decimal).
3) <8 bit data byte> is defined as an 8 bit byte in the range of 00-FF (0-255 decimal).

NOTE — The use of the indefinite format (#0) requires NL^END and forces immediate termination of the <PROGRAM
MESSAGE>. Receipt of an END message with a DAB that is not an NL generates a Comand Error. NL^END
constitutes the <PROGRAM MESSAGE TERMINATOR> and is not a part of the <PROGRAM MESSAGE>.

Copyright © 1992 IEEE All Rights Reserved 77

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

7.7.6.3 Semantic Equivalence

A device shall interpret <8 bit data bytes> in either of the two specified formats (that is, with #<nonzero digit> or #0
with the NL^END message termination) as semantically equivalent.

7.7.6.4 Rules

The value of the <nonzero digit> element shall equal the number of <digit> elements that follow. The value of the
<digit> elements taken together as a decimal integer shall equal the number of <8 bit data byte> elements that follow.
If the IEEE 488.1 END message is received before the specified number of bytes has been received, a Command Error
shall be reported.

7.7.6.5 Notes and Examples

Designers should consider the implications of buffer size and availability, particularly in the intended receiving
devices. The designer should not assume that all devices will be capable of accepting lengthy messages. See 4.9 for
device specification requirements.

The indefinite format is useful when the length of the transmission is not known or when transmission speed or other
considerations prevent segmentation into definite length blocks.

For example, four data bytes (DABs) may be sent using:

1) #14<DAB><DAB><DAB><DAB>
2) #3004<DAB><DAB><DAB><DAB>
3) #0<DAB><DAB><DAB><DAB> NL^END

If the sequence:

#14<DAB><DAB><DAB><DAB^END>

is received, the last DAB is part of the block. The associated END message also terminates the <PROGRAM
MESSAGE>. If the last DAB happened to be an NL, it is still part of the block and not part of the <PROGRAM
MESSAGE TERMINATOR>.

7.7.7 <EXPRESSION PROGRAM DATA>

7.7.7.1 Function

The <EXPRESSION PROGRAM DATA> element evaluates to a scalar, vector, matrix, or string value. It allows
parameters to be manipulated by the device.

7.7.7.2 Encoding Syntax

An <EXPRESSION PROGRAM DATA> element is defined as

where

78 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

<program expression> is defined as:

1) A sequence of ASCII-encoded data bytes in the range 20 to 7E (32 to 126 decimal) except the double quote,
number sign, single quote, left parenthesis, right parenthesis, and semicolon (characters 22, 23, 27, 28, 29,
and 3B hexidecimal or 34, 35, 39, 40, 41, and 59 decimal respectively).

2) A device-defined set of the <PROGRAM DATA> elements described in 7.7, except the indefinite form of the
<ARBITRARY BLOCK PROGRAM DATA>. This allows the representation of nested expressions.

7.7.7.3 Semantic Equivalence

A device shall interpret <upper/lowercase alpha> contained in the <program expression> element without attaching
semantic meaning to the case of the alpha characters.

ASCII-encoded bytes contained in the <program expression> element may have other rules or conditions for semantic
equivalence at the discretion of the device designer.

7.7.7.4 Rules

The <program expression> semantics are completely device-dependent, but the device shall be able to transform the
<program expression> into the equivalent of one or more <PROGRAM DATA> elements that are not <program
expression> elements.

Devices may allow properly nested subexpressions within an <program expression> up to a device-defined maximum
nesting depth. A subexpression is a syntactically correct <program expression> that is completely contained within an
<program expression>.

The device documentation shall clearly indicate which <PROGRAM DATA> elements may appear with an <program
expression> as well as the maximum subexpression nesting depth. The device documentation shall clearly indicate
any additional syntax restrictions that the device may place on the <program expression>.

The characters listed in 7.7.7.2 (double quote, number sign, single quote, left and right parentheses, and semicolon)
may not appear within the body of the <program expression>, but may appear within a <STRING PROGRAM DATA>
or <ARBITRARY BLOCK PROGRAM DATA> element in an <program expression> or subexpression. In addition,
left and right p arentheses may appear in a <program expression> as part of an included subexpression that includes
one or more <EXPRESSION PROGRAM DATA> elements.

8. Device Talking Elements

8.1 Overview

This section discusses the formatting of <RESPONSE MESSAGE> elements sent from a device via its system
interface. As in Section 7., the formatting occurs on two levels: the functional level and the encoding level. The
overview material for Section 7. applies here, except that the codes are device, and not human, generated and thus
embody a minimum amount of flexibility in the encoding syntax. For human readability and consistency, the encoding
syntax is, in most cases, obtained from a subset of the controller-to-device syntax.

Particular needs may require a device to talk directly, i.e., not through a controller, to a device or class of devices that
do not understand the IEEE 488.2 <RESPONSE MESSAGE> syntax. For example, a device may be able to calibrate
itself by commanding a particular model source to supply a stimulus. A more common example might be a device that
is able to use the bus to command a printer or plotter to print or graph internally stored data. All deviations from IEEE
488.2 to achieve device-to-device message transfer, as described earlier, shah be minimized and shall be explicitely
documented.

Copyright © 1992 IEEE All Rights Reserved 79

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.2 Notation

Syntax diagram notation follows the same format as is described in 7.2.

8.3 Terminated Response Messages — Functional Syntax

8.3.1 Function

A terminated <RESPONSE MESSAGE> is a device-to-controller message. It typically contains measurement results,
settings, or status information.

A <RESPONSE MESSAGE> is interpreted by a controller running an application program and, as such, needs to
convey its information precisely for consistent operation with a wide range of controllers.

A <RESPONSE MESSAGE>, therefore, has a more restrictive format than a <PROGRAM MESSAGE>, see
Section 7.

8.3.2 Syntax

The functional syntax of the device's response shall be generated by following the four-diagram set in Figs 8-1
through 8-4. The use of either the <ARBITRARY ASCII RESPONSE DATA> element (see 8.7.11) or the
<INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element (see 8.7.10) forces an immediate
termination of the <RESPONSE MESSAGE>.

The <RESPONSE MESSAGE UNIT> has two basic syntaxes. The first is a “precise” version of the <PROGRAM
MESSAGE UNIT> syntax, and is generally used for returning setting information. The second is “headerless” and is
typically used to return measurement results with a minimum of bus overload.

Figure 8-1—<TERMINATED RESPONSE MESSAGE> Functional Element Syntax

Figure 8-2—<RESPONSE MESSAGE> Functional Element Syntax

80 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 8-3—<RESPONSE MESSAGE UNIT> Functional Element Syntax

Copyright © 1992 IEEE All Rights Reserved 81

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 8-4—<RESPONSE DATA> Functional Element Syntax

NOTE — The <ARBITRARY ASCII RESPONSE DATA> and <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE
DATA> elements end with an implied terminator. In this case, the message terminates with no exit.

82 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.3.3 Functional Element Summary

Element Function

<RESPONSE MESSAGE> Fig 8-2
Represents a sequence of one or more <RESPONSE
MESSAGE UNIT> elements separated by <RESPONSE
MESSAGE UNIT SEPARATOR> elements.

<RESPONSE MESSAGE UNIT>
Fig 8-3 Represents a single message unit sent from the device.

<RESPONSE DATA> Fig 8-4 Represents one of the thirteen defined <RESPONSE
DATA> elements.

<RESPONSE MESSAGE UNIT
SEPARATOR> 8.4.1

Separates the <RESPONSE MESSAGE UNIT>
elements from one another in a <RESPONSE
MESSAGE>.

<RESPONSE DATA
SEPARATOR> 8.4.2

Separates sequential <RESPONSE DATA> elements
that are related to the same header or to each other.

<RESPONSE HEADER
SEPARATOR> 8.4.3 Separates the header from the <RESPONSE DATA>.

<RESPONSE MESSAGE
TERMINATOR>8.5 Terminates a <RESPONSE MESSAGE>.

<RESPONSE HEADER> 8.6

Specifies the function of the associated<PROGRAM
DATA> elements(s). Alpha and numeric characters
mnemonically indicate the function. Internal structure is
provided for hierarchical header structuring.

<CHARACTER RESPONSE
DATA>8.7.1

A data type suitable for sending short mnemonic
character strings, generally when a numeric parameter is
not suitable.

<NR1 NUMERIC RESPONSE
DATA> 8.7.2 Suitable for sending implicit radix decimal values.

<NR2 NUMERIC RESPONSE
DATA> 8.7.3 Suitable for sending explicit radix decimal values.

Copyright © 1992 IEEE All Rights Reserved 83

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.4 Separator Functional Elements

8.4.1 <RESPONSE MESSAGE UNIT SEPARATOR>

8.4.1.1 Function

The <RESPONSE MESSAGE UNIT SEPARATOR> separates sequential <RESPONSE MESSAGE UNIT> elements
from one another when multiple <RESPONSE MESSAGE UNIT> elements are sent in a <RESPONSE MESSAGE>.

8.4.1.2 Encoding Syntax

A <RESPONSE MESSAGE UNIT SEPARATOR> is defined as

<NR3 NUMERIC RESPONSE
DATA> 8.7.4

Suitable for sending explicit radix decimal values with an
exponent.

<HEXADECIMAL NUMERIC
RESPONSE DATA> 8.7.5 Suitable for sending implicit radix hexadecimal values.

<OCTAL NUMERIC RESPONSE
DATA>8.7.6 Suitable for sending implicit radix octal values.

<BINARY NUMERIC RESPONSE
DATA>8.7.7 Suitable for sending implicit radix binary values.

<STRING RESPONSE
DATA>8.7.8

A data type suitable for sending ASCII character strings
in which the contents needs to be “hidden” by delimiters.
This element is generally used to send data for direct
display on a device.

<DEFINITE” LENGTH
ARBITRARY BLOCK RESPONSE
DATA>8.7.9

A data type suitable for sending blocks of 8 bit binary
information when the length is known beforehand.

<INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE
DATA>8.7.10

A data type suitable for sending blocks of 8 bit binary
information when the length is not known beforehand or
when computing the length beforehand is undesireable.

<ARBITRARY ASCII RESPONSE
DATA>8.7.11

Suitable for sending arbitrary ASCII bytes when
alternate data types are unworkable.

<EXPRESSION RESPONSE
DATA>8.7.12

Data type utilizing nesting parentheses with an open
format. Useful for structured data and parameter
manipulation applications. Suitable for sending data that
is evaluated as one or more nonexpression data elements
before further parsing.

<SUFFIX RESPONSE DATA>
8.7.13

A data type suitable for sending a unit and multiplier if
present.

Element Function

84 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.4.2 <RESPONSE DATA SEPARATOR>

8.4.2.1 Function

The <RESPONSE DATA SEPARATOR> separates sequential <RESPONSE DATA> elements from one another when
multiple data elements are sent.

8.4.2.2 Encoding Syntax

A <RESPONSE DATA SEPARATOR> is defined as

8.4.3 <RESPONSE HEADER SEPARATOR>

8.4.3.1 Function

The <RESPONSE HEADER SEPARATOR> unambiguously separates the <RESPONSE HEADER> from the
<RESPONSE DATA>.

8.4.3.2 Encoding Syntax

A <RESPONSE HEADER SEPARATOR> is defined as

8.5 <RESPONSE MESSAGE TERMINATOR>

8.5.1 Function

The <RESPONSE MESSAGE TERMINATOR> element's function is to terminate a sequence of one or more
<RESPONSE MESSAGE UNIT> elements.

8.5.2 Encoding Syntax

A <RESPONSE MESSAGE TERMINATOR> is defined as

Copyright © 1992 IEEE All Rights Reserved 85

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.6 <RESPONSE HEADER>

8.6.1 Function

The <RESPONSE HEADER> is available for use by the device designer for device-specific responses. It may be used,
for example, to create responses in directly resendable <PROGRAM MESSAGE UNIT> format or to identify
response data to the controller.

8.6.2 Encoding Syntax

The <RESPONSE HEADER> is defined as

where

<simple response header> is defined as

<compound response header> is defined as

86 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

<compound response header> is defined as

<response mnemonic> is defined as

where:

<uppercase alpha> is defined as a single ASCII-encoded byte in the range of 41-5A (65-90 decimal).

<digit> is defined in 7.6.1.2.

(_) represents an “underscore,” a single ASCII-encoded byte with the value 5F (95 decisreal).

8.6.3 Rules

The <response mnemonic> shall have a maximum length of 12 characters.

The relation of a <response mnemonic> and its related function shall be readily apparent.

The semantics of <compound response mnemonic> elements used in a <RESPONSE HEADER> is beyond the scope
of this standard.

<common response header> elements may only be used to represent <COMMAND PROGRAM HEADER> elements
defined in Section10..

8.7 <RESPONSE DATA> Functional Elements

A <RESPONSE DATA> functional element conveys a variety of response information. The element type is
determined by the eliciting query or query equivalent (for example, macro expansion).

Copyright © 1992 IEEE All Rights Reserved 87

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.7.1 <CHARACTER RESPONSE DATA>

8.7.1.1 Function

The <CHARACTER RESPONSE DATA> functional element is used to convey information best expressed
mnemonically as a short alpha or alphanumeric string. It is useful when numeric parameters are inappropriate.

8.7.1.2 Encoding Syntax

A <CHARACTER RESPONSE DATA> is defined as

where

<response mnemonic> is defined in 8.6.2.

8.7.1.3 Rules

The <response mnemonic> shall comply with the rules as stated in 7.6.1.4.1-7.6.1.4.3.

8.7.2 <NR1 NUMERIC RESPONSE DATA>

8.7.2.1 Function

<NR1 NUMERIC RESPONSE DATA> elements consist of a set of implicit point representations of numeric values.
That is, a radix point is implicitly considered to be placed (fixed but not transmitted) at the right end of the string of
digits.

8.7.2.2 Encoding Syntax

An <NR1 NUMERIC RESPONSE DATA> is defined as

88 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.7.2.3 Rules

8.7.2.3.1 Out-of-Range

Numeric representation of out-of-range information shall be sent with the same numeric data type as for in-range
information with a value outside of the normal range of measurements. Also, the DDE bit shall be set in the Standard
Event Status Register. See 11.5.1.1.6.

For example, a voltmeter with a maximum measurement capability of 100 V could indicate that it was measuring
above 100 V by returning a response with a predefined “overrange” value above 100. This value shall be returned as
<NR1 NUMERIC RESPONSE DATA> if the normal in-range responses are returned as <NR1 NUMERIC
RESPONSE DATA> elements.

8.7.2.3.2 Allowable Range

The allowable range for NRls is the same as the range for double precision floating point numbers (+/-
179.76...E+306). See ANSI X3.42-1990 [2] and Section 9. for details of floating point formats.

8.7.2.3.3 Defau< Suffix

If the <NR1 NUMERIC RESPONSE DATA> describes a device setting that can be programmed using a
<COMMAND PROGRAM HEADER> or <QUERY PROGRAM HEADER> that allows the use of an optional
<SUFFIX PROGRAM DATA> element, then the implied units and multiplier of the <NR1 NUMERIC RESPONSE
DATA> should be the same as those defined by the defau< suffix associated with the <COMMAND PROGRAM
HEADER> or <QUERY PROGRAM HEADER>, see 7.7.3.3. Documentation of the defau< suffix semantics or
response messages is recommended.

8.7.3 <NR2 NUMERIC RESPONSE DATA>

8.7.3.1 Function

<NR2 NUMERIC RESPONSE DATA> elements are the representations of explicit point numeric values.

8.7.3.2 Encoding Syntax

An <NR2 NUMERIC RESPONSE DATA> is defined as

where

<digit> is defined in 7.6.1.2.

Copyright © 1992 IEEE All Rights Reserved 89

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.7.3.3 Rules

8.7.3.3.1 Out-of-Range

Out-of-range encoding rules are identical to those of 8.7.2.3.

8.7.3.3.2 Allowable Range

The allowable range for NR2s is the same as the range for double precision floating point numbers (+/-
179.76...E+306). See ANSI X3.42-1990 [2] and Section 9. for details of floating point formats.

8.7.3.3.3 Default Suffix

The recommendation for NR2 default suffix usage is the same as described in 8.7.2.3.3.

8.7.4 <NR3 NUMERIC RESPONSE DATA>

8.7.4.1 Function

<NR3 NUMERIC RESPONSE DATA> elements are representations of scaled explicit radix point numeric values
together with an exponent notation.

8.7.4.2 Encoding Syntax

An <NR3 NUMERIC RESPONSE DATA> is defined as

where

<digit> is defined in 7.6.1.2.

90 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.7.4.3 Rules

8.7.4.3.1 Out-of-Range

Out-of-range encoding rules are identical to those of 8.7.2.3.

8.7.4.3.2 Allowable Range

The allowable range for NR3s is the same as the range for double precision floating point numbers (+/-
179.76...E+306). See ANSI X3.42-1990 [2] and Section 9. for details of floating point formats.

8.7.4.3.3 Default Suffix

The recommendation for NR3 default suffix usage is the same as described in 8.7.2.3.3.

8.7.4.4 Infinity and Not-a-Number Representations

It is recommended that positive infinity be represented as 9.9E+37 and negative infinity as -9.9E+37. It is also
recommended that not-a-number be represented by 9.91E+37.

These numeric values were chosen to fit into a single 32 bit IEEE 754 floating point number, see 9.3.2.1. Devices
employing 64 bit double format numbers with a greater exponent range should take care to ensure that the above
numbers are outside of the range of real numeric response data.

8.7.5 <HEXADECIMAL NUMERIC RESPONSE DATA>

8.7.5.1 Function

The <HEXADECIMAL NUMERIC RESPONSE DATA> element is used to represent implicit radix, base 16 numeric
information.

8.7.5.2 Encoding Syntax

A <HEXADECIMAL NUMERIC RESPONSE DATA> is defined as

Copyright © 1992 IEEE All Rights Reserved 91

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

where

<digit> is defined in 7.6.1.2.

8.7.5.3 Rules

The encoding rules are identical to those in 7.7.4.4.1, except that the alternate (lowercase) ASCII code option is
disallowed.

8.7.6 <OCTAL NUMERIC RESPONSE DATA>

8.7.6.1 Function

The <OCTAL NUMERIC RESPONSE DATA> element is used to represent base eight, implicit radix numeric
information.

8.7.6.2 Encoding Syntax

An <OCTAL NUMERIC RESPONSE DATA> is defined as

92 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.7.6.3 Rules

The encoding rules are identical to those in 7.7.4.4.2, except that the alternate (lowercase) ASCII code option is
disallowed.

8.7.7 <BINARY NUMERIC RESPONSE DATA>

8.7.7.1 Function

The <BINARY NUMERIC RESPONSE DATA> element is used to represent base two, implicit radix numeric
information.

8.7.7.2 Encoding Syntax

A<BINARY NUMERIC RESPONSE DATA> is defined as

Copyright © 1992 IEEE All Rights Reserved 93

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.7.7.3 Rules

The encoding rules are identical to those in 7.7.4.4.3, except that the alternate (lowercase) ASCII code option is
disallowed.

8.7.8 <STRING RESPONSE DATA>

8.7.8.1 Function

The <STRING RESPONSE DATA> elements allow any character in the ASCII 7 bit code (including nonprintable
characters) to be transmitted as part of a message. This data field is particularly useful when text is to be displayed (for
example, on a printer or CRT-type device). The <STRING RESPONSE DATA> element permits the use of format
effectors such as carriage return, newline, or space to correctly format text.

8.7.8.2 Encoding Syntax

A <STRING RESPONSE DATA> is defined as

where

<inserted “> is defined in 7.7.5.2.

<nondouble quote char> is defined in 7.7.5.2.

8.7.8.3 Rules

The encoding rules are the same as for <STRING PROGRAM DATA>, see 7.7.5.4.

Bit 8 shall be set false when transmitting 7 bit ASCII data.

8.7.8.4 Notes and Examples

Alternate methods of encapsulating ASCII text, limited to response from a device, are the <ARBITRARY ASCII
RESPONSE DATA> element, see 8.7.11, the <DEFINITE LENGTH: ARBITRARY BLOCK RESPONSE DATA>
element, see 8.7.9, and the <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element, see
8.7.10. The latter element should only be used if alternate formats are unworkable.

94 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

8.7.9 <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA>

8.7.9.1 Function

The <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element allows any type of device-
dependent data to be transmitted over the system interface as a series of 8 bit data bytes. This element is particularly
useful for sending large quantities of data, 8 bit extended ASCII codes, or other data that are not directly displayable.

Specific recommended binary encodings for use with this element are described in Section 9.

8.7.9.2 Encoding Syntax

A <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> is defined as

where

<nonzero digit> is defined in 7.7.6.2.

<digit> is defined in 7.6.1.2.

<8 bit data byte> is defined in 7.7.6.2.

8.7.9.3 Rules

The rules are identical to those of 7.7.6.4.

8.7.9.4 Notes and Examples

Device designers should consider the implications of buffer size and availability ill the intended receiving controllers.
Designers should not assume that all controllers will automatically be capable of accepting lengthy messages. See
Section 14. for controller specification requirements.

8.7.10 <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA>

8.7.10.1 Function

The <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element is useful when transmitting 8 bit
data bytes when the length of the transmission is not known or where transmission speed or other conditions prevent
segmenting the output into known length blocks.

The functional syntax diagrams permit the use of this element only as the final element in a <TERMINATED
RESPONSE MESSAGE>, see Fig 8-4.

Copyright © 1992 IEEE All Rights Reserved 95

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.7.10.2 Encoding Syntax

An <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> is defined as

where

<8 bit data byte> is defined in 7.7.6.2.

NOTE — The IEEE 488.1 END message serves the dual function of terminating this element as well as terminating the
<RESPONSE MESSAGE>. It is only sent once with the last byte of the indefinite black data. The NL is present for
consistency with the <RESPONSE MESSAGE TERMINATOR>.

8.7.10.3 Rules

This format should only be used where other <RESPONSE DATA> element formats are unworkable.

8.7.11 <ARBITRARY ASCII RESPONSE DATA>

8.7.11.1 Function

The <ARBITRARY ASCII RESPONSE DATA> element allows devices to respond with undelimited 7 bit ASCII text.
In some cases, this element facilitates controller handling of device information, such as displayed text.

The functional syntax diagrams permit the use of this element only at the end of a <TERMINATEDRESPONSE
MESSAGE>, see Fig 8-4.

8.7.11.2 Encoding Syntax

An <ARBITRARY ASCII RESPONSE DATA> is defined as

where

<ASCII data byte> represents any ASCII-encoded data byte except NL (0A, 10decimal).

NOTE — The END message provides an unambiguous termination to an element that contains arbitrary ASCII characters.

96 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

(2) The IEEE 488.1 END message serves the dual function of terminating this element as well as terminating the
<RESPONSE MESSAGE>. It is only sent once with the last byte of the indefinite block data. The NL is present for
consistency with the <RESPONSE MESSAGE TERMINATOR>.

8.7.12 <EXPRESSION RESPONSE DATA>

8.7.12.1 Function

The <EXPRESSION RESPONSE DATA> element has the same scope and function as the <EXPRESSION
PROGRAM DATA> element described in 7.7.7. This element allows <EXPRESSION PROGRAM DATA> to be sent
by the device.

8.7.12.2 Encoding Syntax

An <EXPRESSION RESPONSE DATA> element is defined as

where

<response expression> is defined as:

1) A sequence of AsCII-encoded data bytes in the range 20 to 7E hexadecimal (32 to 126 decimal) except the
double quote, number sign, lowercase alpha, left parenthesis, right parenthesis, and semicolon (characters 22,
23, 28, 29, 3B, and 61-7A hexadecimal or 34, 35, 40, 41, 59, and 97-122 decimal respectively), and/or

2) A device-defined set of the <RESPONSE DATA> elements described in 8.7 except <INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA> and <ARBITRARY ASCII RESPONSE DATA>. This allows
the representation of nested expressions.

8.7.12.3 Rules

The <response expression> semantics are completely device-dependent.

A device may send properly nested subexpressions within a <response expression>. A subexpression is a syntactically
correct <response expression> that is completely contained within a <response expression>.

The device documentation shall clearly indicate which <RESPONSE DATA> elements may appear within a
<response expression> as well as the maximum subexpression nesting depth. The device documentation shall clearly
indicate any additional syntax restrictions that the device may place on the <response expression>.

The characters listed in 8.7.12.2 (double quote, number sign, lowercase alpha, left and right parentheses, and
semicolon) may not appear within the body of the <response expression> but may appear within a <STRING
RESPONSE DATA> or <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element in a <response
expression> or subexpression. In addition, left and right parentheses may appear in a <response expression> as part of
an included subexpression that includes one or more <EXPRESSION PROGRAM DATA> elements.

Copyright © 1992 IEEE All Rights Reserved 97

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

8.7.13 <SUFFIX RESPONSE DATA>

8.7.13.1 Function

A <SUFFIX RESPONSE DATA> element is used to express a unit of operation and a multiplier, if present.

8.7.13.2 Encoding Syntax

A <SUFFIX RESPONSE DATA> is defined as

where

1) <digit> is defined in 7.6.1.2
2) <suffix mult.>, suffix multiplier, is defined in 7.7.3.4.3 as a sequence of one, two, or three <uppercase alpha>

characters.
3) <suffix unit> is defined in 7.7.3.4.1 as a sequence of one to four <uppercase alpha> characters. <uppercase

alpha> is defined in 8.6.2.

8.7.13.3 Rules

If a device uses suffixes, it should make use of the <suffix mult.> and <suffix unit> elements defined in 7.7.3.4.3 and
7.7.3.4.1, respectively. The contents of a <SUFFIX RESPONSE DATA> element shall be either

1) The same as any <SUFFIX RESPONSE DATA> element the device can accept.
2) The default units for a <DECIMAL NUMERIC DATA> element with all the alpha characters being

uppercase. This element shall not be considered as an extension to the <CHARACTER RESPONSE DATA>.

9. Message Data Coding

This standard specifies specific forms of coding for device-specific messages. The ASCII 7 bit code is the code used
throughout this document for the majority of the syntactic and semantic definitions. 8 bit coding is allowed in special

98 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

block message elements: <ARBITRARY BLOCK PROGRAM DATA>, see 7.7.6, <DEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>, see 8.7.9, and <INDEFINITE LENGTH ARBITRARY BLOCK
RESPONSE DATA>, see 8.7.10.

9.1 ASCII 7 bit Codes

ANSI X3.4-1986 [1] ASCII 7 bit code is the common data representation code for communication of device-specific
messages as described throughout Sections 7. and 8.

The ASCII 7 bit code bits shall be assigned to the DIO signal lines as shown in Table 9-1. The ASCII 7 bit code chart
is shown in Table 9-2.

Table 9-1—ASCII 7 Bit Code/Line Relationship

ASCII Code: *

*Bit 8 (DIO8) shall be sent FALSE and ignored on reception by devices.

B7 B6 B5 B4 B3 B2 B1

DIO Line: DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1

Copyright © 1992 IEEE All Rights Reserved 99

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 9-2—ASCII 7 Bit Code Chart

100 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 9-3—Table 9-2 —(continued)ASCII 7 Bit Code Chart

The dashed area corresponds to the range of codes defined as <white space>.

9.2 Binary 8 Bit Integer Codes

The following codes are the recommended formats for use with block program and response elements, see 7.7.6, 8.7.9,
and 8.7.10. Although other codes are not prohibited by this standard, the use of the following codes is preferred.

9.2.1 Byte Order and Data Line Relationships

Bit binary codes utilize high and low bits to directly represent binary (radix 2) numbers. Each binary number is sent in
a data field consisting of as many 8 bit bytes as desired. The contents of the data field shall be sent most significant byte
first.

A typical data field is illustrated below.

Binary codes shall be 1, 2, 4, or 8 bytes wide.

9.2.2 Binary Integer Code

Binary integer is assumed to be right-justified in the data field, with the radix point to the right of the least significant
bit position. “2”s complement representation is assumed and the contents of the most significant bit position is

Sequence: | <-byte 1-> | | <-byte 2-> |

8 7 6 5 4 3 2 1
^

8 7 6 5 4 3 2 1
 ^

MSB (most significant bit position
LSB (least
significant bit
position)

Copyright © 1992 IEEE All Rights Reserved 101

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

interpreted as the sign bit. If the device data word is not as wide as the field, then the most significant (sign) bit shall
be extended to fill the field.

9.2.3 Binary Unsigned Integer Code

Binary unsigned integer is right-justified as described earlier. The contents of the data field's most significant bit is not
interpreted as a sign, but as the most significant bit of a positive number. Thus, any most-significant unused data bits
in the data field should be zero filled.

9.3 Binary Floating Point Code

The floating point representation included here is a subset of IEEE Std 754-1985 [3].

9.3.1 Floating Point Code Fields

Floating point numbers shall be represented by three fields. The fields are

1) Sign field
2) Exponent field
3) Fraction field

The size of the fields depends on the precision of the number.

For single precision numbers,

For double precision numbers,

Sign field width 1 bit E(max) +127

Exponent field width 8 bits E(min) -126

Fraction field width 23 bits Exponent bias +127

Total width 32 bits

Sign field width 1 bit E(max) +1023

Exponent field width 11 bits E(min) -1022

Fraction field width 52 bits Exponent bias +1023

Total width 64 bits

102 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

9.3.2 Basic Formats

Numbers in the single and double formats are composed of the following three fields:

where

p = the number of significant bits
b(n) = 0 or 1

The range of the unbiased exponent, E, shall include every integer between two values E(min) and E(max), inclusive,
and also two other reserved values E(min) - 1 to encode ±0 and denormalized numbers, and E(max)+l to encode ±•
and NaNs (Not a Number symbol). The foregoing parameters are given in 9.3.1. Each nonzero numerical value has just
one encoding. The fields are interpreted as follows:

9.3.2.1 Single

A 32 bit single format number, X, is divided as shown in 9.3.2. The value, v, of X is inferred from its constituent fields,
thus

1) If e = 255 and f % 0, then v is NaNs regardless of s
2) If e = 255 and f = 0, then v = (-1)S•
3) If 0 < e < 255, then v = (-1)S 2e-127(1.f)
4) If e = 0 and f % 0, then v = (-1)S 2-126(0.f)

(denormalized numbers)
5) If e = 0 and f = 0, then v = (-1)S 0 (zero)

9.3.2.2 Double

A 64 bit double format number, X, is divided as shown in 9.3.2. The value, v, of X is inferred from its constituent fields
thus

1) If e = 2047 and f % 0, then v is NaNs regardless of s
2) If e = 2047 and f = 0, then v = (-1)S•
3) If 0 < e < 2047, then v = (-1)S 2e-1023 (1.f)
4) If e = 0 and f % 0, then v = (-1)S 2-1022 (0.f)

(denormalized numbers)
5) If e = 0 and f = 0, then v = (-1)S 0 (zero)

9.3.3 Order of Transmission

9.3.3.1 Single Precision Numbers

Single precision numbers shall be transmitted in 4 bytes. The transmission shall be structured according to the
following relationships between DIO signal lines and the fields.

(1) 1 bit sign s (s = 0 = positive) (s = 1 = negative)

(2) Biased exponent e = E + bias

(3) Fraction f = .b(1)b(2) ... b(p - 1)

Copyright © 1992 IEEE All Rights Reserved 103

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

where

MSBE is the most significant bit of the exponent
LSBE is the least significant bit of the exponent
MSBF is the most significant bit of the fraction
LSBF is the least significant bit of the fraction
S is the sign bit
E is an exponent bit
F is a fraction bit

9.3.3.2 Double Precision Numbers

Double precision numbers shall be transmitted in 8. bytes. The transmission shall be structured according to the
following relationships between DIO signal lines and the fields.

DIO — 8 7 6 5 4 3 2 1

S E
^

E E E E E E First byte sent

MSBE

E
^

F
^

F F F F F F Second byte sent

LSBE MSBF

F F F F F F F F Third byte sent

F F F F F F F F
^ Fourth byte sent

LSBF

DIO — 8 7 6 5 4 3 2 1

S E
^

E E E E E E First byte sent

MSBE

E E E E
^

F
^

F F F Second byte sent

LSBE MSBF

F F F F F F F F Third through
seventh byte sent

F F F F F F F F
^

Eighth byte sent

LSBF

104 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

where

MSBE is the most significant bit of the exponent
LSBE is the least significant bit of the exponent
MSBF is the most significant bit of the fraction
LSBF is the least significant bit of the fraction
S is the sign bit
E is an exponent bit
F is a fraction bit

9.3.4 Example of Single Precision Number

An example of a single precision number could be encoded using these four bytes:

where

The number then evaluates to:

v = (-1)S2e - 127(1 .f)

 = (-1)026(1.75)

 = (64)(1.75)

 = 112

10. Common Commands and Queries

This section describes common commands and queries. Descriptive information and compliance requirements are
included for each command. Table 9-2 lists alphabetically all the common command and query headers defined in this
standard. Table 10-1 lists the same program messages grouped according to function. Syntax of the commands and
queries follows the conventions of 7.1. Common commands and queries, with the exception of *AAD, see 10.1, and
*DLF, see 10.2, are described as <PROGRAM MESSAGE UNIT> elements, see Fig 7-3.

01000010 11100000 00000000 00000000

se ef f

binary decimal

s = 0 = 0

e = 10000101 = 133

f = .110 =.75

Copyright © 1992 IEEE All Rights Reserved 105

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 10-1—IEEE 488.2 Common Command Headers

Mnemonic Name Section

*AAD Accept Address Command 10.1

*CAL? Calibration Query 10.2

*CLS Clear Status Command 10.3

*DDT Define Device Trigger Command 10.4

*DDT? Define Device Trigger Query 10.5

*DLF Disable Listener Function Command 10.6

*DMC Define Macro Command 10.7

*EMC Enable Macro Command 10.8

*EMC? Enable Macro Query 10.9

*ESE Standard Event Status Enable Command 10.10

*ESE? Standard Event Status Enable Query 10.11

*ESR? Standard Event Status Register Query 10.12

*GMC? Get Macro Contents Query 10.13

*IDN? Identification Query 10.14

*IST? Individual Status Query 10.15

*LMC? Learn Macro Query 10.16

*LRN? Learn Device Setup Query 10.17

*OPC Operation Complete Command 10.18

*OPC? Operation Complete Query 10.19

*OPT? Option Identification Query 10.20

*PCB Pass. Control Back Command 10.21

*PMC Purge Macros Command 10.22

*PRE Parallel Poll Enable Register Command 10.23

*PRE? Parallel Poll Enable Register Query 10.24

*PSC Power-On Status Clear Command 10.25

*PSC? Power-On Status Clear Query 10.26

*PUD Protected User Data Command 10.27

*PUD? Protected User Data Query 10.28

*RCL Recall Command 10.29

*RDT Resource Description Transfer Command 10.30

*RDT? Resource Description Transfer Query 10.31

*RMC Remove Individual Macro Command 10.40

*RST Reset Command 10.32

*SAV Save Command 10.33

*SDS Save Default Device Setting Command 10.41

*SRE Service Request Enable Command 10.34

*SRE? Service Request Enable Query 10.35

*STB? Read Status Byte Query 10.36

*TRG Trigger Command 10.37

*TST? Self-Test Query 10.38

*WAI Wait-to-Continue Command 10.39

106 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 10-2—IEEE 488.2 Common Command Groups

Section 6.1.6.1.1 requires that a device shall generate a Command Error if an unimplemented common command is
received.

Mnemonic Group Compliance Section

AAD Auto Configure Optional

*If any commands in either the Auto Configure, Macro, or Stored Settings groups are implemented, then all the
commands in that group shall be implemented.

10.1

*DLF Auto Configure Optional 10.6

*IDN? System Data Mandatory 10.14

*OPT? System Data Optional 10.20

*PUD System Data Optional 10.27

*PUD? System Data Optional 10.28

*RDT System Data Optional 10.30

*RDT? System Data Optional 10.31

*CAL? Internal Operations Optional 10.2

*LRN? Internal Operations Optional 10.17

*RST Internal Operations Mandatory 10.32

*TST? Internal Operations Mandatory 10.38

*OPC Synchronization Mandatory 10.18

*OPC? Synchronization Mandatory 10.19

*WAI Synchronization Mandatory 10.39

*DMC Macro Optional 10.7

*EMC Macro Optional 10.8

*EMC? Macro Optional 10.9

*GMC? Macro Optional 10.13

*LMC? Macro Optional 10.16

*PMC Macro Optional 10.22

*RMC Macro Extended Optional†

†Implementation of this command requires implementation of the Macro group commands.

10.40

*IST? Parallel Poll Mandatory if PP1 10.15

*PRE Parallel Poll Mandator if PP1 10.23

*PRE? Parallel Poll Mandatory if PP1 10.24

*CLS Status & Event Mandatory 10.3

*ESE Status & Event Mandatory 10.10

*ESE? Status & Event Mandatory 10.11

*ESR? Status & Event Mandatory 10.12

*PSC Status & Event Optional 10.25

*PSC? Status & Event Optional 10.26

*SRE Status & Event Mandatory 10.34

*SRE? Status & Event Mandatory 10.35

*STB? Status & Event Mandatory 10.36

*DDT Trigger Optional; requires DT1 10.4

*DDT? Trigger Optional; requires DT1 10.5

*TRG Trigger Mandatory if DT1 10.37

*PCB Controller Mandatory if other than C0 10.21

*RCL Stored Settings Optional 10.29

*SAV Stored Settings Optional 10.33

*SDS Stored Setting
Extended Optional‡

‡Implementation of this command requires implementation of the Stored Settings group commands.

10.41

Copyright © 1992 IEEE All Rights Reserved 107

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.1 *AAD, Accept Address Command

10.1.1 Function and Requirements

This command, in conjunction with the Address Set protocol, allows the controller to detect all address-configurable
devices (that is, devices that implement this command) and assign an IEEE 488.1 address to each of those devices. An
address-configurable device is detected when the controller has completed a byte-by-byte search of the device's
identifier, after which time the address is assigned. The Address Set protocol causes this identifier search to be
executed repeatedly until all address-configurable devices have been detected. See 13.4.2 for detailed implementation
requirements of this command.

10.1.2 Syntax

The syntax for the Accept Address command is defined as a <COMMAND PROGRAM HEADER> followed
immediately by a <PROGRAM MESSAGE TERMINATOR>. The <common command program header> in the
<COMMAND PROGRAM HEADER> is defined as “ *AAD.”

10.1.3 Semantics

See 13.4.2.

10.1.4 Related Common Commands

*DLF — Implementation requires this optional command.

10.1.5 Standard Compliance

Optional.

10.1.6 Error Handling

See 13.4.2.

10.2 *CAL?, Calibration Query

10.2.1 Function and Requirements

The Calibration query causes a device to perform an internal self-calibration and generate a response that indicates
whether or not the device completed the self-calibration without error. Additional information about any calibration
errors may be contained in the response, see 10.2.3.

The Calibration query shall not require any local operator interaction to function. It shall not create bus conditions that
are violations to the IEEE Std 488.1-1987 [4] or IEEE Std 488.2-1992 standards. Otherwise, the scope of the self-
calibration is completely at the discretion of the device designer.

Upon completion of *CAL?, the device should be returned to the state just prior to the calibration cycle, or other
specified operational condition stated in the documentation, see 4.9.

108 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.2.2 Query Structure

10.2.2.1 Query Syntax

The syntax for the Calibration query is defined as only a <QUERY PROGRAM HEADER>. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*CAL?.”

10.2.2.2 Response Syntax

The response syntax for the Calibration query is defined as a single <NR1 NUMERIC RESPONSE DATA>. The
<NR1 NUMERIC RESPONSE DATA> shall be in the range of –32767 to 32767.

10.2.3

A value of zero indicates the calibration completed without any detected errors. A value not equal to zero indicates the
calibration did not complete or completed with errors detected. The semantics of the nonzero response shall be
completely at the discretion of the device designer.

10.2.4 Related Common Commands

None.

10.2.5 Standard Compliance

Optional, requires no other optional commands.

10.3 *CLS, Clear Status Command

10.3.1 Function and Requirements

The Clear Status command clears status data structures, see 11.1.2, and forces the device to the Operation Complete
Command Idle State and the Operation Complete Query Idle State, see 12.5.2 and 12.5.3.

If the Clear Status command immediately follows a <PROGRAM MESSAGE TERMINATOR>, the Output Queue
and the MAV bit will be cleared because any new <PROGRAM MESSAGE> after a <PROGRAM MESSAGE
TERMINATOR> clears the Output Queue, see 6.3.2.3.

See Appendix D. for a discussion of the resetting actions of *CLS as they relate to other reset commands.

10.3.2 Syntax

The syntax for the Clear Status command is defined as only a <COMMAND PROGRAM HEADER>. The <common
command program header> in the <COMMAND PROGRAM HEADER> is defined as “*CLS.”

10.3.3 Semantics

Not applicable.

10.3.4 Related Common Commands

None.

Copyright © 1992 IEEE All Rights Reserved 109

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.3.5 Standard Compliance

Mandatory.

10.4 *DDT, Define Device Trigger Command

10.4.1 Function and Requirements

The Define Device Trigger command stores a command sequence that is executed when a group execute trigger
(GET), IEEE 488.1 interface message, or *TRG common command is received, see 10.37. The *RST common
command shall set the command sequence to a device-defined state, see 10.32.

If a device implements *DDT, there shall exist a command sequence to represent any GET or *TRG action. The device
documentation shall state the command sequence sent with the *DDT command that has the same effect as *RST on
the action performed by GET.*TRG may be used for this purpose, see 10.4.6.3.

10.4.2 Syntax

There are two syntax formats for the Define Device Trigger command:

1) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by an <ARBITRARY BLOCK PROGRAM DATA> element

2) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by a <STRING PROGRAM DATA> element

Devices that implement *DDT shall accept format (1) above, and may additionally accept format (2).

The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*DDT.”

10.4.3 Semantics

The <ARBITRARY BLOCK PROGRAM DATA> or <STRING PROGRAM DATA> contains either the sequence of
<PROGRAM MESSAGE UNIT> elements to be executed or a zero-length data field. A zero-length field indicates that
no action will be taken when a group execute trigger (GET) IEEE 488.1 interface message or a *TRG common
command, see 10.37, is received.

NOTE — The alternate <STRING PROGRAM DATA> format may only contain 7 bit ASCII data bytes, thus restricting its usage.

10.4.4 Related Common Commands

*DDT? — This is the companion query.

10.4.5 Standard Compliance

Optional, but requires the DT1 subset.

10.4.6 Error Handling

10.4.6.1 Oversized Command Sequence

An Execution Error, see 6.1.7 and 11.5.1.1.5, shall be reported if the block or string is too long for the device to accept.
The maximum length requirement shall be specified in the device’s documentation.

110 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.4.6.2 Command Sequence Errors

Any Command or Execution Errors contained in the command sequence may be either detected immediately or
deferred until the macro is executed.

10.4.6.3 Sequence Containing *TRG

If the stored command sequence contains *TRG or the label of an enabled macro whose expansion leads to the
execution of *TRG, then the device may respond in one of the following two ways:

1) The device may consider this condition as being recursion. The application program can only stop this
recursion by sending DCL or SDC. The device may either allow recursion to take place indefinitely or report
an Execution Error at a device-specified level of recursion.

2) The device may interpret the *TRG as meaning the device should perform that default action for *TRG, i.e.,
the action assigned to *TRG by *RST. Thus, a sequence containing only *TRG sets the definition of *TRG
to the *RST state. When *TRG is included with other commands or queries in the sequence, the device
executes the commands, queries, and default *TRG action in the order specified in the sequence.

Which method is chosen and the manner in which recursion is handled shall be stated in the device documentation. See
4.9.

10.4.7 Example

*DDT #217TRIG WFM; MEASWFM?

A GET will immediately trigger a waveform and perform a query that places the acquired waveform into the device's
Output Queue.

10.5 *DDT?, Define Device Trigger Query

10.5.1 Function and Requirements

The Define Device Trigger query allows the programmer to examine the command sequence which will be executed
when a GET or *TRG command is received.

10.5.2 Query Structure

10.5.2.1 Query Syntax

The syntax for the Define Device Trigger query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*DDT?.”

10.5.2.2 Response Syntax

The response syntax for the Define Device Trigger query is defined as a <DEFINITE LENGTH ARBITRARY
BLOCK RESPONSE DATA> element.

10.5.3 Response Semantics

The <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element contains the sequence of
<PROGRAM MESSAGE UNIT> elements that are executed when a GET or *TRG is received.

The condition of “no command sequence stored” results in a response of a zero-length block.

Copyright © 1992 IEEE All Rights Reserved 111

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.5.4 Related Common Commands

*DDT — Implementation requires this optional command. This is the companion command.

10.5.5 Standard Compliance

Optional, but requires the DT1 subset.

10.6 *DLF, Disable Listener Function Command

10.6.1 Function and Requirements

The Disable Listener Function command causes a device to cease being a listener (change to L0 subset). If this
command is the first device-specific message received after the device leaves IEEE 488.1 DCAS state, the device shall
cease being a listener within 100 ms after the acceptance of the <PROGRAM MESSAGE TERMINATOR>. See
13.4.1 for detailed implementation requirements of this command. A subsequent DCL message shall restore listener
capability. The device shall resume listening within 100 ms after entering IEEE 488.1 DCAS state.

10.6.2 Syntax

The syntax for the Disable Listener Function command is defined as a <COMMAND PROGRAM HEADER>
followed immediately by a <PROGRAM MESSAGE TERMINATOR>. The <common command program header> in
the <COMMAND PROGRAM HEADER> is defined as “*DLF.”

10.6.3 Semantics

The *DLF command shall be immediately followed by a <PROGRAM MESSAGE TERMINATOR> with no
parameters.

10.6.4 Related Common Commands

*AAD — Implementation requires this optional command.

10.6.5 Standard Compliance

Optional.

10.6.6 Error Handling

See 13.4.1 and 13.4.2 for further information.

10.7 *DMC, Define Macro Command

10.7.1 Function and Requirements

The Define Macro command allows the programmer to assign a sequence of zero or more <PROGRAM MESSAGE
UNIT> elements to a macro label. The sequence is executed when the label is received as a <COMMAND
PROGRAM HEADER> or <QUERY PROGRAM HEADER>.

10.7.2 Syntax

There are two syntax formats for the Define Macro command.

1) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by a <STRING PROGRAM DATA> followed by a <PROGRAM DATA SEPARATOR> followed by an
<ARBITRARY BLOCK PROGRAM DATA> element.

112 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

2) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by a <STRING PROGRAM DATA> followed by a <PROGRAM DATA SEPARATOR> followed by
<STRING PROGRAM DATA> element.

Devices that implement *DMC shall accept format (1) above, and may additionally accept format (2).

The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*DMC.”

10.7.3 Semantics

The first <STRING PROGRAM DATA> element contains the macro label. The macro label shall be either a <simple
command program header>, a <compound command program header>, a <simple query program header>, or a
<compound query program header>. The macro label shall not, however, be either a <common command program
header>, see 7.6.1.2, or a <common query program header>, see 7.6.2.2. Any <white space> or a leading colon (if
compound headers are implemented), or both, appearing before the first character of a macro label shall not be
considered a part of that label.

The macro label may be the same as a device-specific <COMMAND PROGRAM HEADER> or <QUERY
PROGRAM HEADER>. In this case, provided macros are enabled, see 10.8.4, and the macro label received within a
<PROGRAM MESSAGE> shall be executed as the macro expansion, not as the device-specific command of the same
name. That device-specific command may still be executed by disabling macros.

The <ARBITRARY BLOCK PROGRAM DATA> or second <STRING PROGRAM DATA> element contains the
sequence of <PROGRAM MESSAGE UNIT> elements being labeled.

NOTE — The alternate <STRING PROGRAM DATA> format may only contain 7 bit ASCII data bytes, thus restricting its usage.

Parameters may be passed to the sequence during execution. Placeholders for parameters appear in the sequence as a
dollar sign (ASCII codes 31-39, 49-57 decimal). The first <PROGRAM DATA> element following the macro label,
when used as a header, is substituted for the parameter placeholder labeled $1. The second <PROGRAM DATA>
element is substituted for $2. This substitution process is continued for up to nine parameters.

The placeholder must appear in the sequence as if it were a complete <PROGRAM DATA> element. See 7.3.2 for a
description of where <PROGRAM DATA> elements are permitted in a <PROGRAM MESSAGE UNIT>. Paragraph
7.7.7 describes how <PROGRAM DATA> elements may appear in an <expression>.

Devices that accept <compound command program header> and <compound query program header> elements should
prefix the header-path before comparing the macro label against the stored macro names. The match shall be exact
except for the leading colon.

NOTE — Since different paths to the same :node may exist, all possible paths shall be considered when doing the comparison.

The header-path is formed in the same manner that is used when <compound command program header> and
<compound query program header> elements that are not macros are received.

NOTE — A macro label with an appended question mark should not imply any action other than the appropriate error response,
unless a separate *DMC command explicitly defining the query was received.

10.7.4 Related Common Commands

*PMC — Implementation requires this optional command.

*GMC? — Implementation requires this optional query.

*LMC — Implementation requires this optional command.

*EMC — Implementation requires this optional command.

Copyright © 1992 IEEE All Rights Reserved 113

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

*EMC? — Implementation requires this optional query.

*RMC — Implementation optional.

10.7.5 Standard Compliance

Optional.

10.7.6 Error Handling

10.7.6.1 Oversized Command Sequence

An Execution Error, see 6.1.7 and 11.5.1.1.5, shall be reported if the block or string is too long for the device to accept.

The maximum length requirement is device-specific and shall be specified in the device documentation.

10.7.6.2 Macro Label Errors

A device shall report an Execution Error if the macro label is too long for the device to accept.

The maximum label length is device-specific and shall be specified in the device documentation.

The device shall report an Execution Error if the macro label does not adhere to the <COMMAND PROGRAM
HEADER> or <QUERY PROGRAM HEADER> syntax in 7.6.

If a device does not implement compound headers, it shall only allow <simple command program header> or <simple
query program header> elements as macro labels. Devices that implement only simple headers shall report an
Execution Error if the macro label contains a colon.

Macro labels that contain too many colon-separated mnemonics shall cause an Execution Error. The level of
complexity shall be included in the device documentation.

10.7.6.3 Command Sequence Errors

Any Command or Execution Errors contained in the command sequence may be either detected immediately or
deferred until the macro is executed.

10.7.6.4 Redefining Existing Macros

Redefining an existing macro shall cause an Execution Error.

10.7.6.5 Parameter Errors

If the command sequence requires a different number of parameters than follow the macro label, the device shall
generate a Command Error. The device shall perform normal parameter checking after parameter substitution.

10.7.6.6 Recursion

If the sequence of <PROGRAM MESSAGE UNIT> elements contains the label of an enabled macro whose expansion
leads to execution of the macro being defined, then recursion will occur. The application program can only step this
recursion by sending DCL or SDC. The device may either allow recursion to take place indefinitely or report an
Execution Error at a device-defined level of recursion. The manner in which recursion is handled must be stated in the
device documentation. See 4.9.

114 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.7.7 Examples

1) *DMC“HOME”, #18MOVE 0,0
The macro descriptively labels a command that sends a pen plotter to its home position.

2) *DMC “SLO”, “SPEED SLOW’
The macro defines an abbreviation of a longer command, thus reducing bus traffic.

3) *DMC “SETUP1”, #221VOLT 14.5;CURLIM 2E-3
SETUP1 will be expanded by the device into VOLT 14.5;CURLIM 2E-3

4) *DMC “TEST_A”, “BEGINFREQ $1;ENDFREQ $2”
This example illustrates the use of parameters. This macro expects two parameters. The device interprets
TEST_A 1000,2000 the same as BEGINFREQ 1000; ENDFREQ 2000.

5) *DMC “CLK_EXT”,#219HORIZ:CLOCK:EXT:NEG
The command that selects an external clock for the horizontal trigger of an oscilloscope with negative edge
sensitivity is given a shorthand notation.

6) *DMC “SWEEP_SET”,“START $1;MARK1 $1;STOP $2;MARK2 $2”
This macro demonstrates the reuse of parameters. The first parameter is used to set both the start frequency
as well as the position of one of the markers. The second parameter sets the stop frequency and another
marker. SWEEP_SET 1E6,5E6 is equivalent to START 1EI6;MARK1 1E6;STOP 5E6;MARK2 5E6.

10.8 *EMC, Enable Macro Command

10.8.1 Function and Requirements

The Enable Macro command enables and disables expansion of macros. Macro definitions are not affected by this
command. One use of this command is to turn off macro expansion in order to execute a device-specific command with
the same name as a macro. The *RST command disables the expansion of macros, see 10.32.

10.8.2 Syntax

The syntax for the Enable Macro command is defined as a <COMMAND PROGRAM HEADER> followed by a
<PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA> element. The
<common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*EMC.”

10.8.3 Semantics

The value of the <DECIMAL NUMERIC PROGRAM DATA> determines whether the defined macros are enabled or
disabled.

A <DECIMAL NUMERIC PROGRAM DATA> that rounds to an integer value of zero disables any defined macros.

A <DECIMAL NUMERIC PROGRAM DATA> that rounds to an integer value not equal to zero enables any defined
macros. The allowed range shall be –32767 to +32767.

10.8.4 Related Common Commands

*PMC — Implementation requires this optional command.
*GMC? — Implementation requires this optional query.
*DMC — Implementation requires this optional command.
*LMC — Implementation requires this optional command.
*EMC? — Implementation requires this optional query.
*RMC — Implementation optional.

Copyright © 1992 IEEE All Rights Reserved 115

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.8.5 Standard Compliance

Optional.

10.8.6 Error Handling

If the <DECIMAL NUMERIC PROGRAM DATA> element does not round to an integer in the range of-32767 to
+32767 inclusive, an Execution Error shall be reported.

10.8.7 Example

Assume an ac power supply has a command of “OUTPUT” that requires two parameters: voltage and frequency. The
following new definition redefines “OUTPUT” to take only one parameter, voltage. The frequency is always 1 kHz.

*DMC “OUTPUT”,#228*EMC *;OUTPUT $1,1000;*EMC 1

10.9 *EMC?, Enable Macro Query

10.9.1 Function and Requirements

The Enable Macro query allows the programmer to query whether the macros are enabled. A returned value of zero
indicates that macros are disabled. A returned value of one indicates that macros are enabled.

10.9.2 Query Structure

10.9.2.1 Query Syntax

The syntax for the Enable Macro query is defined as only a <QUERY PROGRAM HEADER>. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*EMC?.”

10.9.2.2 Response Syntax

The response syntax for the Enable Macro query is defined as a <NR1 NUMERIC RESPONSE DATA> element. The
<NR1 NUMERIC RESPONSE DATA> shall be either a single ASCII-encoded byte for “0” (30, 48 decimal) or “1”
(31, 49 decimal).

10.9.3 Response Semantics

A value of zero indicates that macros are disabled. A value of one indicates that macros are enabled.

10.9.4 Related Common Commands

*PMC — Implementation requires this optional command.
*GMC? — Implementation requires this optional query.
*DMC — Implementation requires this optional command.
*LMC — Implementation requires this optional command.
*EMC — Implementation requires this optional command.
*RMC — Implementation optional.

10.9.5 Standard Compliance

Optional.

116 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.10 *ESE, Standard Event Status Enable Command

10.10.1 Function and Requirements

The Standard Event Status Enable command sets the Standard Event Status Enable Register bits as defined in 11.5.1.3.

10.10.2 Syntax

The syntax for the Standard Event Status Enable command is defined as a <COMMAND PROGRAM HEADER>
followed by a <PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA>
element. The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as
“*ESE.”

10.10.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA>, when rounded to an integer value and expressed in base 2 (binary),
represents the bit values of the Standard Event Status Enable Register. See 11.4.2.3.

The value of the integer shall be in the range of 0 through 255.

10.10.4 Related Common Commands

*ESE? — This is the companion query.

*PSC — Determines whether the Standard Event Status Enable Register is cleared at power-on.

10.10.5 Standard Compliance

Mandatory.

10.10.6 Error Handling

An out-of-range integer shall cause an Execution Error, see 11.5.1.1.5.

10.11 *ESE?, Standard Event Status Enable Query

10.11.1 Function and Requirements

The Standard Event Status Enable query allows the programmer to determine the current contents of the Standard
Event Status Enable Register. See 11.5.1.3.

10.11.2 Query Structure

10.11.2.1 Query Syntax

The syntax for the Standard Event Status Enable query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*ESE?.”

10.11.2.2 Response Syntax

The response syntax for the Standard Event Status Enable query is defined as a <NR1 NUMERIC RESPONSE
DATA> element. The <NR1 NUMERIC RESPONSE DATA> shall be in the range of 0 through 255.

Copyright © 1992 IEEE All Rights Reserved 117

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.11.3 Response Semantics

The <NR1 NUMERIC RESPONSE DATA> integer value expressed in base 2 (binary) represents the bit values of the
Standard Event Status Enable register. See 11.4.2.3.2.

10.11.4 Related Common Commands

*ESE —This is the companion command.

10.11.5 Standard Compliance

Mandatory.

10.12 *ESR?, Standard Event Status Register Query

10.12.1 Function and Requirements

The Standard Event Status Register query allows the programmer to determine the current contents of the Standard
Event Status Register. Reading the Standard Event Status Register clears it. See 11.5.1.2.

10.12.2 Query Structure

10.12.2.1 Query Syntax

The syntax for the Standard Event Status Register query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*ESR?.”

10.12.2.2 Response Syntax

The response syntax for the Standard Event Status Register query is defined as a <NR1 NUMERIC RESPONSE
DATA> element. The <NR1 NUMERIC RESPONSE DATA> shall be in the range of 0 through 255.

10.12.3 Response Semantics

The <NR1 NUMERIC RESPONSE DATA> integer value expressed in base 2 (binary) represents the bit values of the
Standard Event Status Register. See 11.5.1.

10.12.4 Related Common Commands

None.

10.12.5 Standard Compliance

Mandatory.

10.13 *GMC?, Get Macro Contents Query

10.13.1 Function and Requirements

The Get Macro Contents query allows the current definition of a macro to be retrieved from a device.

118 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.13.2 Query Structure

10.13.2.1 Query Syntax

The syntax for the Get Macro Contents query is defined as a <QUERY PROGRAM HEADER> followed by a
<PROGRAM HEADER SEPARATOR> followed by a <STRING PROGRAM DATA> element. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*GMC?.”

10.13.2.2 Response Syntax

The response syntax for the Get Macro Contents query is defined as a <DEFINITE LENGTH ARBITRARY BLOCK
RESPONSE DATA> element.

10.13.3 Semantics

10.13.3.1 Parameter Semantics

The data in the <STRING PROGRAM DATA> element must be a currently defined macro label. Any <white space>
or a leading colon (if compound headers are implemented), or both, appearing before the first character of a macro
label shall not be considered a part of that label.

10.13.3.2 Response Semantics

The <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> element contains the <PROGRAM
MESSAGE UNIT> sequence, which is executed when the macro label is received.

The condition of “no command sequence stored” results in a response of a zero-length block.

10.13.4 Related Common Commands

*PMC — Implementation requires this optional command.

*EMC — Implementation requires this optional command.

*EMC? — Implementation requires this optional query.

*DMC — Implementation requires this optional command.

*LMC — Implementation requires this optional command.

*RMC — Implementation optional.

10.13.5 Standard Compliance

Optional.

10.13.6 Error Handling

If the programmer attempts to retrieve the contents of an undefined macro, the device shall return a zero-length block
and report an Execution Error.

10.14 *IDN?., Identification Query

10.14.1 Function and Requirements

The intent of the Identification query is for the unique identification of devices over the system interface.

Copyright © 1992 IEEE All Rights Reserved 119

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.14.2 Query Structure

10.14.2.1 Query Syntax

The syntax for the Identification query is defined as only a <QUERY PROGRAM HEADER>. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*IDN?.”

10.14.2.2 Response Syntax

The response syntax for the Identification query is defined as an <ARBITRARY ASCII RESPONSE DATA> element.
This implies that the *IDN? query should be the last <QUERY MESSAGE UNIT> in a <TERMINATED PROGRAM
MESSAGE>, see 6.5.7.5 and 8.7.11.

10.14.3 Response Semantics

The response is organized into four fields separated by commas. The field definitions are as follows:

The presence of data in all the fields is mandatory. If either field 3 or 4 is not available, the ASCII character “0” shall
be returned for that field.

A field may contain any 7-bit ASCII-encoded bytes in the range of 20 through 7E (32 through 126 decimal) except
commas (2C, 44 decimal) and semicolons (3B, 59 decimal).

The overall length of the *IDN? response shall be less than or equal to 72 characters.

The precise format of fields (except ASCII character 0 as meaning empty field) is left to the device designer.

If unique serial numbers are used, then ASCII character 0 shall not be used as a serial number.

10.14.4 Related Common Commands

None.

10.14.5 Standard Compliance

Mandatory.

10.14.6 Example

A hypothetical *IDN? response might appear as follows for a model 246B product from a company, XYZ Co, that has
chosen the mnemonic “XYZCO” to represent itself with serial number S000-123-02, and no firmware revision
specified.

Field 1 Manufacturer required

Field 2 Model required

Field 3 Serial number ASCII character 0 if not available

Field 4 Firmware level or equivalent ASCII character 0 if not available

NOTE — ASCII character “0” represents a single ASCII-encoded byte with value 30 (48 decimal).

120 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

XYZCO,246B,S000-0123-02,0

10.15 *IST?, Individual Status Query

10.15.1 Function and Requirements

The Individual Status query allows the programmer to read the current state of the IEEE 488.1 defined “ist” local
message in the device, see 11.6.2.

10.15.2 Query Structure

10.15.2.1 Query Syntax

The syntax for the Individual Status query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*IST?.”

10.15.2.2 Response Syntax

The response syntax for the Individual Status query is defined as a <NR1 NUMERIC RESPONSE DATA> element.
The <NR1 NUMERIC RESPONSE DATA> shall be a single ASCII-encoded byte encoded as a “0” or “1” (30 or 31,
48 or 49 decimal).

10.15.3 Response Semantics

A <NR1 NUMERIC RESPONSE DATA> element with the value zero indicates the ist local message is FALSE.

A <NR1 NUMERIC RESPONSE DATA> element with the value of one indicates that the ist local message is TRUE.

The response of this query is dependent upon the current status of the instrument.

10.15.4 Related Common Commands

None.

10.15.5 Standard Compliance

Mandatory for devices implementing the PP1 subset.

10.16 *LMC?, Learn Macro Query

10.16.1 Function and Requirements

This query returns the currently defined macro labels.

10.16.2 Query Structure

10.16.2.1 Query Syntax

The syntax for the Learn Macro query is defined as only a <QUERY PROGRAM HEADER>. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*LMC?.”

Copyright © 1992 IEEE All Rights Reserved 121

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.16.2.2 Response Syntax

The response syntax for the Learn Macro query is defined as a sequence of one or more <STRING RESPONSE
DATA> elements each separated by a <RESPONSE DATA SEPARATOR>.

10.16.3 Response Semantics

The <STRING RESPONSE DATA> elements contain macro labels currently defined in the device. See 10.7.

If no macro labels are defined, then the response shall be a single <STRING RESPONSE DATA> with null string data,
that is, two consecutive double quote (3) marks.

The response is independent of the macro-enabled or macro-disabled state of the device.

10.16.4 Related Common Commands

See 10.22.

*PMC — Implementation requires this optional command.

*DMC — Implementation requires this optional command.

*EMC — Implementation requires this optional command.

*EMC? — Implementation requires this optional query.

*GMC? — Implementation requires this optional query.

*RMC — Implementation optional.

10.16.5 Standard Compliance

Optional.

10.17 *LRN?, Learn Device Setup Query

10.17.1 Function and Requirements

The Learn Device Setup query allows the programmer to obtain a sequence of<RESPONSE MESSAGE UNIT>
elements that may later be used as <PROGRAM MESSAGE UNIT> elements to place the device in the state it was in
when the *LRN? common query was made.

10.17.2 Query Structure

10.17.2.1 Query Syntax

The syntax for the Learn Device Setup query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*LRN?.”

10.17.2.2 Response Syntax

The response syntax for the Learn Device Setup query is defined as a sequence of one or more <RESPONSE
MESSAGE UNIT> elements separated by <RESPONSE MESSAGE UNIT SEPARATOR> elements. The
<RESPONSE MESSAGE UNIT> shall use the path, shown in Fig 8-3, that contains the <RESPONSE HEADER>.

122 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.17.3 Response Semantics

The <RESPONSE MESSAGE> is a sequence of one or more <RESPONSE MESSAGE UNIT> elements that are
directly resendable as <PROGRAM MESSAGE UNIT> elements.

The device shall be restored to its “learned” state from any other current state (including the state after *RST) upon
receipt of this <RESPONSE MESSAGE> as a <PROGRAM MESSAGE>.

The scope of the restored settings is the same as the optional *SAV command, see 10.33.1.

NOTE — If<learn string> is the response to *LRN?, then receiving <learn string> is equivalent to receiving *RST;<learn string>.
The device designer shall :implement the necessary <PROGRAM MESSAGE UNIT> elements needed to cause this
action.

10.17.4 Related Common Commands

None.

10.17.5 Standard Compliance

Optional.

10.18 *OPC, Operation Complete Command

10.18.1 Function and Requirements

The Operation Complete command causes the device to generate the operation complete message in the Standard
Event Status Register when all pending selected device operations have been finished. See 12.5.2.2 for details of
operation.

10.18.2 Syntax

The syntax for the Operation Complete command is defined as only a <COMMAND PROGRAM HEADER>. The
<common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*OPC.”

10.18.3 Semantics

Not applicable.

10.18.4 Related Common Commands

*OPC?, *WAI.

10.18.5 Standard Compliance

Mandatory.

10.19 *OPC?, Operation Complete Query

10.19.1 Function and Requirements

The Operation Complete query places an ASCII character “1” into the device's Output Queue when all pending
selected device operations have been finished. See 12.5.3 for details of operation.

Copyright © 1992 IEEE All Rights Reserved 123

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.19.2 Query Structure

10.19.2.1 Query Syntax

The syntax for the Operation Complete query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*OPC?.”

10.19.2.2 Response Syntax

The response syntax for the Operation Complete query is defined as a <NR1 NUMERIC RESPONSE DATA>
element. The <NR1 NUMERIC RESPONSE DATA> shall be a single ASCII-encoded byte for “1” (31, 49 decimal).

10.19.3 Response Semantics

None.

10.19.4 Related Common Commands

*OPC, *WAI.

10.19.5 Standard Compliance

Mandatory.

10.20 *OPT?, Option Identification Query

10.20.1 Function and Requirements

The Option Identification query is for identifying reportable device options over the system interface.

10.20.2 Query Structure

10.20.2.1 Query Syntax

The syntax for the Option Identification query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*OPT?.”

10.20.2.2 Response Syntax

The response syntax for the Option Identification Query is defined as an <ARBITRARY ASCII RESPONSE DATA>
element. This implies that the *OPT? query should be the last <QUERY MESSAGE UNIT> in a <TERMINATED
PROGRAM MESSAGE>, see 6.5.7.5 and 8.7.11.

10.20.3 Response Semantics

The response consists of any number of fields separated by commas.

The fields shall follow these rules:

1) Each field shall correspond to a reportable option present in the device. The precise format of the fields is left
to the device designer.

2) Empty fields are prohibited. Missing reportable options respond with an ASCII character “0” (30, 48
decimal).

124 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

3) Option data may be reported in a position-dependent manner.
4) A single ASCII character “0” shall be returned as a response if the device contains no reportable options.

ASCII character “0” may not be used as an option identification.
5) A field may contain any 7 bit ASCII-encoded bytes in the range of 20 through 7E (32 through 126 decimal)

except commas (2C, 44 decimal) and semicolons (3B, 59 decimal).

The overall length of the *OPT? response shall be less than or equal to 255 characters.

10.20.4 Related Common Commands

None.

10.20.5 Standard Compliance

Optional.

10.21 *PCB, Pass Control Back

10.21.1 Function and Requirements

The Pass Control Back command is used by a controller to tell a device, being a potential controller, to which address
the control is to be passed back when the device (acting as a controller) sends the IEEE 488.1 interface message, take
control (TCT).

Any device that implements this command shall have controller capability. Any device that has controller capability
shall implement this command.

10.21.2 Syntax

The syntax for the Pass Control Back command is defined as a <COMMAND PROGRAM HEADER> followed by a
<PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA> element
optionally followed by a <PROGRAM DATA SEPARATOR> and another <DECIMAL NUMERIC PROGRAM
DATA> element. The <common command program header> in the <COMMAND PROGRAM HEADER> is defined
as “*PCB.” The first <DECIMAL NUMERIC PROGRAM DATA> shall round to an integer value in the range of 0
through 30. The second <DECIMAL NUMERIC PROGRAM DATA>, if present, shall round to an integer value in the
range of 0 through 30.

10.21.3 Semantics

The first <DECIMAL NUMERIC PROGRAM DATA> element is rounded to an integer whose value is interpreted as
the primary address of the controller sending the command.

The second <DECIMAL NUMERIC PROGRAM DATA> element is rounded to an integer whose value is interpreted
as the secondary address of the controller sending the command.

A missing second address shall indicate the controller sending this command does not have extended addressing.

10.21.4 Related Common Commands

None.

Copyright © 1992 IEEE All Rights Reserved 125

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.21.5 Standard Compliance

Mandatory for devices that have any controller capability (non-CO devices). See 15.1.4.

10.21.6 Error Handling

10.21.6.1 Unable to Pass Control

A device with no controller capability (CO) shall issue a Command Error if it receives the *PCB common command.

10.21.6.2 Parameters Out-of-Range

The device receiving the *PCB command shall issue an Execution Error if the value of either the first or second
parameter is out of its specified range.

10.22 *PMC, Purge Macros Command

10.22.1 Function and Requirements

The Purge Macros command causes the device to delete all macros that may have been previously defined using the
*DMC command. All stored macro command sequences and labels shall be removed from the device's memory by
this command.

10.22.2 Syntax

The syntax for the Purge Macros command is defined as only a <COMMAND PROGRAM HEADER>. The
<common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*PMC.”

10.22.3 Semantics

Not applicable.

10.22.4 Related Common Commads

*EMC — Implementation requires this optional command.

*EMC? — Implementation requires this optional query.

*GMC? — Implementation requires this optional query.

*DMC — Implementation requires this optional command.

*LMC — Implementation requires this optional command.

*RMC — Implementation optional.

10.22.5 Standard Compliance

Optional.

10.23 *PRE, Parallel Poll Enable Register Command

10.23.1 Function and Requirements

The Parallel Poll Enable Register command sets the Parallel Poll Enable Register bits as defined in 11.6.

126 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.23.2 Syntax

The syntax for the Parallel Poll Enable Register command is defined as a <COMMAND PROGRAM HEADER>
followed by a <PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA>
element. The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as
“*PRE.” The <DECIMAL NUMERIC PROGRAM DATA> value shall round to an integer in the range of 0 through
65535.

10.23.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA>, when rounded to an integer value and expressed in base 2 (binary),
represents the bit values of the Parallel Poll Enable Register. See 11.6.1.3.

10.23.4 Related Common Commands

*PRE? — This is the companion query.

10.23.5 Standard Compliance

Mandatory for devices implementing the PP1 subset.

10.23.6 Error Handling

If the integer is outside the range of 0 to 65535 inclusive, an Execution Error shall be reported, see 11.5.1.1.5.

10.24 *PRE?, Parallel Poll Enable Register Query

10.24.1 Function and Requirements

The Parallel Poll Enable Register query allows the programmer to determine the current contents of the Parallel Poll
Enable Register.

10.24.2 Query Structure

10.24.2.1 Query Syntax

The syntax for the Parallel Poll Enable Register query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*PRE?.”

10.24.2.2 Response Syntax

The response syntax for the Parallel Poll Enable Register query is defined as a <NR1 NUMERIC RESPONSE DATA>
element. The <NR1 NUMERIC RESPONSE DATA> value is an integer in the range of 0 through 65535.

10.24.3 Response Semantics

The <NR1 NUMERIC RESPONSE DATA> integer value expressed in base 2 (binary) represents the bit values of the
Parallel Poll Enable Register. See 11.6.1.2.

10.24.4 Related Common Commands

*PRE — This is the companion command.

Copyright © 1992 IEEE All Rights Reserved 127

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.24.5 Standard Compliance

Mandatory for devices implementing the PP1 subset.

10.25 *PSC, Power-On Status Clear Command

10.25.1 Function and Requirements

The Power-On Status Clear command controls the automatic power-on clearing of the Service Request Enable
Register, the Standard Event Status Enable Register, the Parallel Poll Enable Register, and device-specific event enable
registers. This command may also affect the clearing of other status registers. See 5.12. No other device functions shall
be tied to this command. For additional IEEE 488.2 power-on requirements, see 5.12.

10.25.2 Syntax

The syntax for the Power-On Status Clear command is defined as a <COMMAND PROGRAM HEADER> followed
by a <PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA> element.
The <common command header> in the <COMMAND PROGRAM HEADER> is defined as “*PSC.” The
<DECIMAL NUMERIC PROGRAM DATA> value shall be in the range of –32767 through +32767.

10.25.3 Semantics

The value of the <DECIMAL NUMERIC PROGRAM DATA> determines whether the power-on-status-clear flag of
the device is TRUE or FALSE.

A <DECIMAL NUMERIC PROGRAM DATA> that rounds to an integer value of zero sets the power-on-status-clear
flag FALSE. Sending *PSC 0, therefore, allows instruments to assert SRQ after power-on.

A <DECIMAL NUMERIC PROGRAM DATA> that rounds to an integer value not equal to zero sets the power-on-
status-clear flag TRUE. Sending *PSC 1, therefore, enables the power-on clear and disallows any SRQ assertion after
power-on.

10.25.4 Related Common Commands

*PSC? — Implementation requires this optional command. This is the companion query.

10.25.5 Standard Compliance

Optional.

10.25.6 Error Handling

If the integer is outside the range of -32767 to +32767 inclusive, an Execution Error shall be reported, see 11.5.1.1.5.

10.25.7 Example

The command sequence *PSC 0;*SRE 32;*ESE 128; allows a device to assert SRQ upon completion of power-on.

128 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.26 *PSC?, Power-On Status Clear Query

10.26.1 Function and Requirements

The Power-On Status Clear query allows the programmer to query the device's power-on-status-clear flag. A returned
value of zero indicates that the Standard Event Status Enable Register, Service Request Enable Register, and the
Parallel Poll Enable Register will retain their status when power is restored to the device. A returned value of one
indicates that the registers listed above will be cleared when power is restored to the device, see 11.1.3.

10.26.2 Query Structure

10.26.2.1 Query Syntax

The syntax for the Power-On Status Clear query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*PSC?.”

10.26.2.2 Response Syntax

The response syntax for the Power-On Status Clear query is defined as only a <NR1 DECIMAL NUMERIC
RESPONSE DATA> element. The <NR1 DECIMAL NUMERIC RESPONSE DATA> shall be either a single ASCII-
encoded byte for “0” (30, 48 decimal) or “1” (31, 49 decimal).

10.26.3 Response Semantics

A value of zero indicates the device's power-on-status-clear flag is FALSE.

A value of one indicates the device's power-on-status clear flag is TRUE.

10.26.4 Related Common Commands

*PSC — Implementation requires this optional command. This is the companion command.

10.26.5 Standard Compliance

Optional.

10.27 *PUD, Protected User Data Command

10.27.1 Function and Requirements

The Protected User Data command stores data unique to the device such as calibration date, usage time, environmental
conditions, and inventory control numbers. A minimum of 63 bytes shall be provided. The size of this area shall be
specified in the device documentation, see 4.9.

The data shall be protected by some means (such as a password or a recessed switch whose access hole can be covered
by a protective sticker). The exact protection mechanism is a device designer decision.

Data can be stored only when the protection mechanism is disabled. An enabled protection mechanism shall cause an
Execution Error to be generated when a *PUD command is received.

The contents of this memory is for data storage only and shall have no effect on device operation except in the
response to the *PUD? query, see 10.28.

Copyright © 1992 IEEE All Rights Reserved 129

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.27.2 Syntax

There are two syntax formats for the Protected User Data command:

1) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by an <ARBITRARY BLOCK PROGRAM DATA> element

2) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by a <STRING PROGRAM DATA> element

Devices that implement *PUD shall accept format (1) above, and may additionally accept format (2).

The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*PUD.”

10.27.3 Semantics

The semantic meaning of the <ARBITRARY BLOCK PROGRAM DATA> or <STRING PROGRAM DATA>
element is beyond the scope of this standard.

NOTE — The alternate <STRING PROGRAM DATA> format may only contain 7 bit ASCII data bytes, thus restricting its usage.

10.27.4 Related Common Commands

*PUD? — Implementation requires this optional command. This is the companion query.

10.27.5 Standard Compliance

Optional.

10.27.6 Error Handling

When the number of 8 bit data bytes in the <ARBITRARY BLOCK PROGRAM DATA> format or the number of 7
bit ASCII data bytes in the <STRING PROGRAM DATA> format is more than the size provided, then an Execution
Error shall be generated.

An enabled protection mechanism shall cause an Execution Error to be generated when a *PUD command is received.

10.28 *PUD?, Protected User Data Query

10.28.1 Function and Requirements

The Protected User Data query allows the programmer to retrieve the contents of the *PUD storage area. See *PUD
command, 10.27.

10.28.2 Query Structure

10.28.2.1 Query Syntax

The syntax for the Protected User Data query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*PUD?.”

130 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.28.2.2 Response Syntax

The response syntax for the Protected User Data query is defined as a <DEFINITE LENGTH ARBITRARY BLOCK
RESPONSE DATA> element.

10.28.3 Response Semantics

The data content of the <DEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA> shall be the data last sent
to, and accepted by, the device as a parameter to the *PUD command. See 10.27.

10.28.4 Related Common Commands

*PUD — Implementation requires this optional command. This is the companion command.

10.28.5 Standard Compliance

Optional.

10.29 *RCL, Recall Command

10.29.1 Function and Requirements

The *RCL command restores the current settings of a device from a copy stored in local memory. The scope of the
*RCL command is the same as *RST and the *LRN? response. See 10.32.1 and 10.17.3. Device documentation shall
explicitely mention the device settings that are restored by *RCL.

To avoid inadvertant recall of a stored setting, the use of this command may be protected by a password or other
mechanism. Design and use of this mechanism is a device designer decision. It is recommended that any protection
mechanism be clearly documented.

10.29.2 Syntax

The syntax for the Recall command is defined as a <COMMAND PROGRAM HEADER> followed by a
<PROGRAM HEADER SEPARATOR> followed by <DECIMAL NUMERIC PROGRAM DATA> element. The
<common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*RCL.” The
<DECIMAL NUMERIC PROGRAM DATA> value shall be in the range of 0 through a device-specified upper bound.

10.29.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA> element shall be rounded to an integer before interpretation by the
device.

The device shall recall the settings of the device from a memory register associated with the received integer.

The upper bound for the register number shall be the same for both the *SAV and *RCL commands, see 10.33.4.

The value zero is recommended for any special purpose register, such as a predefined power-on setup.

NOTE — If n is a valid register number, receiving *RCL n is equivalent to receiving *RST,*RCL n.

10.29.4 Related Common Commands

*SAV — Implementation requires this optional command.

*SDS — Implementation optional.

Copyright © 1992 IEEE All Rights Reserved 131

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.29.5 Standard Compliance

Optional.

10.29.6 Error Handling

An interpreted value outside of the allowable range shall cause an Execution Error.

The device may generate an Execution Error when the recall of a previously initialized register is attempted, for
example, after a power-on or after a receipt of a Save Default Device Settings command, *SDS. See 10.41.

An enabled protection mechanism shall cause an Execution Error to be generated when a *RCL command is received.

10.30 *RDT, Resource Description Transfer Command

10.30.1 Function and Requirements

The Resource Description Transfer command allows a Resource Description to be stored in a device.

This command retrieves information describing such characteristics as device performance, programming codes, etc.,
in a standard structure. This structure for Resource Descriptors is under development by the IEEE.

The data shall be protected by some means (such as a password or a recessed switch whose access hole can be covered
by a protective sticker). The exact protection mechanism is a device designer decision.

Data can be stored only when the protection mechanism is disabled.

This memory is for data storage only and its contents shall have no effect on device operation except in the response
to the *RDT? query, see 10.31.

10.30.2 Syntax

There are two syntax formats for the Resource Description Transfer Command:

1) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by an <ARBITRARY BLOCK PROGRAM DATA> element

2) A <COMMAND PROGRAM HEADER> followed by a <PROGRAM HEADER SEPARATOR> followed
by a <STRING PROGRAM DATA> element

Devices that implement *RDT shall accept format (1) above, and may additionally accept format (2).

The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*RDT.”

10.30.3 Semantics

The semantic meaning of the <ABRITRARY BLOCK PROGRAM DATA> or <STRING PROGRAM DATA>
element is beyond the scope of this standard.

NOTE — The alternate <STRING PROGRAM DATA> format may only contain 7 bit ASCII data bytes, thus restricting its usage.

10.30.4 Related Common Commands

*RDT? — Implementation requires this command. This is the companion query.

132 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.30.5 Standard Compliance

Optional.

10.30.6 Error Handling

10.30.6.1 Protected Data

An enabled protection mechanism shall cause an Execution Error to be generated when a *RDT command is received.

10.30.6.2 Oversized Block

A block length or string length greater than the device can accept shall generate an Execution Error. The device’s
documentation must specify the maximum block length.

10.31 *RDT?, Resource Description Transfer Query

10.31.1 Function and Requirements

The Resource Description Transfer query allows a Resource Description to be retrieved from a device. The Resource
Description may be memory or in a read-write memory settable by the *RDT command.

10.31.2 Query Structure

10.31.2.1 Query Syntax

The syntax for the Resource Description Transfer query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*RDT?.”

10.31.2.2 Response Syntax

The response syntax for the Resource Description Transfer query is defined as a <DEFINITE LENGTH ARBITRARY
BLOCK RESPONSE DATA> element.

10.31.3 Response Semantics

A nonzero length block shall contain Resource Description data that is either the defined built-in Resource Description
or exactly what was sent to the device with the last *RDT common command.

A zero-length block indicates that the device contains no Resource Description data.

10.31.4 Related Common Commands

*RDT — This is the companion command.

10.31.5 Standard Compliance

Optional.

Copyright © 1992 IEEE All Rights Reserved 133

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.32 *RST, Reset Command

10.32.1 Function and Requirements

The Reset command performs a device reset. The Reset command is the third level of reset in a three-level reset
strategy, see 17.1.2 and Appendix D. The Reset command shall do the following:

1) Except as explicitly excluded below, set the device-specific functions to a known state that is independent of
the past-use history of the device. Device-specific commands may be provided to program a different reset
state than the original factory-supplied one.

2) Set the macro defined by *DDT to a device-defined state, see 10.4.
3) Disable macros, see 10.8.
4) Force the device into the OCIS state, see 12.5.2.
5) Force the device into the OQIS state, see 12.5.3.

The reset command explicitly shall NOT affect the following:

1) The state of the IEEE 488.1 interface.
2) The selected IEEE 488.1 address of the device.
3) The Output Queue.
4) Any Event Enable Register setting, including the Standard Event Status Enable Register settings, see

11.4.2.3.4 and 11.5.1.3.4.
5) Any Event Register setting, including the Standard Event Status Register settings, see 11.4.2.2.4 and

11.5.1.2.4.
6) The power-on-status-clear flag setting.
7) Macros defined with the Define Macro Contents command.
8) Calibration data that affects device specifications.
9) The Protected User Data query response.
10) The Resource Description Transfer query response.
11) The Service Request Enable Register setting, see 11.3.2.4.
12) The Parallel Poll Enable Register setting, see 11.6.1.4.
13) The memory register(s) associated with *SAV.

The scope of the *LRN? response and *RCL (if implemented) is the same as *RST. See 10.17.3 and 10.29.3.

10.32.2 Syntax

The syntax for the Reset command is defined as only a <COMMAND PROGRAM HEADER>. The <common
command program header> in the <COMMAND PROGRAM HEADER> is defined as “*RST.”

10.32.3 Semantics

Not applicable.

10.32.4 Related Common Commands

See 10.32.1.

10.32.5 Standard Compliance

Mandatory.

134 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.33 *SAV, Save Command

10.33.1 Function and Requirements

The *SAV command stores the current settings of the device in local memory. The scope of the *SAV command is the
same as *RST and the *LRN? response. See 10.32.1 and 10.17.3. Device documentation shall explicitly mention the
device settings that are restored by *RCL.

10.33.2 Syntax

The syntax for the Save command is defined as a <COMMAND PROGRAM HEADER> followed by a <PROGRAM
HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA> element. The <common
command program header> in the <COMMAND PROGRAM HEADER> is defined as “*SAV.” The <DECIMAL
NUMERIC PROGRAM DATA> value shall be in the range of 0 through a device-specified upper bound.

10.33.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA> element shall be rounded to an integer before interpretation by the
device.

The device shall save the current settings of the device in a memory register associated with the interpreted integer.

The upper bound for the register number shall be the same for both the *SAV and *RCL commands, see 10.29.

The value zero is recommended for any special purpose register, such as a predefined power-on setup.

10.33.4 Related Common Commands

*RCL — Implementation requires this optional command.

*SDS — Implementation optional.

10.33.5 Standard Compliance

Optional.

10.33.6 Error Handling

A value outside the allowable range shall cause an Execution Error. A device may have the ability to protect the
information in the memory registers. If this mechanism is enabled, attempting to save the current state of the device
shall cause an Execution Error.

10.34 *SRE, Service Request Enable Command

10.34.1 Function and Requirements

The Service Request Enable command sets the Service Request Enable Register bits as defined in 11.3.2.

10.34.2 Syntax

The syntax for the Service Request Enable command is defined as a <COMMAND PROGRAM HEADER> followed
by a <PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA> element.
The <common command header> in the <COMMAND PROGRAM HEADER> is defined as “*SRE.” The
<DECIMAL NUMERIC PROGRAM DATA> value is in the range of 0 through 255.

Copyright © 1992 IEEE All Rights Reserved 135

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.34.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA>, when rounded to an integer value and expressed in base 2 (binary),
represents the bit values of the Service Request Enable Register. See 11.3.2.3.

For all bits except bit 6, a bit value of one shall indicate an enabled condition. A bit value of zero shall indicate a
disabled condition. See 11.3.2.3. The bit value of bit 6 shall be ignored.

10.34.4 Related Common Commands

*PSC — Determines whether the Service Request Enable Register is cleared at power-on.

*SRE? — This is the companion query.

10.34.5 Standard Compliance

Mandatory.

10.34.6 Error Handling

The device shall generate an Execution Error if an out-of-range parameter is received.

10.35 *SRE?, Service Request Enable Query

10.35.1 Function and Requirements

The Service Request Enable query allows the programmer to determine the current contents of the Service Request
Enable Register, see 11.3.2.

10.35.2 Query Structure

10.35.2.1 Query Syntax

The syntax for the Service Request Enable query is defined as only a <QUERY PROGRAM HEADER>. The
<common query program header> in the <QUERY PROGRAM HEADER> is defined as “*SRE?.”

10.35.2.2 Response Syntax

The response syntax for the Service Request Enable query is defined as a <NR1 NUMERIC RESPONSE DATA>
element. The <NR1 NUMERIC RESPONSE DATA> shall be in the range of 0 through 63 or 128 through 191.

10.35.3 Response Semantics

When converted to binary (base 2), the <NR1 NUMERIC RESPONSE DATA> represents the current bit values of the
Service Request Enable Register. Bit 6 of the binary representation shall always be sent with value zero.

10.35.4 Related Common Commands

*SRE — This is the companion command.

10.35.5 Standard Compliance

Mandatory.

136 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.36 *STB?, Read Status Byte Query

10.36.1 Function and Requirements

The Read Status Byte query allows the programmer to read the status byte and Master Summary Status bit.

10.36.2 Query Structure

10.36.2.1 Query Syntax

The syntax for the Read Status Byte query is defined as only a <QUERY PROGRAM HEADER>. The <common
query program header> in the <QUERY PROGRAM HEADER> is defined as “*STB?.”

10.36.2.2 Response Syntax

The response syntax for the Read Status Byte query is defined as a <NR1 NUMERIC RESPONSE DATA> element.
The <NR1 NUMERIC RESPONSE DATA> value shall be in the range of 0 through 255.

10.36.3 Response Semantics

The <NR1 NUMERIC RESPONSE DATA> integer value expressed in base 2 (binary) represents the bit values of the
Status Byte Register, see 11.2.2.2.

The MSS (Master Summary Status) bit, not the RQS message, is reported on bit-6, see 11.2.2.3.

10.36.4 Related Common Commands

None.

10.36.5 Standard Compliance

Mandatory.

10.37 *TRG, Trigger Command

10.37.1 Function and Requirements

The Trigger command is the device-specific analog of the IEEE 488.1 defined Group Execute Trigger (GET) interface
message, and has exactly the same effect as a GET when received, parsed, and executed by the device. GET operation
is discussed in detail in 6.1.4.2.5.

NOTE — that the *TRG command without *DDT implemented, see 10.4, generates a response by predefined action.

10.37.2 Syntax

The syntax for the Trigger command is defined as only a <COMMAND PROGRAM HEADER>. The <common
command program header> in the <COMMAND PROGRAM HEADER> is defined as “*TRG.”

10.37.3 Semantics

Not applicable.

Copyright © 1992 IEEE All Rights Reserved 137

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.37.4 Related Common Commands

*DDT — This optional command may be used to define the action of *TRG.

10.37.5 Standard Compliance

Mandatory for devices implementing the DT1 subset.

10.38 *TST?, Self-Test Query

10.38.1 Function and Requirements

The self-test query causes an internal self-test and places a response into the Output Queue indicating whether or not
the device completed the self-test without any detected errors. Optionally, information on why the self-test was not
completed may be contained in the response. The scope of the internal self-test shall appear in the device
documentation, see 4.9.

The *TST? query shall not require any local operator interaction. It shall not create bus conditions that are violations
to the IEEE Std 488.1-1987 [4] or IEEE Std 488.2-1992 standards. Otherwise, the scope of the self-test is completely
at the discretion of the device designer.

Upon successful completion of *TST?, the device settings shall be restored to their values prior to the *TST?; set to
fixed, known values that are stated in the device documentation; or set to values defined by the user and stored in local
memory.

10.38.2 Query Structure

10.38.2.1 Query Syntax

The syntax for the Self-Test query is defined as only a <QUERY PROGRAM HEADER>. The <common query
program header> in the <QUERY PROGRAM HEADER> is defined as “*TST?.”

10.38.2.2 Response Syntax

The response syntax for the Self-Test query is defined as a <NR1 NUMERIC RESPONSE DATA> The <NR1
NUMERIC RESPONSE DATA> value shall be in the range of –32767 through +32767.

10.38.3 Response Semantics

A <NR1 NUMERIC RESPONSE DATA> with the value of zero indicates the self-test has completed without errors
detected.

A <NR1 NUMERIC RESPONSE DATA> with the value not equal to zero indicates the self-test was not completed or
was completed with errors detected.

The semantics of the nonzero response otherwise shall be completely at the discretion of the device designer.

10.38.4 Related Common Commands

Not applicable.

138 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.38.5 Standard Compliance

Mandatory.

10.39 *WAI, Wait-to-Continue Command

10.39.1 Function and Requirements

The Wait-to-Continue command shall prevent the device from executing any further commands or queries until the no-
operation-pending flag is TRUE. See 12.5.1.

NOTE — In a device that implements only sequential commands, the no-operation-pending flag is always TRUE.

10.39.2 Syntax

The syntax for the Wait-to-Continue command is defined as only a <COMMAND PROGRAM HEADER>. The
<common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*WAI.”

10.39.3 Semantics

Not applicable.

10.39.4 Related Common Commands

*OPC, *OPC?.

10.39.5 Standard Compliance

Mandatory.

10.40 *RMC, Remove Individual Macro Command

10.40.1 Function and Requirements

The Remove Individual Macro command removes a single macro definition from the device.

10.40.2 Syntax

The syntax for the Remove Individual Macro command is defined as a <COMMAND PROGRAM HEADER>
followed by a <PROGRAM HEADER SEPARATOR> followed by <STRING PROGRAM DATA>.

The <common command program header> in the <COMMAND PROGRAM HEADER> is defined as “*RMC.”

10.40.3 Semantics

The <STRING PROGRAM DATA> element contains a currently defined macro label.

Any <white space> or leading colon (if compound headers are implemented), or both, before the first character of the
macro label shall not be considered a part of the label. See 10.7.3

After the command is executed, receiving the label as a program header shall cause a Command Error unless the label
happened to also be a device-specific command.

Copyright © 1992 IEEE All Rights Reserved 139

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

10.40.4 Related Common Commands

*PMC,*GMC?, *LMC?, *EMC, *EMC?, and *DMC.

10.40.5 Standard Compliance

This command is optional but can only be implemented if the other macro commands were implemented.

10.40.6 Error Handling

If the macro label in the <STRING PROGRAM DATA> does not match a currently defined macro, an Execution Error
shall be reported.

10.40.7 Examples

Assume *DMC “HOME”, “MOVE 0,0” defines a macro called “HOME.” Thus, if “HOME” is received as a
<COMMAND PROGRAM HEADER> then “MOVE 0,0” is executed.

Receiving *RMC “HOME” causes the macro to be removed from the device.

Receiving *RMC“ HOME” also causes the macro to be removed from the device.

Receiving “HOME” as a <COMMAND PROGRAM HEADER> after the macro has been removed causes a
Command Error (assuming the device has no device-specific HOME command).

10.41 *SDS, Save Default Device Settings Command

10.41.1 Function and Requirments

The Save Default Device Settings command initializes the contents of a save/recall register. The register contents are
set to a known state that is independent of the past use history of the device.

10.41.2 Syntax

The syntax for the Save Default Device Settings command is defined as a <COMPOUND PROGRAM HEADER>
followed by a <PROGRAM HEADER SEPARATOR> followed by a <DECIMAL NUMERIC PROGRAM DATA>
element.

The <common program header> in the <COMMAND PROGRAM HEADER> is defined as “*SDS.” The
<DECIMAL NUMERIC PROGRAM DATA> value shall be in the range of 0 through a device-specified upper bound.

10.41.3 Semantics

The <DECIMAL NUMERIC PROGRAM DATA> element shall be rounded to an integer before interpretation by the
device.

The device shall initialize the memory register associated with the received integer.

The upper bound for the register number shall be the same as the *SAV command, see 10.33.

10.41.4 Related Common Commands

*RCL — Implementation requires this optional command.

*SAV — Implementation requires this optional command.

*RST — Implementation is mandatory.

140 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

10.41.5 Standard Compliance

Optional, but can only be implemented if the *SAV and *RCL commands were implemented.

10.41.6 Error Handling

A value outside the allowable range shall cause an Execution Error. A device may have the ability of protecting the
information in the memory registers that was saved from a previous save command. If this protection mechanism has
been enabled, attempting to execute the *SDS command shall cause an Execution Error.

11. Device Status Reporting

This section specifies device requirements involving IEEE 488.1 Service Request and Parallel Poll functions. These
requirements build upon and extend the IEEE 488.1 specifications to provide a detailed status reporting structure.

A complete model is defined for all status reporting. The IEEE 488.1 status byte is part of the model.

Specific and required status messages are defined. A device-specific status reporting model suitable for specific device-
specific requirements is presented.

This section provides a method to transfer the IEEE 488.1 status byte to the controller using either the IEEE 488.1
serial poll or an IEEE 488.2 -defined common query. Additional common commands and queries are provided to
obtain more detailed status information.

11.1 Overview

11.1.1 Operation

Fig 11-1 shows the block diagram of the IEEE 488.2 Status Reporting Structure.

IEEE 488.2 status reporting utilizes the IEEE 488.1 status byte with additional data structures and rules.

The Status Byte Register is composed of seven single-bit “summary-messages” (see Fig 11-1). Each summary-
message summarizes an overlaying Status Data Structure.

Summary-messages always track the current status of the associated Status Data Structure. The summary-messages
are cleared only by some action of the application program that clears the associated Status Data Structure.

Service Request Enabling and Generation determines if one or more of the seven summary-messages will generate the
rsv message and, thus, cause the device to request service using its IEEE 488.1 Service Request function.

The Status Data Structures associated with summary-messages are defined in this section. They follow either

1) A set of registers to record device events and conditions (register-model)
2) Queue to record sequential status or other information (queue model)

Only two of the available seven Status Data Structures are completely defined by this standard:

1) The “Output Queue” is a queue model structure that is summarized by the Message Available (MAV)
summary-message on bit 4 (DIO5, see Fig 11-2).

2) The “Standard Event Status” is a register-model structure that is summarized by the Event Status Bit (ESB)
summary-message on bit 5 (DIO6, see Fig 11-2).

Copyright © 1992 IEEE All Rights Reserved 141

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

11.1.2 Summary of Related Common Commands

Table 11-1 lists the IEEE 488.2 -defined common commands related to this section. A short description and section
references for further information are given for each command.

11.1.3 Related IEEE 488.1 — Defined Operations

Table 11-2 lists the IEEE 488.1 -defined operations related to this section. A short description and section references
for further information are included with each operation.

11.2 Status Byte Register

11.2.1 Definition

The Status Byte Register contains the device's STB and RQS (or MSS) messages. IEEE 488.1 defines the method of
reporting the STB and RQS message, but leaves the setting and clearing protocols and semantics for the STB message
undefined. This standard further defines specific device STB summary-messages. A Master Summary Status (MSS)
message is also provided which is output as bit 6 with the STB in response to a *STB? common query. See 11.3.

142 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 11-1—IEEE 488.2 Status Reporting Structure Overview

Copyright © 1992 IEEE All Rights Reserved 143

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 11-2—Status Byte Register

Table 11-1—Status Reporting Common Commands

*STB? Returns an NR1, which is the value of the IEEE 488.1 status byte and the MSS (Master Summary
Status) summary-message. See 10.36 and 11.2.2.2.

*OPC Sets the “Operation Complete” event bit in the Standard Event Status Register when all selected
pending device operations have been completed. See 10.18 and 12.5.2.

*OPC? Places a “1” in the Output Queue when all selected pending operations are completed, which in
turn causes the MAV (Message Available) summary-message to be generated. See 10.19 and
12.5.3.

*CLS Clears all Event Registers summarized in the status byte. All Queues, except the Output Queue,
that are summarized in the status byte are emptied. The device is forced into the Operation
Complete Command Idle State and the Operation Complete Query Idle State. (See 10.3, 11.2.4,
12.5.2, and 12.5.3.2).

*ESR? Returns an NR1, which is the value of the Standard Event Status Register. See 10.13.6 and 11.5.1.

*ESE NRf Sets the bits of the Standard Event Status Enable Register. See 10.10 and 11.4.3.3.

*ESE? Returns an N-R1, which is the value of the Standard Event Status Enable Register. See 10.11 and
11.4.2.3.2.

*IST? Returns an NR1, which is the value of the IEEE 488.1 ist (individual status) local message. See
10.15 and 11.6.2.

*SRE NRf Sets the bits of the Service Request Enable Register. See 10.34 and 11.3.2.3.

*SRE? Returns an NR1, which is the value of the Service Request Enable Register. See 10.35 and
11.3.2.2.

*PRE NRf Sets the bits of the Parallel Poll Enable Register. See 10.23 and 11.6.1.3.

*PRE? Returns an NR1, which is the value of the Parallel Poll Enable Register. See 10.24 and 11.6.1.2.

*PSC NRf Sets the power-on-status-clear flag. When set FALSE (value 0), power-on service requests are
possible. See 10.25, 11.1.3, and 5.12.

*PSC? Returns an NR1, which is the value of the state of the power-on-status-clear flag. See 10.26,
11.1.3, and 5.12.

144 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table 11-2—Status Reporting IEEE 488.1 -Defined Operations

11.2.1.1 IEEE 488.2 — Defined Standard Event Status Bit (ESB) Summary-Message

The ESB summary-message is an IEEE 488.2 -defined message that appears in bit 5 of the Status Byte Register. Its
state indicates whether or not one or more of the enabled IEEE 488.2 defined events have occurred since the last
reading or clearing of the Standard Event Status Register, see 11.5.1.

The ESB summary-message is TRUE when an enabled event in the Standard Event Status Register is set TRUE.
Conversely, the ESB summary-message is FALSE when no enabled events are TRUE. See 11.5.1.2–11.5.1.3 for
detailed operation.

11.2.1.2 Standard-Defined MAV Queue Summary Message

The MAV (Message Available) summary-message is an IEEE 488.2 -defined message that appears in bit 4 of the Status
Byte Register. The state of the message indicates whether or not the Output Queue (6.1.10) is empty. Whenever the
device is ready to accept a request by the controller to output data bytes, the MAV summary-message shall be TRUE.
The MAV summary-message shall be FALSE when the Output Queue is empty.

NOTE — In situations in which a controller can acquire bytes from the Output Queue faster than the device can supply them, the
Output Queue may be emptied one or more times before the RMT is sent. The designer may allow the MAV message to
remain TRUE until RMT is sent. Alternatively, the MAV message may follow the oq-empty message where system
performance improvement is possible. See 6.1.10.2. It is recommended that the MAV behavior be documented.

This message is used to synchronize information exchange with the controller. The controller can, for example, send
a query command to the device and then wait for MAV to become TRUE. The IEEE 488.1 bus is available for other use
while an application program is waiting for a device to respond. If an application program begins a read operation of
the Output Queue without first checking for MAV, all system bus activity is held up until the device responds. See
Section 12 and Appendix B for device and application program synchronization discussion and examples.

11.2.1.3 Device-Defined Summary-Messages

Bits 0 through 3 and bit 7 are available for use by the device designer as summary-messages. Every device-defined
summary-message shall have an associated Status Data Structure that follows one of the two models described in 11.4.
This structure is either a register set for parallel event and condition reporting, or a Queue for sequential status and
information reporting. The summary-message summarizes the current status of the associated Status Data Structure.
That is, one or more TRUE and enabled event bits in the register-model or a nonempty Queue in the queue model is
indicated by a TRUE summary-message. See 11.4.2 and 11.4.3.

11.2.2 Reading the Status Byte Register

The Status Byte Register can be read with either a serial poll or the *STB? common query. Both of these methods read
the IEEE 488.1 STB message. The value sent; for the bit 6 position is, however, dependent upon the method used.

power on

Clears the Service Request Enable Register, the Standard Event Status Enable Register, the
Parallel Poll Enable Register, and device-specific event enable registers if the power-on-status-
clear flag is TRUE or if the *PSC command, see 10.25.4, is not implemented. Other status
registers may be affected. See 5.12.

serial poll

This is the IEEE 488.1 serial poll operation. The value of the IEEE 488.1 -defined STB and RQS
messages is returned. The value of the status byte is not altered as a result of the serial poll. “rsv,”
however, is set FALSE by the device causing the RQS message to be cleared when the device
leaves Affirmative Poll Response State (APRS).

parallel poll This is the IEEE 488.1 parallel poll operation. A one bit status message is returned, see 11.6.1.3.

Copyright © 1992 IEEE All Rights Reserved 145

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

11.2.2.1 Reading with a Serial Poll

When serial polled according to IEEE 488.1, the device shall return the 7 bit status byte plus the single bit IEEE 488.1
RQS message. The RQS message is added by the I/O Control, see 6.1.4., in accordance with the IEEE 488.1 SR state
diagram. The status byte and RQS message are returned to the controller as a single data byte. Per IEEE 488.1, the
RQS message indicates if the device was sending SRQ TRUE. Devices shall not send the END message during a serial
poll.

For the purpose of this standard, the IEEE 488.1 DIO signal lines DIO1-6 and 8 correspond to bits 0-5 and 7 of the
status byte register, respectively. The RQS message is sent on line DIO7 (bit 6) according to the requirements of IEEE
488.1.

A TRUE message means that the associated DIO signal line shall be asserted (pulled to a low voltage) when the status
byte is sent. This convention is standard IEEE 488.1 negative logic (see IEEE Std 488.1-1987 [4], 3.2).

The STB message portion of the Status Byte Register is read nondestructively. The value of the status byte shall not be
altered by a serial poll.

The device shall set the rsv message FALSE when polled, see 11.3.3, so that the RQS message will be FALSE if the
device is polled again before a new reason for service, see 11.3.3, has occurred.

11.2.2.2 Reading With the *STB? Query

The *STB? common query, see 10.36, shall cause the device to send the contents of the Status Byte Register and the
MSS (Master Summary Status) summary message, see 11.2.2.3, as a single <NR1 NUMERIC RESPONSE DATA>
element.

The response shall represent the sum of the binary-weighted values of the Status Byte Register bits 0-5 and 7 (weights
1, 2, 4, 8, 16, 32, and 128 respectively) and the MSS summary message (weight 64). Thus, the response to *STB?,
when considered as a binary value, is identical to the response to a serial poll except that the MSS summary message
appears in bit 6 in place of the RQS message.

The *STB? common query shall not directly alter the status byte, the MSS summary message, the RQS message, or
the rsv local message.

NOTE — The MAV and RQS messages may be indirectly affected, see 11.2.1.2 and 11.3.3 respectively.

11.2.2.3 Master Summary Status

The Master Summary Status (MSS) message indicates that the device has at least one reason for requesting service.
Although the MSS message is sent in bit position 6 of the device's response to the *STB? query, it is not sent in
response to a serial poll and should not be considered part of the IEEE 488.1 status byte.

MSS is the inclusive OR of the bitwise combination (excluding bit 6) of the Status Byte (SB) Register and the Service
Request Enable (SRE) Register, see 11.3.2. That is,

MSS is defined as

(SB Register bit 0 AND SRE Register bit 0)

OR

(SB Register bit 1 AND SRE Register bit 1)

OR

(SB Register bit 2 AND SRE Register bit 2)

146

Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

OR

(SB Register bit 3 AND SRE Register bit 3

OR

(SB Register bit 4 AND SRE Register bit 4)

OR

(SB Register bit 5 AND SRE Register bit 5)

OR

(SB Register bit 7 AND SRE Register bit 7)

Note that the MSS definition ignores the state of bit 6 in both the Status Byte Register and the Service Request Enable
Register. For purposes of computing the value of MSS, implementors may choose to treat the status byte as an 8 bit
value with bit 6 always zero.

11.2.3 Writing the Status Byte Register

The Status Byte Register is altered only when the state of the overlaying Status Data Structure is altered. This is
illustrated in Fig 11-1.

NOTE — Changes in the status byte may affect the state of the rsv local message, MSS summary message, and the SRQ interface
message, as described in 11.3.3.

11.2.4 Clearing the Status Byte Register

The *CLS common command, see 10.3, shall cause all Status Data Structures (that is, their Event Registers and
Queues) to be cleared so that the corresponding summary messages are clear. The Output Queue and its MAV
summary message are an exception and are unaffected by *CLS.

The entire status byte can be cleared by sending the *CLS command to the

device

 after a <PROGRAM MESSAGE
TERMINATOR> and before any <QUERY MESSAGE UNIT> elements. The Output Queue will be cleared of any
unread messages using this method, see 6.3.2.3. With the Output Queue empty, the MAV summary message will be
FALSE. The MSS message in the *STB? response will also go FALSE. The RQS message in the Status Byte Register
will be FALSE unless the

device

 is in Affirmative Poll Response State (APRS).

11.3 Service Request Enabling

11.3.1 Operation

Service request enabling operation is shown in Fig 11-3.

Service request enabling allows an application programmer to select which summary messages in the Status Byte
Register may cause service requests. The Service Request Enable Register, illustrated in Fig 11-3, is used to select the
summary messages.

11.3.2 Service Request Enable Register

11.3.2.1 Function

The Service Request Enable Register is an 8 bit register that enables corresponding summary messages in the Status
Byte Register. Thus, the application programmer can select reasons for a

device

 to issue a service request by altering
the contents of the Service Request Enable Register.

Copyright © 1992 IEEE All Rights Reserved 147

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

11.3.2.2 Reading the Service Request Enable Register

The Service Request Enable Register is read with the *SRE? common query, see 10.35. The response message to this
query shall be an <NUMERIC RESPONSE DATA> element that represents the sum of the binary-weighted values of
the Service Request Enable Register (2 raised to the power of the bit number). The value of the unused bit 6 shall
always be zero.

11.3.2.3 Writing the Service Request Enable Register

The Service Request Enable Register is written with the *SRE common command, see 10.34. The *SRE is followed
by a <DECIMAL NUMERIC PROGRAM DATA> element.

The <DECIMAL NUMERIC PROGRAM DATA>, when rounded to an integer value and expressed in base 2 (binary),
shall represent the bit values of the Service Request Enable Register. A bit value of one shall indicate an enabled
condition. A bit value of zero shall indicate a disabled condition.

The device shall always ignore the value of bit 6.

11.3.2.4 Clearing the Service Request Enable Register

Sending the *SRE common command with a <DECIMAL NUMERIC PROGRAM DATA> element value of zero
clears the Service Request Enable Register. A cleared register does not allow status information to generate a rsv local
message and thus, no service requests are issued.

Figure 11-3—Service Request Enabling

148 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

If the power-on-status-clear flags is TRUE or if *PSC is not implemented, see 11.1.3, the Service Request Enable
Register shall be cleared upon power-on. The *PSC command is used to set the state of the power-on-status-clear flag,
see 10.25. See 5.12 for additional power-on requirements.

The Service Request Enable Register shall not be changed by the receipt of the dcas message, nor by any device
condition other than as stated in this section.

11.3.3 Service Request Generation

All devices shall implement the Service Request function as described in IEEE Std 488.1-1987 [4]. This function
provides a device with the capabilities of requesting service from the controller via the Service Request (SRQ)
interface message and reporting that it has requested service via the Request Service (RQS) message, which is sent
with the status byte in response to a serial poll.

The generation of service requests is controlled by the IEEE 488.1 request service (rsv) local message which is known
in block diagram form in Fig. 11-4. This section describes the coupling between the status byte and the IEEE 488.1
request service (rsv) message. This section also places additional requirements (beyond those specified in IEEE Std
488.1-1987 [4] on the interaction of the IEEE 488.1 Acceptor Handshake and the rsv message. These requirements
ensure that a device shall:

1) Assert SRQ when a previously “enabled” condition occurs.
2) Keep SRQ asserted until the controller has recognized the service request and polled the device or has taken

specific action to cancel the request (for example, (*)CLS command).
3) Release SRQ when polled so that the controller can detect an SRQ from another device.
4) Assert SRQ again if another condition occurs, whether or not the controller has cleared the first condition.

11.3.3.1 New Reason for Service

Whenever the contents of the status byte or Service Request Enable Register are changed, the device must determine
whether the change affects the service request state of the device. Device status transitions do not affect the state of the
SRQ interface message directly. Instead, changes to the status byte and the Service Request Enable Register generate
the local messages reqt (Request rsv TRUE) and reqf (Request rsv FALSE), which are inputs to the Service Request
Synchronization block in Fig 11-4. The output of the Service Request Synchronization block is the local rsv message
that controls the SRQ interface message as described in IEEE 488.1.

The device shall generate a new service request (set the reqt message TRUE) when

1) A bit in the status byte changes from FALSE to TRUE while the corresponding bit in the Service Request
Enable Register is TRUE.

2) A bit in the Service Request Enable Register changes from FALSE to TRUE while the corresponding bit in
the status byte is TRUE.

3) A bit in the status byte changes from FALSE to TRUE and the corresponding bit in the Service Request
Enable Register changes from FALSE to TRUE simultaneously.

The device shall set the reqt message FALSE when

1) The MSS message changes from TRUE to FALSE.
2) The device enters the SRWS of the Set rsv State Diagram in Fig 11-4 and Tables 11-3 and 11-3.

Table 11-3—Set rsv State Diagram Mnemonics

Messages Interface States

reqt Request rsv TRUE SRIS Service Request Idle State

reqf Request rsv FALSE SRWS Service Request Wait State

rsv request service SRAS Service Request Active State

(APRS) Affirmative Poll Response State

Copyright © 1992 IEEE All Rights Reserved 149

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 11-4—Set rsv State Diagram Message Output

Figure 11-4—Service Request Generation

Set rsv State rsv Message Sent Device Interaction

SRIS F not requesting service

SRWS F not requesting service

SRAS T requesting service

150 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 11-5—Set rsv State Diagram

The device shall stop requesting service (set the reqf message TRUE) when the MSS message changes from TRUE to
FALSE.

The device shall set the reqf message FALSE when it enters Service Request Idle State (SRIS) of the Set rsv State
Diagram in Fig 11-5 or at power-on.

The device may also set reqt TRUE whenever the contents of the status byte are changed and MSS is TRUE. Because
extraneous service requests may be generated, this method is not recommended. It is permitted, however, to
accommodate certain commercially-available IEEE 488.1 interface circuits. See 11.3.3.4 on implementation
techniques.

In general, the controller application program must never assume that SRQ indicates that a new reason for service has
occurred, but only that a new reason for service may have occurred; and that the application program should check the
device status byte to determine whether this is indeed the case.

11.3.3.2 Service Request Synchronization

The Set rsv State Diagram, shown in Fig 11-5, synchronizes changes to the device’s status byte and Service Request
Enable Register with the state of the IEEE 488.1 SR function. It ensures that the device does not change the SRQ or
RQS interface messages while being polled by the controller, but that the device will “remember” that the status
change occurred and will change the state of SRQ and RQS on exit from Affirmative Poll Response State (APRS).

At power on, or when the reqf local message is TRUE, the device shall enter Service Request Idle State (SRIS). While
in this state, the device shall send the rsv local message FALSE.

When the device sets the reqt local message TRUE, the device shall enter Service Request Wait State (SRWS). The
device shall remain in SRWS and continue to send the rsv local message FALSE until the pon or reqf local messages
become TRUE or the device leaves the IEEE 488.1 APRS. Staying in SRWS ensures that the device will not change
the RQS or SRQ interface messages from FALSE to TRUE while it is being polled by the controller.

If the device is not in APRS, or when it leaves APRS, it shall enter Service Request Active State (SRAS). While in this
state, the device shall send the rsv local message TRUE. The device shall remain in this state until the pon or reqf local
messages become TRUE or the device enters APRS.

Upon entry into APRS, the device shall return to SRIS and set rsv FALSE, indicating that it has been polled. Note that
the device will continue to send the RQS interface message TRUE until it has left APRS, according to IEEE Std 488.1-
1987 [4].

Copyright © 1992 IEEE All Rights Reserved 151

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

11.3.3.3 Status Byte Latch

If the contents of the Status Byte Register were to be placed directly onto the bus when the device was polled, a change
in the status byte while the device is in IEEE 488.1 Serial Poll Active State (SPAS) could cause the controller to read
the status byte incorrectly, due to the changing state of the bus data I/O lines. To prevent this problem, devices shall
latch the contents of the device status byte and RQS message as presented on the DIO lines while the device is in IEEE
488.1 SPAS and the IEEE 488.1 source handshake is in Source Delay State (SDYS) or Source Transfer State (STRS).
The latch guarantees that the status byte will not change on the bus just as the IEEE 488.1 SR diagram assures that the
RQS message will not change. This requirement does not imply that the contents of the Status Byte Register may not
be changed during this time, only that the value presented to the controller on DIO1-8 will be stable. In Fig 11-4, the
input from the IEEE 488.1 Source Handshake/IEEE 488.1 Service Request block determines whether or not the Status
Byte Latch is transparent.

11.3.3.4 Implementation Techniques

Many commercially available IEEE 488.1 integrated circuits implement the Set rsv State Diagram in place of, or in
addition to, providing direct control over the rsv local message. These circuits also include a status byte buffer that
allows the IEEE 488.1 control circuit to respond to a serial poll without the intervention of device firmware. This
section describes how the requirements of the IEEE 488.2 status reporting model may be met using such circuits. It
does not sanction the use of specific components or prohibit alternate implementations that meet the requirements of
this standard, but is meant as a discussion of common implementation techniques and pitfalls.

11.3.3.4.1 Preferred Implementation

The preferred implementation, from a device designer's point of view, would be to do the following when the contents
of the status byte buffer are updated:

1) Set reqt TRUE if New Reason for Service is TRUE.
2) Set reqf TRUE if MSS is FALSE.

Here, “New Reason for Service” is an additional argument to the command, generated by the device firmware in
accordance with 11.3.3.1. This implementation avoids the race condition of 11.3.3.4.2 and the spurious service
requests of 11.3.3.4.3, but requires that nine bits of information be specified with the command (seven bits of status,
MSS, and New Reason for Service)

11.3.3.4.2 Allowed Independent Control of STB, reqt, and reqf

Some integrated circuits allow the contents of the circuit’s status byte buffer to be updated at any time without
changing the state of rsv. Such circuits have three inputs:

1) A command that updates the contents of the circuit’s status byte buffer.
2) A command that sets reqt TRUE.
3) A command that sets reqf TRUE.

TRUE to FALSE transitions of reqt and reqf are generated internally by the circuit according to the Set rsv State
Diagram. Inputs (2) and (3) may be implemented as separate commands or as a single command with one argument.

When the device status byte or Status Enable Register changes, the device firmware must

1) Update the circuit's status byte buffer.
2) If there is a New Reason for Service, see 11.3.3.1, set reqt TRUE.
3) If there is no reason for service (MSS FALSE), set reqf TRUE.

152 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Note that there is a race between the device's firmware setting reqt or reqf TRUE and the controller's polling the
device in response to a previous service request. If the controller polls the device after it has updated the status byte
buffer but before it has set reqt TRUE, the device will generate a service request after the controller has read the new
status byte. If the controller polls the device after it has updated the status byte buffer but before it has set reqf TRUE,
the controller will receive the new status byte (which shows no reason for service request) with RQS TRUE
(indicating a request for service). This race does not cause problems in practice, as the controller receives the most
recent device status in either case. Implementations that set reqt TRUE before updating the status byte buffer are not
allowed, as they could cause a violation of 11.3.3, rule (2).

11.3.3.4.3 Allowed Coupled Control of STB, reqt, and reqf

Some integrated circuits require that either reqt or reqf be set TRUE each time the status byte buffer is updated. Such
circuits have one input. When the contents of the status byte buffer are updated, the circuit sets

1) reqt TRUE if MSS is TRUE, or
2) reqf TRUE if MSS is FALSE

This implementation is allowed by this standard (next to last paragraph of 11.3.3.1), but can generate a service request
when a bit in the status byte changes, even if that bit has not been enabled to cause a service request.

11.3.3.4.4 Other Allowed Implementations

Other implementation techniques that satisfy the requirements of this standard may be used.

11.4 Status Data Structures

11.4.1 Overview

All device Status Data Structures shall follow either the register model or the queue model as defined in 11.4. The
Status Data Structures provide a common way for the device designer to perform status reporting. Each status data
structure has a single “output,” a summary message that summarizes the structure's state. A FALSE summary status
means that there is no status to report and a TRUE summary status indicates that there is status to report.

11.4.2 Status Data Structure — Register Model

The register model Status Data Structure allows the device designer to summarize multiple events in a single summary
message in the Status Byte Register. Fig 11-6 illustrates a generalized register model Status Data Structure.

11.4.2.1 Condition Registers

11.4.2.1.1 Function

A condition is a device state that is either TRUE or FALSE. A Condition Register reflects these states in its condition
bits. A Condition Register may range in length from i to a maximum of 16 bits and may contain unused bits. Unused
bits shall return a zero value when read.

NOTE — Some controllers may have difficulty reading a 16 bit unsigned integer into their internal format.

Copyright © 1992 IEEE All Rights Reserved 153

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 11-6—Status Data Structure — Register Model

Typically, the condition bits represent device states. Alternately, the condition bits may represent summary
information from an overlaying secondary Status Data Structure. This secondary Status Data Structure shall be one of
the Status Data Structures defined in 11.4, either the register model or the queue model. This overlaying technique may
be extended to additional layers as required.

Implementation of Condition Registers is optional, since the sole purpose of a Condition Register is to group related
device states or overlaying summary messages so that they may be read together.

This standard does not define any specific Status Data Structure that contains a Condition Register.

11.4.2.1.2 Reading Condition Registers

The device may provide device-specific commands to read any or all of the device’s Condition Registers. Reading a
Condition Register shall not change its contents.

11.4.2.1.3 Writing Condition Registers

No device-specific commands shall directly write to a Condition Register. Only changes in device state or in an
overlaying secondary Status Data Structure may alter the contents of a Condition Register.

154 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

11.4.2.1.4 Clearing Condition Registers

No device-specific commands shall directly clear a Condition Register. Only changes in device state or clearing of an
overlaying secondary Status Data Structure may clear a condition bit.

11.4.2.2 Event Registers

11.4.2.2.1 Function

Event Registers capture changes in conditions. Each event bit in an event register shall correspond to a condition-bit in
a Condition Register or (if there is no Condition Register) to a specific condition in the device. An event shall become
TRUE when the associated device condition makes certain device-defined transitions.

The Event Register definition guarantees that the application cannot miss an event that occurs between the reading and
clearing of an Event Register. An Event Register bit (event bit) shall be set TRUE when an associated event occurs.
These bits, once set, are “sticky.” That is, they cannot be cleared even if they do not reflect the current status of a related
condition, until they are read by the application.

This standard allows the following three transition criteria for setting event bits TRUE (see transition filter in
Fig 11-5):

1) Positive transition. The event becomes TRUE when its associated condition makes a FALSE to TRUE
transition only.

2) Negative transition. The event becomes TRUE when its associated condition makes a TRUE to FALSE
transition only.

3) Positive or negative transition. The event becomes TRUE when its associated condition makes either a
FALSE to TRUE or a TRUE to FALSE transition.

The device designer shall specify which of the above transition criteria is to be used for each event bit. The device may
provide device-specific commands to change the transition associated with each condition and event bit.

In all cases, the change of a device condition shall not cause an event bit to go from TRUE to FALSE.

Event Registers may range in length from 1 to a maximum of 16 bits and may contain “unused” bits. Unused bits shall
be zero when the register is read.

NOTE — Some controllers may have difficulty reading a 16 bit unsigned integer into their internal format.

This standard completely specifies only one Event Register, the Standard Event Status Register, see 11.5.1.

11.4.2.2.2 Reading Event Registers

The device may provide device-specific queries to read any or all of the device’s Event Registers. The only common
query that reads an Event Register is the *ESR? query, which reads the Standard Event Status Register, see 10.12 and
11.5.1.2.2.

11.4.2.2.3 Writing Event Registers

No device-specific command shall allow the application programmer to directly write bits in an Event Register.
Commands may, however, clear the entire register.

11.4.2.2.4 Clearing the Event Registers

Event Registers shall be cleared when read by a query. Only the Event Register(s) queried shall be cleared.

Copyright © 1992 IEEE All Rights Reserved 155

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Additionally, specific commands, in contrast to queries, may be implemented to clear (and not read) Event Registers.

The *CLS common command is a mandatory command, see 10.3, that clears all Event Registers. All device-defined
Event Registers as well as the Standard Event Status Register, see 11.5.1, shall be cleared by *CLS.

Event Registers may be cleared at power-on. Event Registers shall not be cleared in any way other than as stated
previously.

11.4.2.3 Event Enable Registers

11.4.2.3.1 Function

Event Enable Registers select which event bits in the corresponding Event Register will cause a TRUE summary
message when set. Each event bit shall have a corresponding enable bit in the Event Enable Register. By use of the
enable bits, an application programmer can program a device to request service for a single event or an inclusive OR
of any group of events.

Each Event Enable Register shall be the same length as the corresponding Event Register. Any unused bits in the Event
Enable Register shall correspond with unused bits in the Event Register. The value of unused bits shall be zero when
the Event Enable Register is read and shall be ignored when written to by commands.

This standard completely specifies only one Event Enable Register, the Standard Event Status Enable Register, see
11.5.1.3.

11.4.2.3.2 Reading Event Enable Registers

The device may provide device-defined queries to read any or all of the device's Event Enable Registers. If a device
provides a command to write to an Event Enable Register and a query to read the same Event Enable Register, the
<QUERY HEADER> shall be formed by placing a “?” after the <COMMAND HEADER> that sets the register, see
11.4.2.3.3.

The query response shall be returned as an <NR1 NUMERIC RESPONSE DATA> element. Binary-weighting of the
bits shall be used to form the NR1 value. An unused bit shall have the value zero.

The only common query that reads an Event Enable Register is *ESE?, which reads the Standard Event Status Enable
Register, see 10.11 and 11.5.1.3.2.

11.4.2.3.3 Writing Event Enable Registers

The device may provide device-specific commands to write to any or all of the device's Event Enable Registers. If
such a command is implemented, it shall follow the format as described in this section.

The command format shall consist of a device-defined header followed by a <DECIMAL NUMERIC PROGRAM
DATA> element. The device may also optionally accept an <EXPRESSION DATA) element that evaluates to a
<DECIMAL NUMERIC PROGRAM DATA> element.

The <DECIMAL NUMERIC PROGRAM DATA>, when rounded to an integer value and expressed in base 2 (binary),
shall represent the individual bit values of the Event Enable Register. A bit value of one shall indicate an enabled
condition. A bit value of zero shall indicate a disabled condition.

Additional device-specific commands that use other formats are also allowed. If no command is provided to write to
an Event Enable Register, then every used bit in the register shall have a value of one and every unused bit shall have
a value of zero.

156 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The only defined common command that writes to an Event Enable Register is the *ESE common command, which
writes to the Standard Event Status Enable Register, see 10.10.

11.4.2.3.4 Clearing Event Enable Registers

If the device provides a device-specific command to write to an Event Enable Register, see 11.4.2.3.3, the register may
be cleared by sending that command with an argument of zero (NRf format).

Event Enable Registers shall be cleared at power-on if the optional *PSC common command is not implemented or if
power-on-status-clear flag is TRUE, see 5.12.

No other device or interface conditions, including receipt of the dcas message, shall alter any Event Enable Register.

11.4.3 Status Data Structure — Queue Model

The queue model Status Data Structure allows the device designer to report sequential status or other information. The
presence of such information in a Queue is summarized in a summary message.

One Status Data Structure using the queue model, the Output Queue with its associated MAV summary message (bit
4 of the status byte), is defined by this standard, see 11.5.2.

11.4.3.1 Function

Fig 11-7 represents the queue model for a Status Data Structure. The Queue is a data structure containing a sequential
list of information. The Queue is empty when all information has been read from the list.

Figure 11-7—Status Data Structure — Queue Model

Copyright © 1992 IEEE All Rights Reserved 157

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Items may be placed in the Queue in any order. Items shall be removed from the Queue as they are read. The Queue
may be cleared under the conditions specified in 11.4.3.4. The associated summary message is TRUE if the Queue is
not empty and FALSE if it is empty.

All <RESPONSE MESSAGE UNIT> elements in a Queue (other than the Output Queue) shall be of the same type,
see Fig 8-4. The specific content of the data element sent is device defined. This rule assures that an application
program can know, in advance, the format of any data read.

For example, a Queue could contain a list of <CHARACTER RESPONSE DATA> elements. Another Queue could
contain a list of <NR3 NUMERIC RESPONSE DATA> elements. Yet another Queue could contain a message unit
with the two elements separated by a comma as: <NR1 NUMERIC RESPONSE DATA>,<STRING RESPONSE
DATA>.

The order that the items are read from a Queue (other than the Output Queue) is beyond the scope of this standard. A
device-defined Queue need not be read in a first-in, first-out (FIFO) manner.

The device designer may impose a maximum length on the Queue structure. Rules governing a Queue overflow
condition, other than the Output Queue, are beyond the scope of this standard.

11.4.3.2 Reading a Queue

A Queue (other than the Output Queue) may be read by optional device-defined queries. Such device-defined queries
shall cause the item read to be removed from the Queue and placed into the Output Queue.

11.4.3.3 Writing to a Queue

No Queue shall be written to directly by <PROGRAM MESSAGE> elements. Except for the Output Queue, the
Queue represents encoded device information, such as a device status history or other information as defined by the
device designer.

11.4.3.4 Clearing a Queue

Queues, except the Output Queue, shall be cleared when any of the following occur:

1) Receipt of the *CLS command.
2) Reading all the items in the Queues. Only the Queue that is queried shall have data removed.
3) Other device-specific means.

NOTE — The Output Queue is a special case and is not cleared by *CLS, but can be cleared under other conditions; see 6.3.2.3 and
10.3.3, including method (2)

11.5 Standard Status Data Structure

Fig 11-8 represents an overview diagram of the Standard Event Status — Status Data Structures. The Standard Event
Status Register model is discussed in detail in 11.5.1. Output Queue requirements are given in 11.5.2.

11.5.1 Standard Event Status Register Model

Fig 11-9 represents the operation of the Standard Event Status Register Model. This data structure is a specific
implementation of the general Status Data Structure register model, see 11.4.2, and is required by all devices.

158 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

11.5.1.1 Standard Event Status Register Bit Definitions

This standard assigns specific IEEE 488.2 -defined events to specific bits in the Standard Event Status Register.

11.5.1.1.1 Bits 15 through 8 — Reserved

Standard Event Status Register bits 15 through 8 are reserved for possible future use by IEEE. These bit values shall
be reported as zero.

11.5.1.1.2 Bit 7 — Power On (PON)

This event bit indicates that an off-to-on transition has occurred in the device’s power supply.

11.5.1.1.3 Bit 6 — User Request (URQ)

This event bit indicates that one of a set of local controls, see 5.6.1.3, defined by the device designer as a User Request
control has been activated. The setting of this event-bit shall occur regardless of the IEEE 488.1 Remote/Local state of
the device.

Copyright © 1992 IEEE All Rights Reserved 159

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 11-8—Standard Status Data Structures Overview

160 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 11-9—Standard Event Status Register Model

11.5.1.1.4 Bit 5 — Command ERROR (CME)

Command Errors are detected by the Parser, see 6.1.6. This event bit indicates that one of the following events has
occurred:

1) An IEEE 488.2 syntax error has been detected by the parser. That is, a controller-to-device message was
received that is in violation of this standard. Possible violations include a data element that violates the device
listening formats or whose type is unacceptable to the device, see 7.1.2.2.

2) A semantic error has occurred indicating that an unrecognized header was received. Unrecognized headers
include incorrect device-specific headers and incorrect or unimplemented IEEE 488.2 common commands,
see Section 10.. A valid macro label, which is not the same as a device-specific <COMMAND PROGRAM
HEADER> or <QUERY PROGRAM HEADER>, that is received by a device with its macros disabled shall
be considered an unrecognized header.

3) A Group Execute Trigger (GET) was entered into the Input Buffer inside of a <PROGRAM MESSAGE>, see
6.1.6.1.1 and 6.4.3.

When a device detects a Command Error, parser synchronization may be lost. See 6.1.6.1.1 for discussion of parser
action after a Command Error.

Copyright © 1992 IEEE All Rights Reserved 161

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The Command Error bit shall not be set to report any other device-specific condition. Events that are reported as
Command Errors shall not also be reported as Execution Errors, Query Errors, or Device-Specific Errors. See other bit
definitions in this section.

11.5.1.1.5 Bit 4 — Execution ERROR (E)

Execution Errors are detected by the Execution Control Block, see 6.1.7. This event bit indicates that:

1) A <PROGRAM DATA> element following a header was evaluated by the device as outside of its legal input
range or is otherwise inconsistent with the device's capabilities.

2) A valid program message could not be properly executed due to some device condition.

Following an Execution Error, the device shall continue parsing the input stream. The device may continue executing
parsed commands or the device may discard parsed commands. Devices shall resume execution of parsed commands
after a <PROGRAM MESSAGE TERMINATOR>. It is recommended that this choice be documented.

Execution Errors shall be reported by the device after rounding and expression evaluation operations have taken place.
Rounding a numeric data element, for example, shall not be reported as an Execution Error.

Events that generate Execution Errors shall not also generate Command Errors, Query Errors, or Device-Specific
Errors. See other bit definitions in this section.

NOTE — The device designer has the responsibility to ensure that devices incorporate effective checking to prevent execution of
commands after an Execution Error that could result in undesireable conditions. Documentation should indicate any
known conditions that cannot be checked by the device.

11.5.1.1.6 Bit 3 — Device-Specific ERROR (DDE)

Device-Specific Errors are detected by Device Functions, see 6.1.8. This event bit indicates that an error has occurred
that is neither a Command Error, a Query Error, nor an Execution Error.

A Device-Specific Error is any executed device operation that did not properly complete due to some condition, such
as overrange.

Following a Device-Specific Error, the device shall continue to process the input stream.

Device-Specific Errors are to be used at the discretion of the device designer.

Events that generate Device-Specific Errors shall not also generate Command Errors, Query Errors, or Execution
Errors.

11.5.1.1.7 Bit 2 — Query ERROR (QYE)

Query Errors are detected by the Output Queue Control, see 6.1.10. This event bit indicates that either

1) An attempt is being made to read data from the Output Queue when no output is either present or pending, or
2) Data in the Output Queue has been lost.

See 6.5.7 for a complete description.

The Query Error bit shall not be set to report any other condition. Events that generate Query Errors shall not also
generate Execution Errors, Command Errors, or Device-Specific Errors.

162 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

11.5.1.1.8 Bit 1 — Request Control (RQC)

This event bit indicates to the controller that the device is requesting permission to become the active IEEE 488.1
controller-in-charge.

11.5.1.1.9 Bit 0 — Operation Complete (OPC)

This event bit is generated in response to the *OPC command. It indicates that the device has completed all selected
pending operations. See 12.5.2 for a discussion of device synchronization using this event bit.

11.5.1.2 Standard Event Status Register Operation

11.5.1.2.1 Function

Standard Event Status Register operation follows the rules for event registers in the general Status Data Structure
register model described in 11.4.2.

11.5.1.2.2 Reading

The Standard Event Status Register is destructively read (that is, read and cleared) with the *ESR? common query, see
10.12.

11.5.1.2.3 Writing

The Standard Event Status Register cannot be written remotely except to clear it.

11.5.1.2.4 Clearing

The Standard Event Status Register shall be cleared by

1) A*CLS command
2) A *ESR? query

A device undergoing a power-on sequence may initially clear the Standard Event Status Register and then record any
subsequent events during the device’s power-on sequence, including setting the PON event bit.

The Standard Event Status Register shall not be cleared by any other device condition.

11.5.1.3 Standard Event Status Enable Register Operation

11.5.1.3.1 Function

The Standard Event Status Enable Register allows one or more events in the Standard Event Status Register to be
reflected in the ESB summary-message bit. This register follows the rules of operation of the Status Data Structure
register model for Event Enable Registers, see 11.4.2.3.

This register is defined for 8 bits, each corresponding to the bits in the Standard Event Status Register. Bits 8 through
15 are reserved by the IEEE for future use.

11.5.1.3.2 Reading

The Standard Event Status Enable Register is read with the common query, *ESE?. Data is returned as a binary-
weighted <NR1 NUMERIC RESPONSE DATA>, see 10.11.

11.5.1.3.3 Writing

The Standard Event Status Enable Register is written to by the common command, *ESE. Data is encoded as
<DECIMAL NUMERIC PROGRAM DATA>, see 10.10.

Copyright © 1992 IEEE All Rights Reserved 163

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

11.5.1.3.4 Clearing

The Standard Event Status Enable register shall be cleared by the following:

1) Sending *ESE with a data value of zero.
2) A power-on event if the power-on-status-clear flag is TRUE or the *PSC command is not implemented. See

10.25 for further details.

No other device or interface conditions, including receipt of the dcas message, shall alter this register.

The Standard Event Status Enable Register shall specifically not be affected by the following:

1) An IEEE 488.1 Device Clear function state change
2) Sending the *RST common command

11.5.2 Standard Queue Model

11.5.2.1 Function

The Output Queue stores response messages until they are read. The availability of output is summarized by the
message available (MAV) summary message (bit 4 of the status byte). See Fig 11-10. See MAV implementation note,
11.2.1.2.

Figure 11-10—Standard Queue Model

NOTE — MAV becomes TRUE whenever data is ready and not necessarily in the Output Queue; see 6.4.5.4 and 6.1.10.2.1.

The MAV summary message is used to synchronize information exchange with the controller. See Section 12. for a
discussion of device synchronization and Section 6. for details on the operation of the Output Queue.

164 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

11.5.2.2 Reading

The Output Queue shall be a first-in, first-out (FIFO) Queue. The Queue is read by handshaking bytes out while the
device is in Talker Active State (TACS).

11.5.2.3 Writing

The Output Queue interfaces to the system interface only through the protocols defined in Section 6..

11.5.2.4 Clearing

The Output Queue shall be cleared in accordance with the protocols of Section 6.. The *CLS command specifically
shall NOT clear the Output Queue except as required in 6.3.2.3 for any <PROGRAM MESSAGE>.

11.6 Parallel Poll Response Handling

This section describes a method for generating and controlling the IEEE 488.1 ist (individual status) local message.
This message is the status bit sent during a parallel poll operation. If a device has PP1 (complete) capability, the device
shall implement the data structure and associated common commands of this section.

11.6.1 Parallel Poll Enable Register

11.6.1.1 Function

The Parallel Poll Enable Register shown in Fig 11-11 is an 8-16 bit wide register. Each bit in this register corresponds
to a bit in the status byte or a device-defined condition. All the bits in the status byte must be used. Up to eight more
conditions in the device may be associated with the upper eight bits of the Parallel Poll Enable Register.

Figure 11-11—Parallel Poll Response Handling Data Structure

Copyright © 1992 IEEE All Rights Reserved 165

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Each bit in the Parallel Poll Enable Register is ANDed with its corresponding condition or summary bit. The resulting
bits are ORed together to generate ist. Using the Parallel Poll Enable Register allows any single bit or combination of
bits to control list.

The Master Summary Status (MSS) message is used in place of RQS to report bit 6 of the Status Byte Register. MSS
is the message returned with the status byte in response to a *STB? common query, see 11.2.2.2.

NOTE — Some controllers may have difficulty reading a 16 bit unsigned integer into their internal format.

11.6.1.2 Reading the Parallel Poll Enable Register

The contents of the Parallel Poll Enable Register can be queried by sending *PRE?. The device responds with an
<NR1 NUMERIC RESPONSE DATA>. element, see 10.24.

11.6.1.3 Writing the Parallel Poll Enable Register

The Parallel Poll Enable Register is written to by sending the *PRE command followed by a number in <DECIMAL
NUMERIC PROGRAM DATA> format to the device. The number is converted to binary and placed in the register, see
10.23.

11.6.1.4 Clearing the Parallel Poll Enable Register

The Parallel Poll Enable Register is cleared by

1) Setting the value of the register to zero
2) Performing a power-on, if the power-on-status-clear flag is TRUE or if *PSC is not implemented

11.6.2 Reading ist Without a Parallel Poll

The state of ist can be queried by sending the *IST?common query. The device shall return either a “0,” if ist is
FALSE, or a “1,” if ist is TRUE. The number returned shall be an <NR1 NUMERIC RESPONSE DATA> element, see
10.15.

12. Device/Controller Synchronization Techniques

12.1 Overview

This section describes techniques that may be used to ensure synchronization between a device and a controller.
Three basic techniques are shown:

1) Force sequential execution
2) Wait for response in device's Output Queue.
3) Wait for a Service Request.

Detailed examples of these techniques appear in Appendix B.

One potential problem with commands that take appreciable time to finish is that the application program needs to
know when they have finished. Consider the case of a unit under test connected to a bus-controllable power supply and
a bus-controllable digital voltmeter (DVM). The application program needs to know that the power supply output has
reached the desired voltage setting before it commands the DVM to take a measurement. This confirmation that the
output is valid is an illustration of what is meant by device/controller synchronization.

166 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

12.2 Sequential and Overlapped Commands

Device commands fall into two broad classes. The first is the class of “Sequential Commands.” A command is a
Sequential Command when Execution Control waits for the resulting device action to complete before it initiates the
next device action, see 6.1.7.

The other class of commands is “Overlapped Commands.” An Overlapped Command is a command that allows
execution of subsequent commands while the device operations initiated by that Overlapped Command are still in
progress.

The device designer chooses whether a device-specific command is Sequential or Overlapped. Refer to 12.8.1 for
further information. The designer may also choose to implement device-specific commands that change a command’s
type from Sequential to Overlapped and vice versa.

Device documentation shall specify for each command whether it is an overlapped or a sequential command.

12.2.1 Illustration of Sequential CommAnds

As an illustration, consider the case of a bus-controllable power supply with two outputs. The command VOLT1 NRf
sets the voltage of one output and VOLT2 NRf sets the voltage of the other. If the VOLT commands are Sequential
Commands, then the <PROGRAM MESSAGE>

VOLT1 1.23; VOLT2 1.00 <PMT>

(where <PMT> stands for the <PROGRAM MESSAGE TERMINATOR>) would set the first output to 1.23 V, and
then after that was done, would set the second output to 1.00 V. In a timeline, the commands appear as

The symbol “[” stands for initial. ion of the associated device operations and “]” stands for the completion of those
operations. Note that completion of device operations is not the same as completion of execution of the command. See
6.1.7 for the distinction.

12.2.2 Illustration of Overlapped Commands

If the VOLT commands are Overlapped Commands, the VOLT2 command would begin execution before the device
operations initiated by the VOLT1 command have completed. The timeline is

Some method is needed to show that all commands have finished. Sequential Commands are easy because the next
command is not executed until the previous Sequential Command is finished. Overlapped Commands are more
difficult because device operations that were initiated several commands ago may still not be finished.

Copyright © 1992 IEEE All Rights Reserved 167

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

12.3 Pending-Operation Flag

The Pending-Operation flag indicates that all operations started by an Overlapped Command are completed and their
result is valid or that the operations were aborted.

Each Overlapped Command shall have a corresponding Pending-Operation flag. A Pending-Operation flag is set
TRUE when the corresponding command is sent by the Execution Control block, see 6.1.7, to the Device Function
block, see 6.1.8. The flag is set FALSE when all the device operations initiated by that command have been completed
or aborted (for example, by execution of the *RST command).

For instance, the operation of changing the output voltage of a power supply is complete only when the output is
known to have reached the programmed voltage within manufacturer specified tolerance. The operation of changing
the range on a DVM is complete only when the DVM is ready to make a measurement in that range. Fig 12-1 describes
control of these flags.

Figure 12-1—Pending Operation Diagram of Selected Overlapped Commands

12.4 No-Operation-Pending Flag

The No-Operation-Pending flag is used to indicate whether the device has completed operations initiated by selected
Overlapped Commands. The device designer may choose to have the No-Operation-Pending flag report the status of
all or a subset of all Overlapped Commands. The device designer may provide device-specific commands to select
which Overlapped Commands shall have their status reported by the No-Operation-Pending flag.

The Pending-Operation flags associated with the selected Overlapped Commands shall be ORed together, and the
result shall be inverted to generate the No-Operation-Pending flag. The No-Operation-Pending flag is TRUE if the
device has no selected Overlapped Commands.

12.5 Controller/Device Synchronization Commands

The *OPC and *WAI commands and the *OPC? query allow the application programmer to maintain controller/
device synchronization.

12.5.1 The *WAI Common Command

The *WAI command shall prevent the device from executing any further commands or queries until the No-Operation-
Pending flag is TRUE. No special provision is made for Sequential Commands because any preceding Sequential
Command will complete execution before the Parser hands the next command (including the *WAI command) to the
Execution Control block.

168 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

12.5.1.1 A Sample Program Message Without the *WAI Command

An illustration of the use of the *WAI command is the following: Consider a data-logging device that is commanded
to take a measurement with the device-specific command START and to read the present time by TIME?. The START
command is an Overlapped Command and takes appreciable time to perform. The <TERMINATED PROGRAM
MESSAGE>

START; TIME? <PMT>

causes the device to take a measurement and return the time at which the measurement was begun. The timeline and
flags are shown in Fig 12-2.

Figure 12-2—Timing Diagram — Sample Program Message Not Using *WAI Command

12.5.1.2 A Sample Program Message With the *WAI Command

The <TERMINATED PROGRAM MESSAGE>

START; *WAI; TIME? <PMT>

forces the TIME? query response to be the time at which the measurement was finished. Thus, the *WAI command
allows the application programmer to force sequential execution of Overlapped Commands. The timeline and flags are
shown in Fig 12-3.

Figure 12-3—Timing Diagram — Sample Program Message Using *WAI Command

Copyright © 1992 IEEE All Rights Reserved 169

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Detailed illustrations of the use of the *WAI command appear in Appendix B.

The *WAI command's holdoff action shall be canceled by power-on and by the dcas message. Since the *WAI
command holds off the device execution control until the No-Operation-Pending flag is TRUE, the commands *RST
and *CLS can have no effect on the operation of *WAI.

12.5.2 The *OPC Common Command

The *OPC command allows synchronization between a controller and several devices. The OPC event-bit in the
Standard Event Status Register (ESR) is used to effect the synchronization. Detailed illustrations of the use of the
*OPC command appear in Appendix B.

12.5.2.1 The Operation Complete Command Diagram

The *OPC command shall perform as described in Fig 12-4 and the descriptions given throughout 12.5.2.

Figure 12-4—Operation Complete Command Diagram

12.5.2.1.1 Operation Complete Command Idle State (OCIS)

The following conditions place the device into OCIS:

1) Power-on, see 5.12.
2) Receipt of the dcas message, see 5.8.
3) *CLS is executed, see 10.3.
4) *RST is executed, see 10.32.

The device shall exit OCIS and enter Operation Complete Command Active State (OCAS) when the *OPC command
is executed.

12.5.2.1.2 Operation Complete Command Active State (OCAS)

In OCAS, the device continuously senses the No-Operation-Pending flag. When the No-Operation-Pending flag is
sensed TRUE, the device shall set the OPC event-bit in the Standard Event Status Register (ESR), exit OCAS, and
enter Operation Complete Command Idle State (OCIS).

12.5.2.2 Sample Use of the *OPC Command

The previous example in 12.1 of the power supply, DVM, and device under test illustrates the effect of *OPC. The
problem is to program the DVM to take a measurement only after the power supply has finished changing its output
voltage.

The application programmer may enable bit 0 (corresponding to the OPC event-bit) in the Standard Event Status
Enable Register and also bit 5 (corresponding to the ESB summary-message) in the Service Request Enable Register
so that the device will request service whenever the OPC event-bit becomes TRUE. A <TERMINATED PROGRAM
MESSAGE> of

*CLS; VOLT 5.20; *OPC <PMT>

170 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

then commands the power supply to clear its Standard Event Status Register and Status Byte, set its output voltage to
5.20 V, and then request service once the output voltage is valid. After the service request is detected, the application
program can then command the DVM to take a measurement. The timeline and flags are shown in Fig 12-5.

12.5.3 The *OPC? Common Query

The *OPC? query allows synchronization between a controller and a device using the MAV bit in the Status Byte or
a read of the Output Queue. Detailed illustrations of the use of this function appear in Appendix B. Note that, unlike
the *OPC command described in 12.5.2, the *OPC? query does not in any way affect the OPC Event bit in the
Standard Event Status Register (ESR).

12.5.3.1 The *OPC? Query Diagram

The *OPC? query shall perform as described in Fig 12-6 and the descriptions given throughout 12.5.3.

12.5.3.1.1 Operation Complete Query Idle State (OQIS)

The following conditions place the device in OQIS:

1) Power-on, see 5.12.
2) Receipt of the dcas message, see 5.8.
3) *CLS is executed, see 10.3.
4) *RST is executed, see 10.32.

The device shall exit OQIS and enter Operation Complete Query Active State (OQAS) when the *OPC? query is
executed. See Fig 12-6.

Figure 12-5—Timing Diagram — Sample Program Message Using *OPC Command

Copyright © 1992 IEEE All Rights Reserved 171

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 12-6—Operation Complete Query Diagram

12.5.3.1.2 Operation Complete Query Active State (OQAS)

In OQAS, the device continuously senses the No-Operation-Pending flag. When the No-Operation-Pending flag is
sensed TRUE, the device shall place an ASCII character “1” in the Output Queue. A consequence of this action is that
the MAV bit in the Status Byte will become TRUE. The device shall also exit OQAS and enter OQIS.

12.5.3.2 Sample Use of the *OPC? Query — No Service Request

The following technique of using the *OPC? query avoids the use of service requests and serial polls. Bit 4
(corresponding to the MAV summary-message) in the Service Request Enable Register is set to a value of zero
(disabled). The<TERMINATED PROGRAM MESSAGE>

VOLT 5.20; *OPC? <PMT>

is then sent to the power supply. The application program then attempts to read the *OPC? query response from the
power supply. The device will not put a response to the *OPC? into the Output Queue until the voltage is valid. After
the response is received, the controller commands the DVM to take a measurement.

12.5.3.3 Sample Use of the *OPC? Query — Service Request Method

The following technique makes use of service request and serial poll. Bit 4 (corresponding to the MAV summary-
message) in the Service Request Enable register is set to a value of one (enabled) and the <TERMINATED
PROGRAM MESSAGE>

VOLT 5.20; *OPC? <PMT>

is sent to the power supply. The power supply requests service when the output voltage is valid. Then the DVM is
commanded to take a measurement.

While reading the response to the *OPC? query removes the complication of dealing with service requests and the
attendant serial poll, it has the penalty that both the system bus and the controller handshake are in a temporary
holdoff state while the controller is waiting to read the *OPC? query response. The method using the *OPC command
and the OPC event-bit in the Standard Event Status Register or the method using the *OPC? query and the MAV
summary-message in the Status Byte Register both require the use of a serial poll. However, they allow both the
system bus and the controller to perform other operations while waiting for the service request.

12.6 Synchronization With External-Control-Signals

The techniques described in this section may be used to provide synchronization between external-control-signals, as
defined in 5.6.1.4, and the application program. The device designer may provide device-specific Overlapped
Commands that depend upon receipt of external-control-signals. A device operation may be initiated by the command
and completed as a consequence of receipt of an external-control-signal.

For example, consider a DVM that has the command “TRG:EXT” to select an external trigger and the Overlapped
Command (and query) “MEAS?” to take a measurement when triggered. The DVM will make the Pending-Operation
flag TRUE upon receipt of the following <TERMINATED PROGRAM MESSAGE>:

*CLS; TRG:EXT; MEAS? <PMT>

172 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

After the external trigger signal is applied, the measurement is taken, and then the Pending-Operation flag is made
FALSE.

All the synchronization methods using the *WAI, *OPC commands, and the *OPC? query may be used with
Overlapped Commands that use external-control-signals.

12.7 Improper Usage of *OPC and *OPC?

The *OPC command and *OPC? query are intended to appear as the last <PROGRAM MESSAGE UNIT> in a
<PROGRAM MESSAGE>. The result of the <TERMINATED PROGRAM MESSAGE>

*CLS; OL1; OL2; *OPC; OL3 <PMT>

will depend upon the relative timing of the completion of the device operations started by the “OL1” and “OL2”
Overlapped Commands and the execution of the “OL3” Overlapped Command.

The No-Operation-Pending flag may still be FALSE when the Overlapped Command “OL3” is executed. In this case,
the OPC event-bit becomes TRUE when the Overlapped Command “OL3” is finished because the No-Operation-
Pending flag does not go TRUE before the Pending-Operation flag corresponding to the “OL3” command goes TRUE.
The timeline and flags for this case are as shown in Fig 12-7.

Figure 12-7—Timing Diagram — Improper Operation Example 1

However, if the No-Operation-Pending flag becomes TRUE before the Overlapped Command “OL3” is executed, then
the OPC event-bit will already be TRUE. The timeline and flags for this case are as shown in Fig 12-8.

Copyright © 1992 IEEE All Rights Reserved 173

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

12.8 Design Considerations

This section is intended to guide the device designer in choosing which commands should be Overlapped Commands
and which should be Sequential commands. It also provides guidance to the device designer about how the No-
Operation-Pending flag shall be generated.

12.8.1 Overlapped Commands

In general, a device designer will want to make commands sequential if they complete in a short time and overlapped
if they take a long time to complete. “Short time” and “long time” must be considered in the context of other device
commands.

For example, consider a data logger that can back up its data to tape without interrupting the logging of new data. This
back up takes I h to complete, so the backup operation should be overlapped. Assume that logging new data takes 1
min. This is a long time compared to many of the device operations (for example, responding to *STB? query), but a
short time compared to the backup operation.

Figure 12-8—Timing Diagram — Improper Operation Example 2

174 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Consider the case in which the device designer chooses to make the data-logging operation overlapped. When the
application program commands the data logger to take a measurement, the No-Operation-Pending flag will go FALSE
for 1 min and then TRUE. If the application program commands the data logger to take a measurement while a backup
operation is in progress, the No-Operation-Pending flag will remain FALSE until the backup completes, possibly as
long as 1 h. During this time, the application program has no way of knowing whether the measurement is complete.

Now consider the case in which the device designer chooses to make the data logging operation sequential. This may
be an acceptable solution since the “MEASURE” command by itself will not cause a delay. If the controller attempts
to send additional commands before the data logging operation is complete, then the controller and bus will be
“stalled” until the data logger is ready to execute the new commands. Note that this method is very sensitive to device
implementation. If the device has no Input Buffer, sending the <TERMINATED PROGRAM MESSAGE>

MEASURE; <space> <PMT>

could cause the device to wait after the semicolon until the measurement completes and it is ready to accept the rest of
the <TERMINATED PROGRAM MESSAGE>. A “reasonable length” input buffer, see 6.1.5, would be large enough
to hold the command, extra whitespace, and <PROGRAM MESSAGE TERMINATOR> so that the bus handshake
would not be stalled during the measurement.

If the hypothetical data logger had to return some data to the controller at the end of each measurement, sequential
operation would not be acceptable since the controller and bus would be stalled for the duration of each measurement.
In this case, the device designer might choose to ignore the “BACKUP” Pending-Operation flag when determining the
state of the No-Operation-Pending flag. (The “device-defined subset” in 12.4 would not include the “BACKUP”
Pending-Operation flag.) This would allow the application programmer to use the standard *WAI, *OPC, and *OPC?
commands to synchronize measurements. The device designer would have to provide some other device-specific
means of determining when the backup operation had completed.

The device designer could also create a device-specific command to select which pending-operation flags would affect
the No-Operation-Pending flag. This would allow the application programmer to use the *WAI, *OPC, and *OPC?
commands to wait for the measurement to complete, for the backup to complete, or both.

12.8.2 Execution Error Handling

If a <PROGRAM MESSAGE> causes an Execution Error, the associated operation is aborted, the Pending-Operation
flag is made FALSE, and the device reports an Execution Error.

12.8.3 Operation Complete

The device designer shall determine the point in time when Overlapped Commands complete their associated device
operations. The following principles shall be followed in determining when to set the Pending-Operation flag FALSE
for each associated device-defined Overlapped Command.

The device designer must realize the importance of the requirements of this section. These requirements allow
application software to determine when external components of a system may utilize the results of a device operation.
Thus, the device shall not prematurely report that an operation is complete. The device may indicate that the operation
is complete anytime after the operation really is complete.

The device designer may include special hardware, such as sensors, for the device to determine when an operation is
complete. Alternatively, the device designer may design the device to wait for an appropriate amount of time to elapse.
Any method is acceptable as long as the results of an operation are valid whenever the device reports that operation to
be complete. A device that reports an operation to be complete when, in fact, it is not, is either misapplied, out of
calibration, or defective. A signal generator connected to a short circuit is an example of a misapplication. For each
command, the device documentation shall specify the functional criteria that are met when an operation complete
message is generated in response to that command.

Copyright © 1992 IEEE All Rights Reserved 175

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The criteria that shall be satisfied before an operation is reported complete are shown separately for two classes of
devices: stimulus-devices, see 12.8.3.1, and response-devices, see 12.8.3.2. A device may contain functions of both
types.

12.8.3.1 Stimulus-Devices

A stimulus-device generates a signal that is used to stimulate an external piece of equipment in a system. An example
of a stimulus-device is a power supply.

When a device-specific Overlapped Command causes the device to generate a signal, the device shall not indicate that
the associated pending operation is complete until one of the following has occurred:

1) The signal on its output port is in a valid state.
2) The operation has been aborted.

The device may provide device-specific commands that allow the application programmer to select which
characteristics of the signal applied at the device's output port will set the Pending-Operation flag FALSE. For
example, these commands might select the accuracy to which an output signal must settle before the device indicates
that an operation is complete.

12.8.3.2 Response-Devices

A response-device is a device that responds to an externally provided signal. An example of a response-device is a
DVM that measures an external signal.

When a device-specific Overlapped Command causes the device to respond to an external signal, the device shall not
indicate that the associated pending operation is complete until one of the following has occurred:

1) The response is complete.
2) The operation has been aborted.
3) The device is ready for the controller to begin a read operation in response to a query Overlapped Command.

The device may provide device-specific commands that allow the application programmer to select which
characteristic(s) of the response sets the Pending-Operation flag FALSE. For example, these commands might select
the degree of accuracy to which the signal is measured.

13. Automatic System Configuration

13.1 Introduction

When a test system is configured or reconfigured, addresses must be assigned to the devices so that the controller
application program can send messages to and receive messages from the desired devices. This section provides tools
in the form of protocols, commands, and guidelines to automate this task for devices independent of compliance with
IEEE 488.2 . It also discusses how the information generated by the tools can be used by an application program to
automatically adjust to test system hardware changes.

176 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

13.2 Overview

The following protocol and common command combinations support automatic configuration:

An overview of the use of these combinations is given below and does not represent an actual implementation.
Fig 13-1 illustrates a comprehensive search of devices on an IEEE 488.1 bus.

Figure 13-1—Comprehensive Device Search

The Non-Address-Configurable Device Search, in turn, is comprised of the elements shown in Fig 13-2 followed by
the Address-Configurable Device Search elements in Fig 13-3.

The Find Listeners controller protocol mentioned in Fig 13-2 and Set Address in Fig 13-3 are further described in Figs
13-4 and 13-5, respectively. Set Address protocol interacts with the Accept Address common command of Fig 13-6 to
implement the Address-Configurable Device Search.

Figure 13-2—Non-Address-Configurable Device Search

Controller Protocol Common Command Purpose of Combination

Find Listeners
(see 17.6)

Disable Listener (*DLF)
(see 10.6 and 13.4.1)

To find non-address-configurable IEEE 488.1
and IEEE 488.2 devices (*AAD/*DLF not
implemented)

Set Address
(see 17.7)

Accept Address (*AAD)
(see 10.1 and 13.4.2)

To find address-configurable IEEE 488.2
devices (*AAD/*DLF implemented)

Copyright © 1992 IEEE All Rights Reserved 177

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 13-3—Address-Configurable Device Search

The Set Address controller protocol and Accept Address common command interact as follows:

The Present-Identifier-Byte procedure in each device endeavors to guide the controller to its current byte, which is
detected by the Acquire-Byte procedure in the controller. The Acquire-Byte procedure acquires each byte via a binary
search until one entire identifier is acquired, see Appendix C. At this. point, only one device is left participating, and
the controller's Configure-Device procedure assigns the device an address that is accepted by the device's Present-
Device-Identifier procedure. This scenario repeats until all devices have been detected and have been assigned
addresses.

13.3 Generic Approach to Automatic System Configuration

13.3.1 Address Assignment

The method of address assignment described below is a generic approach and may be tailored to specific requirements.
The non-address-configurable devices are detected first, followed by address-configurable devices. The application
program is responsible for supplying a list of addresses to be searched for the presence of devices and a table
describing the desired final configuration.

Figure 13-4—Find Listeners Protocol

178 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

13.3.1.1 Types of Devices

Three types of devices may reside on an IEEE 488.1 bus:

1) Non-IEEE 488.2 devices
2) Non-address-configurable devices (no *AAD)
3) Address-configurable devices (implement *AAD)

The first two types are defined as non-address-configurable. The third type is defined as address-configurable.

13.3.1.2 Non-Address-Configurable Device Detection

Non-address-configurable devices are detected by an address probing routine (controller Find Listeners protocol, see
17.6) that searches each address specified in the input address list for a listener device or devices. During the poll, the
listener capabilities of the address-configurable devices are disabled by the *DLF common command (Disable
Listener Function, see 10.6) to prevent them from responding to the poll. The protocol performs the search by noting
if the NDAC line is TRUE after the address is sent. If so, a device(s) exists. Otherwise, the address location is empty.
If the address location is occupied, the address is stored in a non-address-configurable address table.

13.3.1.3 Address-Configurable Device Detection

Address-configurable devices are detected via a binary searching routine (controller Set Address protocol, see 17.7.2,
and the *AAD Common Command). Each device seeks detection by guiding the controller to its identifier with its
Listener and Service Request functions. The identifier is made up of the first three fields of the *IDN? query response
(manufacturer, model number, and serial number) and the device’s current listen address. Once an identifier is
detected, the controller assigns an address to the associated device according to a user-supplied configuration table.
The table will normally exclude addresses occupied by the non-address-configurable devices to prevent
communication conflicts.

Copyright © 1992 IEEE All Rights Reserved 179

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure 13-5—Set Address Protocol

180 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 13-6—Accept-Address Common Command

13.3.1.4 System Configuration Table

After all devices have been detected, the application program may create a system configuration table that lists each
of the devices detected by these protocols. This application program may also place other data into the table, such as
that returned by the *RDT? or *PUD? common queries. A number of the controller protocols described in Section 17.
require an input list of addresses. The application program may use the system configuration table to provide these
addresses to the protocols. Thus, the application software can automatically adjust itself in response to any
configuration or reconfiguration of the test system that it controls.

13.3.1.5 Limitations

The Find Listeners protocol cannot detect multiple devices at the same address. Thus, the user is responsible for
ensuring that each non-address-configurable device resides at a unique address. The protocol also will not work if

Copyright © 1992 IEEE All Rights Reserved 181

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

there are devices in the system that take more than 1 ms to cease listening after the controller sends ATN FALSE
when they are not addressed.

The Set Address protocol will unambiguously detect every address-configurable device regardless of its address,
except when an identifier is not unique. Such a situation can occur if two like devices have “0” for a serial number and
their addresses are the same at the start of the search. If the user changes one of these addresses, then the searching
method will operate correctly.

The Set Address protocol will not work if any non-address-configurable device in the system asserts SRQ TRUE
during the Set Address protocol. In some cases, serial polling all devices found by the Find Listener protocol before
starting the Set Address Protocol may be sufficient to clear the SRQ line. In other cases, some other means must be
used to make these devices set SRQ FALSE for the duration of the protocol.

13.3.1.6 Procedure

1) Send all primary and extended listen addresses, which causes all devices in the system to listen.
2) Send dcas message *DLF <NL^END> and wait 100 ms, which disables all address-configurable devices

from listening.
3) Send *CLS <NL^END>. This command clears the Query Error in all non-address-configurable devices

caused by receiving the unrecognized command, *DLF, and causes them to release SRQ.
4) Perform Find Listeners protocol at all addresses. Each address is tested for the presence of non-address-

configurable devices. Afterwards, all of those devices are unlistened.
5) Place the non-address-configurable devices (found in the previous step) into the system configuration table.
6) Send DCL and wait 100 ms, which restores address-configurable devices to normal listening operation

(LACS or LADS).
7) Perform the Set Address protocol on all currently listen-addressed devices. This protocol identifies all

address-configurable devices, but does not change their current addresses.
8) Place address-configurable devices into the system configuration table.
9) Perform the Set Address protocol again to assign new addresses to address-configurable devices.

The application program should include only devices that need to be assigned new addresses in this step. (If the
application program does not need to assign specific addresses to specific devices, this step may be omitted.) At the
conclusion of this procedure, the system configuration table contains a list of

1) Address-configurable devices, including their manufacturer, model number, serial number, and address
2) Non-address-configurable device addresses

13.3.2 Device Identification

The manufacturer and model number of a device may be used by an application to assign a type of device (for
example, DVM, power supply) to a particular bus address. In some applications, keeping a record of which specific
pieces of test equipment were used for a given test is important. For example, this information can be used to maintain
a calibration history of a device.

13.3.2.1 Addition of Non-IEEE 488.2 Devices

At the conclusion of the previous procedure, the system configuration table includes the manufacturer, model number,
serial number, and address for each address-configurable device. The table contains only the address for each non-
address-configurable device. The application must obtain the remaining three pieces of information for non-IEEE
488.2 devices from the keyboard, a disk file, or other source. Non-IEEE 488.2 devices must be identified in the
system configuration table so that they can be excluded from IEEE 488.2 -specific procedures.

182 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

13.3.2.2 Addition of IEEE 488.2 Non-Address-Configurable Devices

After the non-IEEE 488.2 devices are identified, the application may use the “*IDN?” query to fill in the rest of the
table entries for non-address-configurable devices.

13.3.2.3 Additional Configuration Commands

A number of common commands and queries are available to provide information useful within an automatic test
system. These commands include Protected User Data (*PUD and *PUD?), Resource Description Transfer (*RDT
and *RDT?), Calibration (*CAL?), and Option Identification Query (*OPT?).

Because these and other related common commands are optional, the application program must be able to determine
if a particular device has implemented a given command or query. The application may derive this information from
its own knowledge of a device's capabilities from a Resource Description. Another way is to send the command or
query, and use the device's required status reporting facilities to determine if the device does not implement the
command. For example, the application program could determine if the device implements the *RDT? common query
with the following procedure:

NOTE — Quotes around data strings are not part of the data sent.

1) Send “*ESE 1;*SRE 32 ;*CLS<NL^END>.” This <TERMINATED PROGRAM MESSAGE> enables
reporting of the OPC event (only) and clears the status registers.

2) Send “*RDT?;*OPC<NL^END>.” The device may or may not implement the *RDT? query, but is required to
implement the operation complete (*OPC) command. The device will set the OPC event bit in the Standard
Event Status Register when it executes the *OPC command. (An assumption is made that the device has no
pending operations, which is a reasonable assumption during system initialization.) The device will
eventually set the Event Status Bit (ESB, bit 5) in the device's Status Byte Register and cause a service
request.

3) The application may wait for the service request signal or may repeatedly poll the device until the device's
status byte indicates a service request (RQS TRUE). (The application should not assume that a service request
is caused by this device, but should always check the device status byte before continuing.)

4) Send “*ESR?<NL^END>” without attempting to read the *RDT? query response. Note that this sequence is
a violation of the normal device message exchange protocol, see Section 6., and may cause the device to
indicate a Query Error, which the application program is choosing to ignore.

5) Read the *ESR? response. The Operation Complete (OPC, bit 0) event bit should be TRUE (value of 1). The
Command Error (CME, bit 5) event bit will be FALSE (value of 0) if the device does implement the *RDT?
common query and TRUE (value of 1) if the device does not. The application program should ignore the
Query Error (QYE, bit 2) event bit, which may or may not be set.

13.4 Detailed Requirements of the Auto Configuration Commands

13.4.1 *DLF Common Command Requirements

The *DLF common command shall disable the device's normal Listener' function until a Device Clear (DCL)
interface message, an interface clear (IFC) interface message, or power-on (pon) is received. The device shall enter
Listener Idle State (LIDS) within 100 ms after the device's acceptor handshake enters Acceptor Wait for New Cycle
State (AWNS) on the last byte of the following <TERMINATED PROGRAM MESSAGE>:

*DLF<NL^END>

where “DLF” may be in any mixture of uppercase or lowercase. This timing requirement does not apply if

1) This is not the first <PROGRAM MESSAGE UNIT> received after the dcas message.
2) Any other syntactic elements are sent with the *DLF command before the <PROGRAM MESSAGE

TERMINATOR>.
3) Any <PROGRAM MESSAGE TERMINATOR> other than <NL^END> is used.

Copyright © 1992 IEEE All Rights Reserved 183

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

If the device receives a *DLF command that is not the first <PROGRAM MESSAGE UNIT> received after the dcas
message, or is not the only <PROGRAM MESSAGE UNIT> in a <PROGRAM MESSAGE>, it shall indicate an
Execution Error and shall not execute the *DLF command.

The device shall not indicate an error solely because the *DLF is preceded or followed by whitespace or because a
<PROGRAM MESSAGE TERMINATOR> other than <NL^END> is used; but it may not meet the timing
requirement.

After receiving *DLF, the Listener function shall remain disabled until the device receives a dcas message. During this
time, the Talker function, status reporting mechanism, and Controller function (if present) may continue normal
operation or may be disabled. The device shall return to normal operation with the Listener function in Listener
Addressed State (LADS) or Listener Active State (LACS) within 100 ms after receiving the dcas message. The device
shall also return to normal operation in Listener Idle State (LIDS) following power-on or the Interface Clear (IFC)
interface message, but shall not return to normal operation because of any other IEEE 488.1 bus condition.

13.4.2 *AAD Common Command Requirements

The *AAD common command prepares the device to participate in the controller's Set Address protocol. The device’s
normal input buffering, command processing, and status reporting mechanisms are disabled during the protocol.

13.4.2.1 Device Protocol Initiation

The device shall be ready to participate in the Set Address protocol within 100 ms after the device’s Acceptor
Handshake function enters AWNS on the last byte of the following <TERMINATED PROGRAM MESSAGE>:

*AAD<NL^END>

where “AAD” may be in any mixture of uppercase or lowercase. This timing requirement does not apply if

1) This is not the first <PROGRAM MESSAGE UNIT> received after the dcas message.
2) Any other syntactic elements are sent with the *AAD command before the <PROGRAM MESSAGE

TERMINATOR>.
3) Any <PROGRAM MESSAGE TERMINATOR> other than <NL^END> is used.

If the device receives an *AAD command that is not the first <PROGRAM MESSAGE UNIT> received after the dcas
message, or is not the only <PROGRAM MESSAGE UNIT> in a >PROGRAM MESSAGE>, it shall indicate an
Execution Error and shall not execute the *AAD command. The device shall not indicate an error solely because the
*AAD is preceded or followed by whitespace or a <PROGRAM MESSAGE TERMINATOR> other than <NL^END>
is used; but it may not meet the timing requirement. The device shall return to normal operation at the end of the Set
Address protocol or following power-on (pon), the Interface Clear (IFC) interface message, or the dcas message, but
shall not return to normal operation because of any other IEEE. 488.1 bus condition. If a device receives a pon, IFC,
or dcas prior to being assigned an address, it shall retain the address it possessed prior to the execution of this
command.

13.4.2.2 Device Identifier

Each device that implements this command shall have an identifier made up of four fields:

1) Manufacturer
2) Model number
3) Serial number
4) Current address

184 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

For proper operation of this command, each byte of the identifier must have a decimal value greater than 31 and less
than 127, and the identifier must be unique among all devices in the system. The first three fields of this identifier shall
be identical to the first three fields of the Identification Query (*IDN?) query response. The fourth field shall consist of
a single data byte (decimal value 32 through 62) that is identical to the device's current listen address and, if the device
implements extended addressing, another data byte (decimal 96 through 126) that is identical to the device’s current
secondary address.

13.4.2.3 Protocol Operation

13.4.2.3.1 Overview

During the Set Address protocol, the controller attempts to identify each address-configurable device within the
system by searching for a unique identifier. The controller identifies one device in each pass through the protocol. The
search ordering is lexicographic by fields, with characters ordered according to their ASCII codes. If a field in one
device's identifier is an initial substring of the same field in another device's identifier, the device with the longer field
will be found first. During the pass, devices drop out of the search until only the first device (in the above ordering) is
left. At the end of the pass, the controller assigns an address to that device. Once assigned an address, a device ignores
subsequent bus traffic until all devices have been identified. The controller then restarts the search with the remaining
devices. This process continues until all address-configurable devices have been identified and assigned new
addresses.

13.4.2.3.2 SR Interface Function

The controller uses a binary search technique to find each byte in the identifier. The device uses its SR interface
function to guide the controller through the search. The device shall send the rsv message FALSE if the value of the
data byte presented by the controller is less than or equal to the value of the byte in the device's identifier. The device
shall send the rsv message TRUE if the value of the data byte presented by the controller is greater than the value of
the byte in the device's identifier. The device shall send the rsv message FALSE when the search has reached the end
of an identifier field, or when the search has reached the end of the identifier.

13.4.2.3.3 Timing Requirements

The device shall send the correct value of the rsv message within i ms of the device’s acceptor handshake entering
AWNS. The device shall not make a transition from ANRS to ACRS (in preparation for the next byte) until the rsv
message is stable.

13.4.2.3.4 Address Assignment

When the device has been identified, it shall accept one data byte from the controller. The value of this byte is the
device's new listen address. The device shall set its primary address to the value of the lower five bits of this byte, and
shall set its primary talk address so that the lower five bits of MLA and MTA are identical.

A device utilizing extended addressing shall accept an additional data byte from the controller. The device shall set its
secondary address to the value of the lower five bits of this byte.

The device's Listener function shall not enter Listener Idle State (LIDS) when the new addresses are assigned, but
shall remain in Listener Active State (LACS).

13.4.2.4 Algorithms

The following algorithms define a correct implementation of the *AAD command. The device shall implement these
algorithms or a functionally equivalent procedure.

Copyright © 1992 IEEE All Rights Reserved 185

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

13.4.2.4.1 Accept-Address Procedure

Accept-Address watches for the STX character, ASCII character with the value 02 (2 decimal), that marks the start of
a search pass. Present-Device-Identifier is called to present the device's identifier. If the device is not first in the search
order, Present-Device-Identifier returns with the device-detected flag set FALSE. If the device-detected flag is FALSE,
Accept-Address continues reading and discarding bytes until another STX character is received, indicating the start of
a new search pass. If the device-detected flag is TRUE, this device has been identified. Accept-Address reads and
discards all data until a dcas message restores normal operation.

BEGIN Accept-Address

 Disable input buffer
 Disable normal command processing
 Disable device status reporting
 Set rsv message FALSE

 Set device-detected to FALSE
 WHILE device-detected is FALSE
 BEGIN
 REPEAT
 Read data-byte
 UNTIL data-byte is ASCII STX (*decimal value of 2*)
 Perform Present-Device-Identifier
 (* Present-Device-Identifier will set device-detected TRUE if
 the controller has successfully identified this device *)
 END

 WHILE NOT in DCAS state
 Read and discard data bytes

 Enable input buffer
 Enable normal command processing
 Enable device status reporting

END Accept-Address

13.4.2.4.2 Present-Device-Identifier Procedure

Present-Device-Identifier presents the four fields of the device’s identifier to the controller. If all four fields match,
Present-Device-Identifier accepts the device’s new address from the controller. If any field does not match, Present-
Device-Identifier is exited.

BEGIN Present-Device-Identifier
 Set current-field to manufacturer
 Set participating TRUE
 WHILE participating is TRUE
 BEGIN
 Perform Present-Identifier-Field
 (* Present-Identifier-Field will set participating FALSE if there is
 another device on the bus whose identifier comes prior
 to this device's identifier in the search order.*)
 IF participating is TRUE
 THEN
 BEGIN

186 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 IF current-field is address
 THEN
 BEGIN
 Set device-detected to TRUE
 Set participating to FALSE
 END
 ELSE
 CASE current-field OF
 BEGIN
 manufacturer: Set current-field to model number
 model number: Set current-field to serial number
 serial number: Set current-field to address
 END
 END
END

IF device-detected is TRUE
 THEN
 BEGIN
 Read data-byte (* Signals end of identifier through SRQ
 being FALSE *)
 IF data-byte is 127
 THEN
 BEGIN
 Read data-byte
 Assume primary address indicated by data-byte
 IF device implements extended addressing
 THEN
 BEGIN
 Read data-byte
 Assume secondary address indicated by data-byte
 END
 END
 ELSE
 Set device-detected to FALSE
 (* Another device has an address field which is a superset
 of this device's address field *)
 END
END Present-Device-Identifier

13.4.2.4.3 Present-Identifier-Field Procedure

Present-Identifier-Field presents successive bytes of the current search field to the controller.

BEGIN Present-Identifier-Field

 Set identifier-byte-pointer to beginning of current-field
 Set end-of-field to FALSE

 WHILE participating is TRUE AND end-of-field is FALSE
 BEGIN
 Perform Present-Identifier-Byte
 (* Present-Identifier-Byte will set participating FALSE if
 there is another device on the bus whose identifier

Copyright © 1992 IEEE All Rights Reserved 187

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

 comes prior to this device's identifier in the
 search order. *)
 IF identifier-byte-pointer is at end of current-field
 THEN
 Set end-of-field to TRUE
 ELSE
Increment identifier-byte-pointer
 END

 IF participating is TRUE
 THEN
 BEGIN
 (* Signals end of this field by returning SRQ FALSE for the
 search of the next character. *)
 Read data-byte
 Set rsv message FALSE
 END

END Present-Identifier-Field

13.4.2.4.4 Present-Identifier-Byte Procedure

Present-Identifier-Byte presents one byte of the device's identifier to the controller. It uses the SR interface function
to guide the controller through a binary search for the lowest-value identifier byte in the system. The controller
signals the end of the search by presenting the identifier byte with the most significant bit set. Present-Identifier-Byte
checks that this byte matches the device's identifier byte. The participating flag is set FALSE if the byte does not
match. This mismatch will cause a return to Accept-Address, which will discard data bytes until the next pass.

BEGIN Present-Identifier-Byte

 Read data-byte
 IF data-byte is 127
 THEN
 BEGIN
 Set rsv message TRUE
 Set DIO8-detect FALSE
 WHILE DIO8-detect is FALSE
 BEGIN
 Read data-byte
 IF data-byte is between 0 and 127
 THEN
 BEGIN
 (* The controller is guided through the binary search
 by the device with the lowest-value byte at
 the current position within the identifier. *)
 IF data-byte is GREATER THAN current identifier byte
 THEN
 Set rsv message TRUE
 ELSE
 Set rsv message FALSE
 END
 ELSE
 BEGIN
 (* The controller has set the most significant bit of

188 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 the byte to indicate that it is done searching and
 this is the value of the lowest valued byte in this
 position. It is placing that byte on the bus so
 that the device can determine if it should continue
 participating in the search. *)
 Set rsv message FALSE
 Set DIO8-detect TRUE
 IF data-byte is NOT EQUAL to
 (current identifier byte +128)
 THEN
 Set participating FALSE
 END
 END
 END
ELSE (* A superset field, excluding address, of another device is
 detected *)
 BEGIN
 Set rsv message FALSE
 Set participating FALSE
 END

END Present-Identifier-Byte

13.5 Additional Automatic Configuration Techniques

Addresses and identifications of test system devices represent only a portion of the information the controller needs
in order to perform tasks requested by the user. That is, calibration dates, programming codes, etc., are required by the
controller to ensure that the test requirements of the user are transformed into valid actions by the test system.

The basic techniques provided in this section may be utilized by the application programmer to ease the task of
configuring and reconfiguring automatic test systems. This section describes only a few of the configuration
techniques that are possible. For example, the system configuration table can be expanded to include service request
masks that are automatically sent to the devices when the table is created or updated.

13.6 Examples

See Appendix C for application examples.

14. Controller Compliance Criteria

A device must have certain capabilities as described in previous sections. This section lists the capabilities that this
standard requires in a system controller. A controller may optionally contain additional capabilities. Any optional
controller capabilities that are described by this standard are also listed.

Compliance for a controller is divided into several areas that are considered separately. A controller must satisfy all
the required functionality in each of the areas in order to comply with this standard.

14.1 IEEE 488.1 Requirements

A controller shall contain these IEEE 488.1 subsets and no others, see Table 14-1.

Copyright © 1992 IEEE All Rights Reserved 189

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 14-1—IEEE 488.1 Requirements

A controller shall meet the requirements of IEEE Std 488.1-1987 [4]. It shall also meet all requirements stated in
Section 15. of this standard.

14.2 Message Exchange Requirements

14.2.1 Required Control Sequences

Each of the control sequences listed in Table 14-2 and described in Section 16. shall be implemented individually in a
controller.

14.2.2 Optional Control Sequences

Each of the control sequences listed in Table 14-3 and described in Section 16. may be implemented individually in a
controller.

IEEE 488.1 Interface Function IEEE 488.1 Subsets
IEEE 488.2
 Section

Source Handshake SH1 15.1.2

Acceptor AH1 15.1.3

Talker if C5, C7, C9, Cll, C17, C19, C21, or C23 15.1.2

then TS, T6, TE5, or TE6

else T7, T8, TE7, or TE8

Listener L3, IA, LE3, or LE4 15.1.3

Service Request if C5, C7, C9, Cll, C17, C19, C21, or C23

then SR1

else SR0

Remote Local RL0 or RL1

Parallel Poll PPO or PP1

Device Clear DCO or CD1

Device Trigger DT0 or DT1

Controller 15.1.1

System Controller C1

Send IFC and Take Charge C2

Send REN C3

Respond to SRQ C4

Send Interface Messages and
Take Control Synchronously

one of C5, C7, C9, C11, C13, C15, C17,
C19, C21, C23, C25, or C27

190 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

14.3 Protocols

14.3.1 Required Protocols

Each of the controller protocols listed in Table 14-4 and described in Section 17. shall be implemented individually in
a controller.

Table 14-2—Required Control Sequences

Table 14-3—Optional Control Sequences

Table 14-4—Required Protocols

 Control Sequence Section
Requires IEEE 488.1

Subset

SEND COMMAND 16.2.1 one of C5-C28

SEND SETUP 16.2.2 one of C5-C28

SEND DATA BYTES 16.2.3 one of C5-C28

SEND 16.2.4 one of C5-C28

RECEIVE SETUP 16.2.5 one of C5-C28

RECEIVE RESPONSE MESSAGE 16.2.6 one of C5-C28

RECEIVE 16.2.7 one of C5-C28

SEND IFC 16.2.8 C2

DEVICE CLEAR 16.2.9 one of C5-C28

ENABLE LOCAL CONTROLS 16.2.10 C3

ENABLE REMOTE 16.2.11 C3

SET RWLS 16.2.12 C3 and one of C5-C28

SEND LLO 16.2.13 C3 and one of C5-C28

READ STATUS BYTE 16.2.18 one of C5-C28

TRIGGER 16.2.19 one of C5-C28

 Control Sequence Section
Requires IEEE 488.1

Subject

PASS CONTROL 16.14 C5, C7, C9, or Cll

PERFORM PARALLEL POLL 16.15 C5, C9, C13, C17, C21, or C25

PARALLEL POLL CONFIGURE 16.16 C5, C9, C13, C17, C21, or C25

PARALLEL POLL UNCONFIGURE 16.17 C5, C9, C13, C17, C21, or C25

Protocol Keyword Section

RESET 17.1

ALLSPOLL 17.3

Copyright © 1992 IEEE All Rights Reserved 191

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

14.3.2 Optional Protocols

The controller protocols listed in Table 14-5 and described in Section 17. may be implemented in a controller.

Table 14-5—Optional Protocols

14.4 Functional Element Handling

A controller shall have the capability of sending all the IEEE 488.2 functional syntactic elements described in Section
7. A controller shall have the capability to receive all the IEEE 488.2 functional syntactic elements described in
Section 8.

14.5 Controller Specification Requirements

Information about how the manufacturer implemented controller requirements relating to this standard shall be
supplied with the controller documentation by the manufacturer. This information shall include

1) A list of IEEE 488.1 Interface Function subsets implemented, see Section 15..
2) A list of control sequences that can be performed by the controller, see 16.2.
3) A list of protocols that can be performed by the controller, see Section 17.
4) A description of how the various functional elements are sent and received by the controller, see 14.4.
5) Any buffer size limitations shall be described, see 7.7.6 and 8.7.9.
6) A description of how timeouts work, see 15.2 and 15.3.2, including

a) How timeouts are turned on and off
b) If the timing is done on a byte or message basis
c) The allowable time values for the timeout

15. IEEE 488.2 Controller Requirements

15.1 Controller Interface Function Requirements

This section describes the IEEE 488.1 interface function requirements of a controller. It also specifies the additional
requirements of a controller that are directly associated with the ten IEEE 488.1 interface functions. These
requirements are intended to supplement the IEEE 488.1 specification for the instrument system environment as
described in this standard.

Protocol Keyword Section

FINDRQS 17.2

PASSCTL 17.4

REQUESTCTL 17.5

FINDLSTN 17.6

SETADD 17.7

TESTSYS 17.8

192 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

15.1.1 Controller Requirements

The controller shall have the following Controller function capabilities: system controller (C1), send IFC and take
charge (C2), send REN (C3), respond to SRQ (C4), send interface messages (one of C5-C27), and take control
synchronously (one of C5, C7, C9, C11, C13, C15, C17, C19, C21, C23, C25, C27). Receive control (one of C5-C15),
pass control (one of C5-Cll or C17-C23), pass control to self (one of C5, C7, C17, C19), and parallel poll (one of C5,
C9, C13, C17, C21, C25) are optional capabilities.

15.1.2 Talker Requirements

For IEEE 488.2 device-specific message transmission, the controller shall contain one of the Talker subsets T5-T8 or
TE5-TE8. These subsets mandate the basic talker with unaddress if MLA. Optional capability includes responding to
a serial poll and having a talk-only mode. Complete Source Handshake (SH1) capability is also required to support the
Talker subset.

15.1.3 Listener Requirements

For IEEE 488.2 device-specific message reception, the controller shall contain one of the Listener subsets L3-L4 or
LE3-LE4. These subsets mandate the basic listener with unaddress if MTA with optional capability to contain a listen-
only mode. Complete Acceptor Handshake (AH1) capability is also required to support the Listener subset.

15.1.4 Passing Control Requirements

If a controller is expected to execute the protocol described in 17.4 and 17.5 for passing and returning control, it shall
have the the subset capability to “Pass Control” and “Take Control Synchronously.” That is, subsets C1, C2, C3, and
C4 are required along with a choice of either C5, C7, C9, or Cll. A controller that can pass control shall also contain
the T5, T6, TE5, or TE6 Talker function subsets that support serial poll.

15.1.5 Electrical Requirements

A controller shall implement the E2 electrical interface option (see IEEE Std 488.1-1987 [4], Appendix C2). Open
collector drivers shall be used to drive the SRQ, NRFD, and NDAC signal lines. Three-state drivers shall be used to
drive the DAV, EOI, ATN, REN, and IFC signal lines. When an IEEE 488.1 device in an IEEE 488.1 system is not in
PPAS, the controller shall use three-state drivers to drive the DIO1-8 signal lines. If an IEEE 488.1 device in the IEEE
488.1 system is in PPAS, the controller shall use open collector drivers or the high-impedance state of three-state
drivers to drive the DI01-8 signal lines as appropriate to the controller's current operation.

15.2 Additional IEEE 488.2 Controller Requirements

A controller shall have

1) A means of providing low-level bus control via application software to independently allow the user to
a) Pulse IFC TRUE for greater than 100 ms.
b) Set the REN signal line either TRUE or FALSE.
c) Send singly or in any combination any interface message defined in IEEE 488.1.
d) Send and detect the IEEE 488.1 END message (that is, the EOI signal line TRUE and the ATN signal

line FALSE handshook with a data byte).
2) The facility (either directly or via the application program) to input and output the codes, formats, protocols,

and common commands as defined in this standard.
3) The facility to sense the state (TRUE or FALSE) of the SRQ line.
4) The facility to sense FALSE to TRUE SRQ line transitions. Timing of application program actions following

the transition is beyond the scope of this standard.
5) The facility (either directly or via the application program) to examine the status byte on a bit basis.

Copyright © 1992 IEEE All Rights Reserved 193

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6) The facility to detect the error condition of the controller attempting to source handshake a byte while all
other devices are in AIDS and relay the error to the application program.

7) The facility to timeout on controller-to-device and device-to-controller message exchange and have the
ability to relay the occurrence of a timeout to the application program. A timeout occurs when a single
handshake or a sequence of handshakes are not completed within an allocated time. The application program
shall be able to enable and disable this facility. The controller documentation shall include information on
how timeouts are controlled.

15.3 IEEE 488.2 Controller Recommendations

15.3.1 Monitoring Bus Lines

For diagnostic use, controllers may monitor the IEEE 488.1 signal lines and report their status or transitions to the
application program. If the controller does not implement the SETADD and FINDLSTN common controller
protocols, the application programmer needs to monitor NRFD and NDAC to perform these protocols at the
application layer.

15.3.2 Timeouts

The capability to vary the value of the timeout is recommended. The range and resolution is controller dependent, but
shall be documented.

15.3.3 SRQ Interrupts

It is required that a controller be able to sense and report FALSE to TRUE transitions of SRQ, see 15.2. In addition,
a controller may optionally provide a means for an application program to branch to a specified section of the
application program when SRQ changes from FALSE to TRUE. The SRQ servicing routine may delay execution until
the current message is completely transmitted or received, it may start executing immediately after the current data
byte is completely transferred, or it may delay execution until a convenient time for the controller.

16. Controller Message Exchange Protocols

Fig 16-1 contains the logical model of a controller.

194 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure 16-1—Controller Model

16.1 Definitions

16.1.1 IEEE 488.1 Driver

This element contains the state machines described in IEEE Std 488.1-1987 [4]. It also controls much of the
sequencing of remote messages.

16.1.2 Programming Environment

This block provides capabilities related to sending and receiving messages on the IEEE 488.1 bus to the application
program. This standard describes which capabilities shall be supplied to the application program. The programming
environment is typically not written by the user or developer of the system. It is, instead, written by the manufacturer
or supplier of the controller. An operating system and programming language with possibly some extra routines
would typically comprise a programming environment.

16.1.3 Application Program

The application program is typically written by the user or developer of the system. This program is written to perform
a specific task in a limited environment. The purpose or description of any application programs is beyond the scope
of this standard.

16.1.4 IEEE 488.2 Controller

The controller, described in Section 15., is the combination of the programming environment and the IEEE 488.1
driver. The application program interfaces with the controller to perform IEEE 488.1 operations. Many aspects of this
combination are beyond the scope of this standard. Only those aspects that are needed to ensure reliable
communication between the application program and the devices are specified.

Copyright © 1992 IEEE All Rights Reserved 195

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

16.1.5 IEEE 488.1 Bus Signals

The IEEE 488.1 standard describes messages that are transmitted on the bus and exchanged between the device and
the bus. This element encompasses those messages.

16.1.6 DAB

See 6.1.4.2.1.

16.1.7 END

See 6.1.4.2.2.

16.1.8 Control Sequence

Control sequences are requests to send IEEE 488.1 remote messages. Control sequences put the state machines in both
the controller and devices into certain desired states.

16.1.9 Addresses

Addresses refer to talk and listen addresses of devices and controllers on the bus. Addresses are always parameters to
a control sequence.

An address has two components. The first component is the primary address and the second component is the
secondary address. If the second component is null (a zero secondary address is not null) only the primary address is
used.

A controller shall provide the user with the capability to send only primary addresses as well as the capability to send
both primary and secondary addresses (extended addressing).

This standard places no requirements on how addresses are passed from the application program to the controller. The
controller may require that the application program supply the address explicitly with every request to transfer a
message. Alternatively, a data structure may exist that allows a very sophisticated method of determining an address.
Many techniques exist, and may be used, to generate addresses within the controller.

In general, passing the entire seven bits of a complete primary or secondary address is not necessary. A number
between zero and thirty could be passed along with the information that it is either a talk, listen, or secondary address.

16.1.10 IEEE 488.1 State Conditions

The IEEE 488.1 driver contains state machines described in IEEE 488.1. State conditions are indications of which
states the state machines are in at any given time. The operating system or programming language occasionally needs
to interrogate the current state conditions to be sure messages are being reliably transferred.

16.1.11 Data Messages

Data messages are either <PROGRAM MESSAGE> or <RESPONSE MESSAGE> functional elements.

16.1.11.1 <PROGRAM MESSAGE>

A <PROGRAM MESSAGE> is a sequence of data bytes that is transferred from the controller to a device with ATN
FALSE. The meaning of a <PROGRAM MESSAGE> is, in general, device-specific, see Section 7.

196 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

16.1.11.2 <RESPONSE MESSAGE>

A <RESPONSE MESSAGE> is a sequence of data bytes that is transferred from the device to the controller with
ATN FALSE. The meaning of a <RESPONSE MESSAGE> is, in general, device-specific, see Section 8.

16.1.12 Controller Errors

Controller errors are indications to the application program that the controller was unable to completely perform a
request from the application program.

16.2 Control Sequences

Control sequences send one or more IEEE 488.1 remote messages. This standard describes those sequences that are
known to be valuable to application programmers. Additional sequences may also be made available to the application
program that are beyond the scope of this standard.

Some control sequences are combinations of other control sequences. If a controller supplies a control sequence that
is the combination of several other control sequences, the controller shall also supply the subordinate control
sequences individually.

16.2.1 SEND COMMAND

The SEND COMMAND control sequence allows the application program to send an arbitrary sequence of ATN-true
commands. This control sequence allows the user to construct control sequences that are not described in this standard
or that may not be supplied with the controller. One or more 7 bit commands shall be passed with the SEND
COMMAND control sequence. The IEEE 488.1 driver shall

set ATN TRUE and EOI FALSE
FOR each command passed
 send the command with DIO8 FALSE
NEXT command

ATN shall be held TRUE and EOI held FALSE until another control sequence makes them change.

16.2.2 SEND SETUP

The SEND SETUP control sequence configures the system bus so that a <PROGRAM MESSAGE> can be
transferred from the controller to a device. It is also used in some other control sequences.

One or more listen addresses shall be passed with the SEND SETUP control sequence. The IEEE 488.1 driver shall

 set ATN TRUE and EOI FALSE
 send the controller's talk address
 send the IEEE 488.1 unlisten message (UNL)
 FOR each listen address passed
 send the listen address
 NEXT listen address

ATN shall be held TRUE and EOI held FALSE until another control sequence makes them change.

Copyright © 1992 IEEE All Rights Reserved 197

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

16.2.3 SEND DATA BYTES

The SEND DATA BYTES control sequence is used to transfer DABs from a controller to a device. No addresses are
passed with the request to perform a SEND DATA control sequence The application program shall, however, pass a list
of zero or more DABs and a terminator. The IEEE 488.1 driver shall

 set ATN FALSE
 FOR each data byte passed
 send a data byte
 NEXT data byte
 send the terminator

NOTE — If the terminator is the END message, the terminator is actually sent with the last data byte and not separately. If the
terminator is the END message and no bytes are passed, the controller shall indicate an error to the application program.

ATN shall remain FALSE while the data bytes and terminator are transferred.

At the completion of the sequence, ATN is FALSE and all currently addressed devices remain addressed.

IEEE 488.2 <PROGRAM MESSAGE> elements, see Section 7., are commonly terminated by NL with END. A
controller shall provide a means for the application program to send an IEEE 488.1 device-specific message without
having first specified a message terminator. If the application program has not specified a terminator, the controller
shall send NL with END as the terminator. A controller is also required to have the capability to send END with the
last DAB as a terminator. The controller may also allow the application program to select alternative terminators.

At least four useful terminators exist:

1) NL with END — required.
2) Send the last DAB with END — required. This terminator allows messages to be sent to IEEE 488.1 devices

that; terminate only on the END message
3) Null, that is, send nothing — required. The null terminator allows a single message to be sent in pieces via

multiple SEND DATA BYTES.
4) Send one or more application program supplied special characters (for example, NL or CR LF) without END

— optional. This terminator allows messages to be sent to non-IEEE 488.2 devices that relay attach a special
significance to the END message.

When sending data messages to devices, the application program should use the first alternative.

16.2.4 SEND

The SEND control sequence is used to transfer a complete <PROGRAM MESSAGE> from a controller to a device.

One or more listen addresses shall be passed with the SEND control sequence. A list of one or more data bytes and a
terminator shall also be passed. The method of passing the required information is purposely left unspecified. The
terminator shall default to NL with END. The IEEE 488.1 driver shall

 execute a SEND SETUP
 with the supplied listen addresses
 execute a SEND DATA BYTES
 with the supplied data bytes and terminator

198 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

16.2.5 RECEIVE SETUP

The RECEIVE SETUP control sequence configures the system bus so that a <RESPONSE MESSAGE> can be
transferred from a device to the controller. It is also used in some other control sequences.

A single talk address shall be passed with the RECEIVE SETUP control sequence. The IEEE 488.1 driver shall

 set ATN TRUE and EOI FALSE
 send the IEEE 488.1 unlisten message (UNL)
 send the controller’s listen address
 send the supplied talk address

ATN shall be held TRUE and EOI held FALSE until another control sequence makes them change.

16.2.6 RECEIVE RESPONSE MESSAGE

The RECEIVE RESPONSE MESSAGE control sequence is used to transfer data bytes from a device to a controller.

No addresses are passed with the request to perform a RECEIVE RESPONSE MESSAGE control sequence. The
controller shall be passed a stop-handshaking condition either as a default condition or explicitly. The programming
environment shall provide a means of transferring the received information to, the application program. The controller
may transform or separate the data bytes into a form more readily usable by the application program. For example, a
sequence of digits could be converted into the internal representation of a number.

The controller shall continue to handshake data bytes until the specified stop-handshaking condition occurs. The
controller shall not handshake any data bytes after the stop-handshaking condition until the application program
initiates another request to receive data. The IEEE 488.1 driver shall

 set ATN FALSE
 UNTIL stop-handshaking condition
 receive data bytes
 END UNTIL

ATN shall remain FALSE while the data bytes are transferred.

At the completion of the sequence, ATN is FALSE and all currently addressed devices remain addressed. The
controller shall keep NRFD and NDAC TRUE until another control sequence is executed.

A typical stop-handshaking condition for RECEIVE RESPONSE MESSAGE is receiving the END message. A
controller shall provide the capability to stop-handshaking on the END message.

Alternate stop-handshaking conditions shall be provided that can be selected by the application program. Several ways
of stopping the reception of data exist:

1) Stop only on END — required. Works with all IEEE 488.2 devices and many non-IEEE 488.2 devices.
2) Stop on NL — required. Allows the controller to terminate on the NL at the end of a <RESPONSE

MESSAGE>. Also included for compatibility with devices that do not adhere to this standard.
3) Stop on comma — required. Allows the controller to receive <RESPONSE DATA> elements on an

individual basis.
4) Step on semicolon — required. Allows the controller to receive <RESPONSE MESSAGE UNIT> elements

on an individual basis.
5) Stop on a byte count — optional. May be useful in receiving <DEFINITE LENGTH ARBITRARY BLOCK

RESPONSE DATA>.

Copyright © 1992 IEEE All Rights Reserved 199

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

6) Stop on an arbitrary DAB match — optional. Included to allow controllers to stop-handshaking at the end of
responses from devices that do not follow IEEE 488.2 and, thus, may use unknown methods to terminate a
response message.

7) Stop at end of <RESPONSE HEADER> or <RESPONSE DATA> — optional. For example, any of the
following:
a) <RESPONSE HEADER SEPARATOR>
b) <RESPONSE DATA SEPARATOR>
c) <RESPONSE MESSAGE UNIT SEPARATOR>
d) <RESPONSE MESSAGE TERMINATOR>

8) Stop on end of <RESPONSE MESSAGE DATA ELEMENT> — optional. For example, any of the
following:
a) <RESPONSE MESSAGE DATA SEPARATOR>
b) <RESPONSE MESSAGE UNIT SEPARATOR>
c) <RESPONSE MESSAGE TERMINATOR>

9) Stop on end of <RESPONSE MESSAGE UNIT> — optional. For example, any of the following:
a) <RESPONSE MESSAGE UNIT SEPARATOR>
b) <RESPONSE MESSAGE TERMINATOR>

Implementation of options (7), (8), and (9) is recommended, as they allow an application program to easily identify the
syntactic components of a <RESPONSE MESSAGE>.

A controller designer may chose to allow various combinations of conditions to generate the stop-handshaking
condition. For example, the stop-handshaking condition could be NL or END, NL or semicolon, etc. This list is not
intended to restrict the controller from supplying additional techniques for stopping the handshaking process.

NOTE — Alternatives (7), (8), and (9) require the controller to parse the received message in order to detect the stop-handshaking
condition.

16.2.7 RECEIVE

The RECEIVE control sequence is used to transfer a <RESPONSE MESSAGE> from a device to a controller.

A single talk address and a stop-handshaking condition shall be passed with the RECEIVE control sequence. The
application program shall also provide internal storage for the received data bytes. The IEEE 488.1 driver shall

 execute a RECEIVE SETUP
 with the supplied talk address
 execute a RECEIVE RESPONSE MESSAGE
 with the supplied stop-handshaking condition

16.2.8 SEND IFC

The SEND IFC control sequence can only be executed by the system controller. The effect of the control sequence is
to remove all talkers and listeners, serial poll disable all devices, and return control to the system controller. At power-
on, the controller shall execute the SEND IFC control sequence.

When the application program requests that the SEND IFC control sequence be executed, the IEEE 488.1 driver shall
pulse the IEEE 488.1 bus signal IFC TRUE for more than 100 s (see IEEE 488.1-1987 [4], 2.12.3.16).

The state of the other IEEE 488.1 bus lines shall not change. The controller shall not execute any other control
sequences until IFC has been made FALSE by this control sequence.

200 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

16.2.9 DEVICE CLEAR

The DEVICE CLEAR control sequence is used to send the dcas message and place all or selected devices in Device
Clear Active State (DCAS). The behavior of a device in DCAS is well defined, see 5.8. The DEVICE CLEAR control
sequence should be used as part of the initialization of a system, see 17.1.

After completion of the DEVICE CLEAR control sequence, the DIO lines may be left in any state convenient for the
controller. ATN shall remain TRUE at the end of the control sequence. The EOI line shall remain FALSE during and
at the completion of the DEVICE CLEAR control sequence to avoid performing parallel polls.

16.2.9.1 Selected Device(s)

If the application program passes an address(es) with a request to send the DEVICE CLEAR control sequence, the
IEEE 488.1 driver shall

 execute a SEND SETUP
 with the supplied addresses
 send the IEEE 488.1 Selected Device Clear message (SDC)

16.2.9.2 All Devices

If the application program requests that the DEVICE CLEAR control sequence be sent, and no addresses are also
passed, the IEEE 488.1 driver shall

 set ATN TRUE
 send the IEEE 488.1 Device Clear message (DCL)

16.2.10 ENABLE LOCAL CONTROLS

The ENABLE LOCAL CONTROLS control sequence is used to place either all or selected devices into a local state
(LOCS or LWLS). See 5.6 for a discussion on how devices behave after a transition from a remote to a local state and
while in a local state.

16.2.10.1 Selected Device(s)

If the application program passes an address(es) with a request to execute the ENABLE LOCAL CONTROLS control
sequence, the IEEE 488.1 driver shall

execute a SEND SETUP
with the supplied addresses
send the IEEE 488.1 “go to local” message (GTL)

After completion of the ENABLE LOCAL CONTROLS control sequence for selected devices, the DIO lines may be
left in any state convenient for the controller. ATN shall remain TRUE. The EOI line shall remain FALSE during and
at the completion of the ENABLE LOCAL CONTROLS control sequence to avoid performing parallel polls.

16.2.10.2 All Devices

If the application program requests that the ENABLE LOCAL CONTROLS control sequence be sent, and no
addresses are also passed, the IEEE 488.1 driver shall

 set the IEEE 488.1 signal REN FALSE
 (enter the C interface function systemcontrol remote
 not active state, see IEEE 488.1-1987 [4], 2.12.3.18)

The state of the other IEEE 488.1 bus lines shall not change.

Copyright © 1992 IEEE All Rights Reserved 201

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

16.2.11 ENABLE REMOTE

The ENABLE REMOTE control sequence allows the application program to put the IEEE, 488.1 system or selected
devices into a remote state. This sequence is a companion to the ENABLE LOCAL CONTROLS control sequence.

16.2.11.1 Selected Device(s)

If the application program passes an address(es) with the request to send the ENABLE REMOTE control sequence, the
IEEE 488.1 driver shall

 IF REN is FALSE
 THEN wait until REN has been FALSE at least 100 ms
 set the IEEE 488.1 signal line REN TRUE
 execute a SEND SETUP
 with the supplied addresses

16.2.11.2 All Devices

If the application program does not pass an address with the request to send the REMOTE control sequence, the
controller shall

 IF REN is FALSE
 THEN wait until REN has been FALSE at least 100 s
 set the IEEE 488.1 signal line REN TRUE

The state of the other IEEE 488.1 bus lines shall not change. Note that merely making REN TRUE does not make a
device change states. The device must later be addressed to listen before it will enter one of the remote states (REMS
or RWLS).

16.2.12 SET RWLS

The SET RWLS control sequence allows the application program to disable the return to local (rtl) local message in
one or more devices. Selected devices are put into RWLS. Devices not currently addressed to listen are put into LWLS
by this control sequence.

One or more listen addresses are passed with a request to send the SET RWLS control sequence. The IEEE 488.1
driver shall

 execute an ENABLE REMOTE
 with the supplied listen addresses
 send the IEEE 488.1 local lockout message (LLO)

After completion of the SET RWLS control sequence, the DIO lines may be left in any state convenient for the
controller. The ATN line shall remain TRUE and the EOI line FALSE until another control sequence changes them.

16.2.13 SEND LLO

The SEND LLO control sequence allows the application program to put all the devices on the bus that are in LOCS
into LWLS. Any device that happened to be in LADS when this control sequence is executed will actually be put into
RWLS.

No addresses are passed with the request to perform a SEND LLO control sequence. The IEEE 488.1 driver shall

202 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 execute an ENABLE, REMOTE without addresses
 set ATN TRUE and EOI FALSE
 send the IEEE 488.1 local lockout message (LLO)

After completion of the SEND LLO control sequence, the DIO lines may be left in any state convenient for the
controller. The ATN line shall remain TRUE and the EOI line FALSE until another control sequence changes them.

16.2.14 PASS CONTROL

The PASS CONTROL control sequence allows the application program to give control of the system bus to a device.
A protocol is provided in 17.4 for transferring control.

The application program shall pass a talk address whenever it requests the controller to execute the PASS CONTROL
control sequence. The IEEE 488.1 driver shall

 execute a RECEIVE SETUP
 with the supplied talk address
 send the IEEE 488.1 take control message (TCT)
 set ATN FALSE

NOTE — Control is passed as a consequence of the IEEE 488.1 C function protocol. Handshaking the TCT causes the controller
that is passing control to enter CIDS. ATN going false then causes the receiving controller to enter CACS, become
active, and assert ATN.

16.2.15 PERFORM PARALLEL POLL

The PERFORM PARALLEL POLL control sequence allows the application program to perform a parallel poll on the
system bus. No addresses are passed with the request to perform a PERFORM PARALLEL POLL control sequence.
The application program shall, however, supply a storage location for the resulting parallel poll response (PPR)
message. When the application program requests that a PERFORM PARALLEL POLL control sequence be sent, the
IEEE 488.1 driver shall

 set ATN TRUE and EOI TRUE
 read and store the resulting PPR message in
 the supplied storage location
 send rpp local message FALSE

16.2.16 PARALLEL POLL CONFIGURE

The PARALLEL POLL CONFIGURE control sequence allows the application program to configure the parallel poll
response from a device. The device being configured must have IEEE 488.1 PP1 capability.

The application program shall pass an address, the DIO line to be driven, and the sense of the driven line with the
request for a PARALLEL POLL CONFIGURE control sequence. An appropriate parallel poll enable message is
constructed from the information about which line is to be driven and the sense of the driven line. The IEEE 488.1
driver shall

 execute a SEN SETUP
 with the supplied address
 send the IEEE 488.1 parallel poll configure message (PPC)
 send the IEEE 488.1 parallel poll enable message (PPE)

At the completion of the control sequence, ATN shall remain TRUE and EOI shall remain FALSE until changed by
another control sequence.

Copyright © 1992 IEEE All Rights Reserved 203

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

16.2.17 PARALLEL POLL UNCONFIGURE

The PARALLEL POLL UNCONFIGURE control sequence provides a means to keep all or selected devices from
responding to a parallel poll. At the completion of the control sequence, ATN shall remain TRUE and EOI shall remain
FALSE until changed by another control sequence.

16.2.17.1 Selected Device(s)

If the application program passes an address(es) with the request to send the PARALLEL POLL UNCONFIGURE
control sequence, the IEEE 488.1 driver shall

 execute a SEND SETUP
 with the supplied addresses
 send the IEEE 488.1 parallel poll configure message (PPC)
 send the IEEE 488.1 parallel poll disable message (PPD)
 with the lower four bits as zeros

16.2.17.2 All Devices

If the application program does not pass an address with the request to send the PARALLEL POLL UNCONFIGURE
control sequence, the IEEE 488.1 driver shall

 set ATN TRUE
 send the IEEE 488.1 parallel poll unconfigure message (PPU)

16.2.18 READ STATUS BYTE

The READ STATUS BYTE control sequence provides a means of reading the status byte from a specific device.

A single talk address shall be passed with the request. The controller shall provide a storage location for the status
byte. When the application program requests the controller to send the READ STATUS BYTE control sequence, the
IEEE 488.1 driver shall

 set ATN TRUE and EOI FALSE
 send the IEEE 488.1 unlisten message (UNL)
 send the controller's listen address
 send the IEEE 488.1 serial poll enable message (SPE)
 send the talk address
 set ATN FALSE handshake a data byte
 store the status byte and RQS message
 set ATN TRUE
 send the IEEE 488.1 serial poll disable message (SPD)
 send the IEEE 488.1 untalk message (UNT)

At the completion of the control sequence, ATN shall remain TRUE and EOI shall remain FALSE until changed by
another control sequence. At no time during the control sequence shall the controller set EOI TRUE. The controller
shall ignore the state of the EOI line while handshaking the data byte.

16.2.19 TRIGGER

The TRIGGER control sequence provides a way to send the IEEE 488.1 group execute trigger message to specific
devices or to all devices that are currently addressed to listen.

204 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

At the completion of the control sequence, ATN shall remain TRUE and EOI shall remain FALSE until changed by
another control sequence.

16.2.19.1 Selected Device(s)

If the application program passes an address(es) with the request to send the TRIGGER control sequence, the IEEE
488.1 driver shall

 execute a SEND SETUP
 with the supplied addresses
 send the IEEE 488.1 group execute trigger message (GET)

16.2.19.2 All Addressed Devices

If the application program does not pass an address with the request to send the TRIGGER control sequence, the IEEE
488.1 driver shall

 set ATN TRUE
 send the IEEE 488.1 group execute trigger message (GET)

NOTE — If a TRIGGER control sequence is executed and no devices are currently addressed to listen, no device will be triggered.
All devices on the bus will handshake the GET message, but only those that are currently addressed to listen and have
DT1 capability will process. the message.

17. Common Controller Protocols

This section describes protocols that are executed by the controller in a system. These protocols make use of required
capability and occasionally optional capability, which is described in this standard. The protocols are generally
designed to work in mixed systems consisting of both devices and non-IEEE 488.2 devices. This standard attempts to
point out special considerations that may have to be observed when operating in a system containing both devices and
non-IEEE 488.2 devices. Special considerations listed in this section should not be thought of as exhaustive.

Many of the protocols require that information be passed from or to the protocol. The mechanism for passing this
information is intentionally left unspecified. The particular technique used for passing information is left to the
controller designer's discretion.

Each protocol described in this section has a keyword associated with it. Controller manufacturers and designers are
encouraged to use this keyword in the controller’s documentation. Each protocol has an associated controller
algorithm. A controller shall implement a functionally equivalent routine for this algorithm when implementing the
protocol. Some of the constructs used in describing the algorithm may not be directly available in the controller. The
controller may also have constructs that are superior to the ones used in the description of the algorithm.

Table 17-1 lists all the common controller protocols defined in this standard.

Copyright © 1992 IEEE All Rights Reserved 205

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table 17-1—IEEE 488.2 Common Controller Protocols

17.1 Reset Protocol

17.1.1 Keyword

RESET.

17.1.2 Purpose

The reset protocol is used to initialize an entire system using three levels.

1) Bus initialization. The first level of reset places the system bus into an idle condition. All devices are
unaddressed and put into a serial poll idle state. The system controller becomes controller-in-charge.

2) Message Exchange initialization. The second level of reset ensures that a device can be sent a <PROGRAM
MESSAGE>. See 5.8.

3) Device initialization. The third level of reset initialize device-specific functions within a device. See 10.32

17.1.3 Information Requested by the Protocol

This protocol requires a list of the addresses of all the devices in the system.

17.1.4 Information Supplied by the Protocol

Nothing is returned by the protocol.

17.1.5 Controller Algorithm

A complete system reset is accomplished by doing all three levels of reset, in order, to every device.

1) Bus initialization. The controller shall execute a ENABLE REMOTE control sequence, see 16.2.11.2, with
no addresses. The controller shall then execute a SEND IFC control sequence, see 16.2.8.

2) Message Exchange initialization. The DEVICE CLEAR control sequence is executed without addresses.
This control sequence sends a universal Device Clear. See 16.2.9.2.

3) Device initialization. The controller shall execute a SEND control sequence with the supplied addresses and
the <TERMINATED PROGRAM MESSAGE>:

*RST<PMT>

Keyword Name Section Compliance

RESET Reset 17.1 Mandatory

FINDRQS Find Device Requesting Service 17.2 Optional

ALLSPOLL Serial Poll All Devices 17.3 Mandatory

PASSCTL Pass Control 17.4 Optional

REQUESTCTL Request Control 17.5 Optional

FINDLSTN Find Listeners 17.6 Optional

SETADD Set Address 17.7 Optional, but requires FINDLSTN

TESTSYS Self-Test System 17.8 Optional

206 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

17.1.6 Additional Requirements and Guidelines

Under different circumstances, each level of reset may be done individually or in combination with other levels. If
several levels are to be done together, Bus initialization should be performed before Message Exchange initialization,
and Message Exchange initialization should be performed before Device initialization. Specification of all possible
combinations is beyond the scope of this standard.

NOTE — Devices that do not comply with this standard may behave much differently from what is described in this protocol for
message exchange and device initialization. A bus initialization, IFC, should behave identically on all IEEE 488.1
devices. The behavior of non-IEEE 488.2 devices should be investigated before doing message exchange initialization
with them. A device initialization should never be done to a device that has not implemented the *RST command.

17.1.7 Standard Compliance

The RESET common controller protocol shall be supplied in all controllers.

17.2 Find Device Requesting Service Protocol

17.2.1 Keyword

FINDRQS.

17.2.2 Purpose

The purpose of the FINDRQS protocol is to find a device that is requesting service and to return its status byte.

17.2.3 Information Requested by the Protocol

A list containing the address of every device that can request service must be supplied in the order in which they
should be polled. A device with IEEE 488.1 SR1 capability must be at every address in the list.

The list may be explicitly passed to the protocol or may reside in a common area. This protocol need only know where
to find the address list.

17.2.4 Information Supplied by the Protocol

When the protocol has been completed successfully, the address of the first device in the list requesting service and its
status byte are returned. If not successful, an error message is returned.

17.2.5 Controller Algorithm

The protocol is initiated when SRQ is sensed TRUE. The application program may test the SRQ line and then invoke
the protocol, or the controller may automatically initiate the protocol when SRQ is true. The time from SRQ
becoming TRUE to the initiation of this protocol is intentionally unspecified.

BEGIN Find Device Requesting Service
 Initialize pointer to top of address list
 Assert ATN TRUE
 Send IEEE 488.1 UNL remote message
 Send controller’s LAG
 Send IEEE 488.1 SPE remote message
 REPEAT
 Send TAG of address pointed to
 Set ATN FALSE

Copyright © 1992 IEEE All Rights Reserved 207

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

 Handshake a DAB (STB & RQS)
 Advance pointer
 Set ATN TRUE
 UNTIL RQS is true or pointer is past the end of the address list
 Send IEEE 488.1 SPD remote message
 Send IEEE 488.1 UNT remote message
 IF RQS is TRUE
 THEN return last address sent
 return last status byte received
 ELSE return error
END Find Device Requesting Service

17.2.6 Additional Requirements and Guidelines

The ordering of the addresses in the list is important. The device that requires the most rapid servicing should have its
address at the top of the list.

The protocol cannot serial poll all possible IEEE 488.1 addresses for at least two reasons. First, serial polling an
address that does not have IEEE 488.1 SR1 capability may cause the handshake never to be completed. Second, the
time required to poll all the primary addresses and secondary addresses is prohibitively long even if timeouts are used.

Certain precautions must be, taken to ensure reliable performance of this protocol.

The service request interface function in IEEE 488.1 allows a device to change the SRQ remote message sent without
receiving any other remote messages. If a device changes its rsv message from TRUE to FALSE during the execution
of the protocol, an error may be generated. Devices are constrained not to remove the local rsv message until specific
remote messages are received. If the FINDRQS is initiated by an interrupt, multitasking operating systems need to be
told which task is to be passed the information obtained by this protocol.

At the completion of this protocol, all devices will be unaddressed. An error will occur in the application program if
devices are expected to still be addressed when control is returned from the protocol.

This protocol makes no provision for the case when the address of a device is included in the list that does not have
SR1 capability. If the device has T3, T4, T7, or T8 capability, the device may source handshake a data byte from its
normal output queue. DIO7 in this byte has no relation to RQS. If the device has SH0 or TO capability, or has nothing
to say when it is addressed to talk, the device will never source handshake a data byte, and this protocol will never
complete unless a timeout is implemented.

17.2.7 Standard Compliance

The FINDRQS common controller protocol may optionally be supplied in controllers.

17.3 Serial Poll All Devices Protocol

17.3.1 Keyword

ALLSPOLL.

17.3.2 Purpose

The purpose of the ALLSPOLL protocol is to read the status byte of every device with SR1 capability in the system.

208 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

17.3.3 Information Requested by the Protocol

A list containing the address of every device that has SR1 capability should be supplied to the protocol. The ordering
of the addresses in the list is not important. A device with IEEE 488.1 SR1 capability should be at every address in the
list. Storage locations for all the status bytes to be read must also be supplied.

The list may be explicitly passed to the protocol or may reside in a common area. This protocol must only know where
to find the list of addresses.

17.3.4 Information Supplied by the Protocol

When the protocol has been completed successfully, the status byte of every device is available. The status bytes shall
be stored in a way such that the application program can associate a particular status byte with an address.

17.3.5 Controller Algorithm

The protocol may be initiated at any time by the application program. The sense of SRQ when the protocol is invoked
is unimportant.

BEGIN Serial Poll All Devices
 Initialize pointer to top of address list
 Initialize status byte list
 Set ATN TRUE
 Send IEEE 488.1 UNL remote message
 Send controller's LAG
 Send IEEE 488.1 SPE remote message
 WHILE pointer is not past the end of the address list
 Send TAG of address pointed to
 Set ATN FALSE
 Handshake a DAB (STB & RQS)
 Store the STB & RQS in the status byte list
 Advance pointer
 Set ATN TRUE
 END WHILE
 Send IEEE 488.1 SPD remote message
 Send IEEE 488.1 UNT remote message
END Serial Poll All Devices

17.3.6 Additional Requirements and Guidelines

The protocol cannot serial poll all possible IEEE 488.1 addresses for at least two reasons. First, serial polling an
address that does not have IEEE 488.1 SR1 capability may cause the handshake never to be completed. Second, the
time required to poll all the primary addresses and secondary addresses is prohibitively long even if timeouts are used.

The service request interface function in IEEE 488.1 allows a device to send multiple STBs while in SPAS. This
protocol will only read the first one.

At the completion of this protocol, all devices will be unaddressed. An error will occur in the application program if
devices are expected to still be addressed when control is returned from the protocol.

This protocol makes no provision for the case when the address of a device is included in the list that does not have
SR1 capability. If the device has T3, T4, T7, or T8 capability, the device may source handshake a data byte from its
normal output queue. DI07, in this byte, has no relation to RQS. If the device has SR0 or T0 capability, or has nothing

Copyright © 1992 IEEE All Rights Reserved 209

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

to say when it is addressed to talk, the device will never source handshake a data byte, and this protocol will never
complete unless a timeout is implemented.

17.3.7 Standard Compliance

The ALLSPOLL common controller protocol shall be supplied in all controllers.

17.4 Pass Control Protocol

17.4.1 Keyword

PASSCTL.

17.4.2 Purpose

The purpose of this protocol is to pass control among the devices that have controller capability and need to be
controller-in-charge.

17.4.3 Information Requested by the Protocol

The protocol requires the address of a device that is currently requesting control of the bus. The protocol must also
have the address of the controller executing the protocol.

17.4.4 Information Supplied by the Protocol

The address of the device that was passed control is maintained by this protocol.

17.4.5 Controller Algorithm

BEGIN Pass Control
 IF using primary addressing only
 THEN
 Execute SEND control sequence with
 *PCB(SP)<NRI> as the <PROGRAM MESSAGE>
 and NL^END as the terminator.
 (* NR1 is the primary address of the
 controller-in-charge that is passing control. *)
 ELSE (* using primary and secondary addressing *)
 Execute SEND control sequence with
 *PCB(SP)<NRI>,<NRI> as the <PROGRAM MESSAGE>
 and NL^END as the terminator.
 (* first NR1 is the primary address and
 the second NR1 is the secondary address of the
 controller-in-charge that is passing control. *)
 Execute PASS CONTROL used as a control sequence with the talk address of
 device requesting control.
END Pass Control

When the device no longer requires control of the bus, it shall pass control using a PASS CONTROL control sequence
with the address it received with the *PCB command. See 10.21 and 16.2.14 for details of the *PCB command.

210 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

17.4.6 Additional Requirements and Guidelines

When sending its address using the *PCB command, a controller shall send integers in the range of 0 to 30 in the
primary address field and integers in the range of 0 to 30 in the secondary address field. If no secondary addressing is
to be used when passing control back, the second parameter shall be omitted.

The controller-in-charge is responsible for determining when a device is requesting control of the system bus. The
request control bit in the Standard Event Status Register may be enabled to cause an SRQ, so that the controller may
use SRQ to look for a device requesting control. Alternatively, the controller may periodically read the Standard
Event Status Register to determine if a device is requesting control.

The system controller may use a SEND IFC control sequence to regain control of the system bus. This method of
gaining control should only be used when an error condition is known to exist.

The current controller-in-charge, even if it is not the controller, may send the *PCB command to another potential
controller-in-charge. The current controller-in-charge may then pass control in a linked list structure.

Many possibilities for passing control among several controllers on the same bus exist. An attempt to identify all the
possible techniques of passing control in such a system is beyond the scope of this standard.

17.4.7 Standard Compliance

The PASSCTL common controller protocol may optionally be supplied in controllers.

17.5 Requesting Control

17.5.1 Keyword

REQUESTCTL.

17.5.2 Purpose

The purpose of this protocol is to allow a potential controller-in-charge to indicate the need for control to the current
controller-in-charge; to receive the control; and then to relinquish that control when it no longer requires control of the
system bus. The protocol may be included in devices that have controller capability.

17.5.3 Information Requested by the Protocol

None.

17.5.4 Information Supplied by the Protocol

None.

17.5.5 Controller Algorithm

The component (device or controller) requesting to be controller-in-charge asserts its Request Control bit TRUE in its
Standard Event Status Register to invoke the protocol.

The current controller-in-charge detects the request in the components Standard Event Status Register, either as a
result, of an SRQ indication by the component or by a polling routine, and executes the PASSCTL controller protocol
sequence. In this sequence, it sends its address (or the address of another component) to which the requesting
component is to later pass control. It then passes control to the requesting component.

Copyright © 1992 IEEE All Rights Reserved 211

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

The requesting component stores the address it received to which it is to pass control and then accepts control. It sends/
receives messages on the bus until it is ready to relinquish control. The component then executes a PASSCTL control
sequence to relinquish control to the component designated by the stored address.

The component that is to receive control participates in the PASSCTL control sequence and gains control of the bus.

17.5.6 Additional Requirements and Guidelines

A device that does not have controller capability shall not request control. A device with controller capability is
required, see 4.8, to have the capability to pass control.

The current controller-in-charge, even if it is not the controller, may send the *PCB command to another potential
controller-in-charge. The current controller-in-charge may then pass control in a linked list structure.

Many possibilities for passing control among several controllers on the same bus exist. Attempting to identify all the
possible techniques of passing control in such a system is beyond the scope of this standard

17.5.7 Standard Compliances

The REQUESTCTL common controller protocol may optionally be supplied in controllers.

17.6 Find Listeners Protocol

17.6.1 Keyword

FINDLSTN.

17.6.2 Purpose

The Find Listeners protocol identifies each IEEE 488.1 address at which at least one listener device resides.

17.6.3 Information Supplied to the Protocol

This protocol requires a list of primary addresses that are to be searched.

17.6.4 Information Supplied by the Protocol

This protocol returns a list of primary addresses, and, if extended addresses exist, primary/secondary address pairs at
which devices reside.

17.6.5 Controller Algorithm

BEGIN Find Listeners
 WHILE a primary address remains unsent in the address input list
 BEGIN
 Send the IEEE 488.1 Unlisten message (UNL)
 Send the LAG of the primary address
 Set ATN FALSE
 Wait 1.5 ms minimum
 IF NDAC is TRUE
 THEN
 Place primary address in output address list
 ELSE

212 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 BEGIN
 Send all secondary addresses
 Set ATN FALSE
 Wait 1.5 ms minimum
 IF NDAC is TRUE
 THEN
 BEGIN
 Send the IEEE 488.1 Unlisten message (UNL)
 Send the LAG of the primary address
 WHILE a secondary address has not been tested
 BEGIN
 Send an untested secondary address
 Set ATN FALSE
 Wait 1.5 ms minimum
 IF NDAC is TRUE
 THEN
 BEGIN
 Put extended address in output list
 Send the IEEE 488.1 Unlisten message (UNL)
 Send the LAG of the primary address
 END
 END
 END
 END
 END
 Send the IEEE 488.1 Unlisten message (UNL)
END Find Listeners

17.6.6 Additional Requirements and Guidelines

The 1.5 ms wait time may not be sufficient for some devices because the time to enter Acceptor Idle State (AIDS) of
the Acceptor Handshake Function is not specified in IEEE 488.1 .

This protocol will not work properly in systems containing talk and/or listen-only devices. For example, some bus
analyzers and bus extenders appear as listen-only devices, which will cause the protocol to indicate that every address
is occupied.

17.6.7 Standard Compliance

The FINDLSTN common controller protocol may be optionally supplied in a controller.

17.7 Set Address Protocol

17.7.1 Keyword

SETADD.

17.7.2 Purpose

The purpose of this protocol is to detect address-configurable devices (those implementing the *AAD common
command) and to assign these devices primary listen or extended listen addresses in accordance with the information
given by a user-supplied configuration table.

Copyright © 1992 IEEE All Rights Reserved 213

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

17.7.3 Information Requested by the Protocol

This protocol requires a list of addresses to be searched and a configuration table. The table shall contain a set of
entries in which each entry has a set of fields consisting of a manufacturer, model number, serial number, and the listen
address to be assigned. An entry is allowed to have empty fields.

17.7.4 Information Supplied by the Protocol

This protocol supplies an updated configuration table of those devices detected in the address space given in the input
address list and error status.

17.7.5 Controller Algorithm

NOTES:

1 — Four fields are searched as shown below. The first the fields are identical to the associated fields of the *IDN?. response. The
fourth is determined by the devices current address.

Manufacturer
Model Number
Serial Number
Current Primary or Extended Listen Address

2 — All data bytes are sent to the system bus with DIO8 FALSE, unless otherwise specified.

3 — The primary listen address assigned by this protocol is sent as a single data byte having a decimal value in the range of 32
through 62. The secondary address is sent as a data byte in the range of 96 through 126. A primary or extended address is
referred to as a listen address in this protocol.

17.7.5.1 Set Address Procedure

BEGIN Set-Address
 Mark all entries of configuration table as “unmatched”
 Mark each entry that has at least one nonempty field as “nonempty”
 IF any addresses in address list
 THEN
 Perform SEND SETUP using all addresses in input list
 Send SDC
 Perform SEND DATA BYTES using the *AAD <PROGRAM MESSAGE> and
 the NL^END <PROGRAM MESSAGE TERMINATOR>
 Wait 100 ms minimum
 Set device-search to TRUE
 WHILE device-search is TRUE
 BEGIN
 Set current-field to manufacturer
 Set data-byte to ASCII STX (* decimal value of 2 *)
 Perform SEND DATA BYTES using data-byte
 Perform Acquire-Field
 IF field-detected is TRUE
 THEN
 BEGIN
 WHILE field-detected is TRUE
 BEGIN
 CASE current-field OF
 BEGIN
 manufacturer: set current-field to model number

214 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 model number: set current-field to serial number
 serial number: set current-field to address
 address: set current-field to done
 OTHERWISE: set current-field to extra field
 END
 Perform Acquire-Field
 END
 IF current-field equals done
 THEN
 Perform Configure-Device
 ELSE
 BEGIN
 Generate error status indicating that the detected
 device has an improperly-formed identifier
 Perform Error-Exit
 END
 END
 ELSE
 Set device-search to FALSE
 END
 Send SDC
END Set-Address

17.7.5.2 Error Exit Procedure

BEGIN Error-Exit
 Send SDC
 Return error status and control to calling program
END Error-Exit

17.7.5.3 Acquire Field Procedure

BEGIN Acquire-Field
 Set field-data-byte-pointer to beginning of current-field
 Perform Acquire-Byte
 IF byte-detected is TRUE
 THEN
 BEGIN
 Set field-detected to TRUE
 WHILE byte-detected is TRUE
 Perform Acquire-Byte
 END
 ELSE
 Set field-detected to FALSE
END Acquire-Field

17.7.5.4 Acquire Byte Procedure

BEGIN Acquire-Byte
 Set data-byte to decimal 127
 Perform SEND DATA BYTES using data-byte
 Wait 1.5 ms minimum, or until NRFD is FALSE
 IF SRQ is TRUE
 THEN

Copyright © 1992 IEEE All Rights Reserved 215

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

 BEGIN
 Set byte-detected to TRUE
 Set initial data-byte to decimal 64
 Set delta to decimal 32
 WHILE delta is 1 or greater
 BEGIN
 Perform SEND DATA BYTES using data-byte
 Wait 1 ms minimum, or until NRFD is FALSE
 IF SRQ is TRUE
 THEN
 data-byte = data-byte - delta
 ELSE
 data-byte = data-byte + delta
 IF data-byte is GREATER THAN decimal 126 or
 data-byte is LESS THAN decimal 32
 THEN
 BEGIN
 Generate error status indicating that an out-of-range
 byte has been found or some other device has
 interfered with the protocol by asserting SRQ.
 Perform Error-Exit
 END
 delta = delta/2
 END
 Perform SEND DATA BYTES using data-byte
 Wait 1.5 ms minimum, or until NRFD is FALSE
 IF SRQ is TRUE
 THEN
 Decrease value of data-byte by one
 Perform SEND DATA BYTES using data-byte + decimal 128
 Store data-byte in field indicated by current-field at
 position indicated by field-data-byte-pointer
 Increment field-data-byte-pointer
 END
 ELSE
 Set byte-detected to FALSE
END Acquire-Byte

17.7.5.5 Configure-Device Procedure

BEGIN Configure-Device
 Mark all unmatched nonempty entries as untested
 Set best-matched-entry to no-entry
 Set equal-score to zero
 FOR each nonempty AND untested entry
 BEGIN
 Set equal-fields to zero
 Set entry-match to TRUE
 Set test-field to TRUE
 WHILE test-field is TRUE
 BEGIN
 IF a nonempty entry field has not been tested,
 excluding the address field, in table order
 THEN

216 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 IF the entry field is equal to OR is an initial
 substring of the corresponding acquired field,
 ignoring upper/lowercase distinction and leading
 and trailing white space in either string
 THEN
 Increment equal-fields by one
 ELSE
 BEGIN
 Set entry-match to FALSE
 Set test-field to FALSE
 END
 ELSE
 Set test-field to FALSE
 END
 IF entry-match is TRUE
 THEN
 IF equal-fields is GREATER THAN equal-score
 THEN
 BEGIN
 Set equal-score to equal-fields
 Set best-matched-entry to point to this entry
 END
 Mark entry as tested
 END
IF best-matched-entry is no-entry
 THEN
 BEGIN
 Find first entry in table with manufacturer, model number,
 and serial number fields all empty
 IF empty entry does not exist
 THEN
 BEGIN
 Generate error status indicating configuration table
 overflow
 Perform Error-Exit
 END
 ELSE
 BEGIN
 selected-entry is empty entry
 Mark this entry as added and matched
 END
 END
 ELSE
 BEGIN
 selected-entry is best-matched-entry
 Mark selected entry as matched
 END
Fill in manufacturer, model number, and serial number fields
 of selected entry with the corresponding acquired fields
IF the address field of the selected entry is empty
 THEN
 BEGIN
 Store acquired listen address in selected entry address field
 Perform SEND DATA BYTES using acquired listen address

Copyright © 1992 IEEE All Rights Reserved 217

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

 as a data byte(s)
 END
 ELSE
 IF entry address field length does NOT EQUAL acquired
 address length.
 THEN
 Generate error indicating that the table address
 is incompatible with the device address.
 Perform Error-Exit
 ELSE
 Perform SEND DATA BYTES using table entry address as
 a data byte(s)
END Configure-Device

17.7.6 Additional Requirements and Guidelines

The input configuration table supplies to the protocol controls the way in which addresses are assigned. If the user
supplies an empty table, the protocol returns a table that duplicates the IEEE 488.1 address configuration (within the
address space specified in the input address list) prior to the execution of the protocol. That is, after the protocol has
finished, the address configuration is unchanged. If all the table entry address fields are filled with addresses, exactly
those addresses will be assigned. The addresses may be in any order. If more devices are detected than the input table
can accommodate, then the controller shall indicate an error and leave the addresses of any additional devices
unchanged. The protocol becomes more selective in assigning addresses as more fields are specified. For example, a
manufacturer, model number, and address in a table entry will cause the protocol to assign that address to a device that
has that manufacturer and model number. An entry with all fields specified will cause the protocol to assign the
associated address to the one device that matches all the fields (excluding address), if the device exists.

If several devices in the system have the same manufacturer and model numbers, and also have a serial number of
ASCII character “0,” the protocol can still detect the devices if each device has been previously set to a different
address.

A higher level protocol in the controller may interact with the Set Address protocol. It may determine whether to
assign ascending addresses, assign addresses that duplicate some previous configuration, or leave the addresses
unchanged. It also may check the Set Address protocol output table for address conflicts. Two or more address-
configurable devices may be at the same address or an address-configurable device may share the same address with
a non-address-configurable device. The higher level protocol must decide how to resolve the conflicts and reinvoke the
Set Address protocol to change the address(es) as required.

17.7.7 Standard Compliance

The SETADD common controller protocol may optionally be supplied by controllers.

17.8 Test System Protocol

17.8.1 Keyword

TESTSYS

17.8.2 Purpose

The purpose of this protocol is to evaluate the readiness of a test system as can be determined from the results of the
self-test query, see 10.38.

218 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

17.8.3 Information Requested by the Protocol

The protocol requires a list of addresses representing the devices to be self-tested.

17.8.4 Information Supplied by the Protocol

A value of zero shall be returned if every device passes its self-test. Otherwise, a nonzero value shall be returned that
indicates the number of devices that have failed followed by the addresses of those devices and their associated *TST?
query responses.

17.8.5 Controller Algorithm

BEGIN Self-Test System
 Initialize FAILED DEVICES quantity to zero
 Execute SEND to all of the addresses, with *TST? as
 the <PROGRAM MESSAGE> and NL^END
 as the <PROGRAM MESSAGE TERMINATOR>.
 Send the IEEE 488.1 Unlisten command (UNL)
 FOR each address in the input list
 BEGIN
 Execute RECEIVE control sequence
 IF the RECEIVE response is nonzero
 THEN
 BEGIN
 Put address and response into output table
 Increment FAILED DEVICES quantity
 END
 END
 Place FAILED DEVICES quantity into output table
END Self-Test System

17.8.6 Additional Requirements and Guidelines

None.

17.8.7 Standard Compliance

The TESTSYS common controller protocol may optionally be supplied in a controller.

Copyright © 1992 IEEE All Rights Reserved 219

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Annex A Compound Headers — Usage and Examples
(Informative)

(These Annexes are not a part of IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common Commands for
Use With IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation, but are included for
information only.)

The use of compound headers is a relatively new concept. This appendix presents some possible techniques a device
designer may consider when implementing compound headers. Several possible levels of complexity and appro aches
for the device's parser are presented. Hypothetical command structures are illustrated to present some concepts device
designers may find useful when designing a command structure.

A.1 Compound Header Organization Example Using a Tree

Fig A-1 presents the command structure of a prototypical device that has implemented compound headers using a tree
structure. Headers were chosen with minimal mnemonic value to ensure generality.

Figure A-1—Compound Header Organization Example Using a Tree

The following are some of the notable aspects of this organization:

1) The paths through the tree are not all the same length.
2) The number of subnodes under a node is not constant.
3) Node names are reused.

Some legal program commands for this hypothetical device would be

 :AA:EE 5 <PMT>
 :BB:EE 7 <PMT>
 :AA:HH ON <PMT>
 :CC:KK:MM 52 <PMT>

NOTE — <PMT> is used to indicate a <PROGRAM MESSAGE TERMINATOR>.

A.1.1 Use of the Compound Header Rules

The rules specified in 7.6.1.5 allow several implementations for the way in which a parser may behave if the leading
colon on a <COMMAND PROGRAM HEADER> is omitted.

220 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The following command sequences illustrate the workings of the Section 7. rules for command-path generation:

1) :AA:EE 5;:BB:EE 7 <PMT> The leading colon in the second <PROGRAM MESSAGE UNIT> puts the
parser at the top of the command tree. Both paths are legal.

2) :AA:EE 5 <PMT> BB:EE 7 <PMT> The first <PROGRAM MESSAGE TERMINATOR> puts the parser at
the top of the command tree. A leading colon at the beginning of the next <PROGRAM MESSAGE UNIT>
is unnecessary because the first <PROGRAM MESSAGE UNIT> in a <PROGRAM MESSAGE> starts the
parser at the root.

3) :AA:EE 7; FF 5; GG 8; HH 10 <PMT> The entire path is not given in the second, third, and fourth
<PROGRAM MESSAGE UNIT> elements. The rules specify that a “:AA:” is assumed to be prefixed to the
following <PROGRAM MESSAGE UNIT> elements. This command is equivalent to
AA:EE 7;:AA:FF 5;:AA:GG 8;:AA:HH 10<PMT>

4) :CC:KK:MM 3; OO 26; NN:SS 187 <PMT> The second and third <PROGRAM MESSAGE UNIT>
elements are assumed to be prefixed by the implied prefix of the immediately previous command, “:CC:KK:.”
This command is equivalent to
:CC:KK:MM 3;:CC:KK:OO 26;:CC:KK:NN:SS 187 <PMT>

5) :AA:EE 5;*EAR 32<PMT> The processing of common commands is unaffected by any previous compound
commands.

6) :AA:EE 7;*ESR 32; FF 5; GG 8; HH 10 <PMT> The insertion of the common command has no effect on the
application of the prefixing rules. This command is equivalent to

:AA:EE 7;*ESR 32;:AA:FF 5;:AA:GG 8;:AA:HH 10<PMT>

The following examples would cause an error with a parser that followed only the basic rules of Section 7.:

1) :AA:EE 7; BB:EE 7<PMT> The node “BB” is not a sub-node of “AA.” This type of parser is unable to look
at any nodes closer to the root than node “AA.”

2) :CC:KK:MM 3; LL:PP 7 <PMT> The second <PROGRAM MESSAGE UNIT> would cause an error, since
node “LL” is not a subnode of “KK” The device attempts to execute the command :CC:KK:LL:PP 7, which
is illegal.

A.1.2 Enhanced Tree Walking Implementation

A parser can be constructed that performs additional tree walking. The example presented here illustrates a parser that
is able to “walk backwards up the tree.”

This type of parser would not generate errors on the following command sequences:

1) :CC:KK:MM 3; LL:PP 7 <PMT> The parser recognizes that node “LL” is not a subnode of node “KK” The
parser then looks at a level closer to the root to see if node “LL” is a subnode of node “KK”s parent.
This sequence would be interpreted the same as
:CC:KK:MM 3;:CC:LL:PP 7 <PMT>

2) :AA:EE 7; BB:EE 7 <PMT> The parser is able to recognize that nodes “AA” and “BB” have the same parent
node, the root.

3) :CC:KK:MM 3; DD:II 7 <PMT> The parser recognizes that node “DD” is not a subnode of nodes “KK” or
“CC.” Searching continues towards the root and the parser recognizes that nodes “CC” and “DD” have the
same parent, the root. The parser is able to search towards the root until it finds a match or reaches the root of
the tree.
The sequence would be interpreted the same as

:CC:KK:MM 3;:DD:II 7 <PMT>

The following examples would cause an error with both types of parsers:

1) :AA:II 7 <PMT> Node “II” is not a subnode of “AA.” A Command Error would be generated.

Copyright © 1992 IEEE All Rights Reserved 221

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

2) :CC:KK:MM 3; EE 7 <PMT> Node “EE” is not a subnode of node “KK” nor node “CC.” Backward
searching must stop at the root. A Command Error would be generated.

3) :CC:KK:MM 3 <PMT> LL:PP 7 <PMT> When the parser recognizes the first <PROGRAM MESSAGE
TERMINATOR>, it will start its next search from the top of the tree. Node “LL” is not a subnode of the root.
A Command Error would be generated.

A.2 Compound Header Organization Example Using a Graph

Command structures other than trees are also possible using compound headers. Fig A-2 presents a “command graph”
of another prototypical device with compound headers.

Some legal program commands for this device include

:AA:BB:CC 82<PMT>
:BB:AA:CC 82<PMT>

Another graph style structure is given in Fig A-3.

Some legal program commands for this device include

:AA:BB:DD 34<PMT>
:CC:DD 34<PMT>

The device designer has the freedom to deal with complicated command structures using a great deal of creativity. The
device designer should be aware that the semantics of such constructs may not be obvious to the user.

Figure A-2—Compound Header Organization Using a Graph — Example 1

222 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure A-3—Compound Header Organization Using a Graph — Example 2

A.3 Default Nodes

The command structure may be designed so that some nodes appear as defaults to the programmer. The device
designer shall avoid making defaults that cannot be uniquely resolved. Even though the specific example shown in Fig
A-4 is a tree structure, default nodes may be used in any valid structure as long as the requirement of unique resolution
is met.

The bracketed nodes, AA, CC, KK, and NN, are default nodes in the tree structure shown in Fig A-4. The commands
:AA:GG and :GG are equivalent. The longer path may provide more mnemonic value while the shorter path is easier
to enter in a program.

Default nodes appear at several levels in a sequence. The command :SS is equivalent to :CC:SS, :CC:KK:NN:SS,
:CC:KK:SS, :CC:NN:SS, :KK:NN:SS, :KK:SS, and :NN:SS.

NOTE — The device designer may make more than one node at a level a default node as long as any valid command will be
uniquely resolved. If node BB in Fig A-3 had also been made a default node, this restriction would be violated because
the valid command :II could be resolved as either :BB:II or :CC:II.

Figure A-4—Default Node Graph Example

Copyright © 1992 IEEE All Rights Reserved 223

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Annex B Device/Controller Synchronization Techniques
(Informative)

This appendix presents a series of examples that illustrate the intended use of the various synchronization capabilities
presented in Section 12.

This appendix contains no new device requirements. It presents examples and techniques that can be used in
application software to ensure correct synchronization of the controller with the device. These examples will assist the
device designer in understanding the functional capability provided by the device requirements presented in
Section 12.

B.1 Simple Device and Application Program Synchronization

The IEEE 488.2 status reporting capability provides a simple means to synchronize the operation of a device with an
application program. The synchronization is achieved by using one of the status reporting facilities to determine when
the required device operation is complete.

For example: The application program sends a query command to the device. The query command used will be one
that does not allow the device to return data until a desired operation is complete. The application program sends the
query command when it must wait for the device to respond. When the device is ready, it places the output message in
the Output Queue and sets the Message Available summary bit in the status byte. When the controller reads the
response from the query command, the application program can continue knowing that the device has completed the
desired operation.

Synchronization can also be achieved by using the “Operation Complete” message in the Standard Event Status
Register or by using the *WAI common command.

The following examples illustrate the use of each of the following synchronization tools:

1) The *OPC? Common Query Command
2) The *OPC Common Command
3) The *WAI Common Command
4) The MAV message in the Status Byte Register

B.2 Types of Devices

For the purposes of the examples in this appendix, devices will be of two types, stimulus-devices or response-devices,
as defined in 12.8.3.1 and 12.8.3.2.

B.2.1 Hypothetical Stimulus-Device

For the purposes of the examples in this section, a Signal Generator (SIGGEN) will be used as a hypothetical stimulus-
device. It will be assumed that the IEEE 488.1 address of the device is represented by the decimal number 19.

The device is assumed to meet all the requirements of this standard. The following list of device-specific commands
is assumed to exist in the device:

SETUP This <PROGRAM MESSAGE UNIT> is assumed to do all the setup programming that the
application programmer needs. In a real device , the setup might be a string of device-
defined commands.

FREQ <NRf> This <PROGRAM MESSAGE UNIT> causes the SlGGEN to generate the output
frequency that is specified in the NRf numeric format.

224 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

FREQ:INC This <PROGRAM MESSAGE UNIT> causes the SIGGEN to increment its output
frequency by a fixed amount.

NOTE — The device-specific headers used by this hypothetical device have been selected to make the following examples
understandable. They are not intended to set a precedent for real devices.

B.2.2 Hypothetical Response-Device

For the purposes of the following examples, a Digital Volt Meter (DVM) will be used as a hypothetical response-
device. It will be assumed that the IEEE 488.1 address of the device is represented by the decimal number 8.

The device is assumed to meet all the requirements of this standard. The following list of device-specific commands is
assumed to exist in the device :

SETUP This <PROGRAM MESSAGE UNIT> is assumed to do all the setup programming that the
application programmer needs. In a real device, the setup might be a string of device-
defined commands. SETUP is a Sequential Command.

MEAS This <PROGRAM MESSAGE UNIT> causes the DVM to initiate the measurement.

MEAS? This <PROGRAM MESSAGE UNIT> causes the DVM to initiate the measurement and
return a <RESPONSE MESSAGE> upon completion of the measurement operation.

LAST? This <PROGRAM MESSAGE UNIT> causes the DVM to return the results of the last
measurement without triggering a new one. The measurement will be returned as a single
<RESPONSE MESSAGE>.

MEAS:CONT? This <PROGRAM MESSAGE UNIT> causes the DVM to take a measurement and return
its results as a <RESPONSE MESSAGE UNIT>. After the controller reads the
measurement result, the DVM takes another measurement and provides its results in the
same manner. The process continues as long as the controller will accept the data. The
<RESPONSE MESSAGE UNIT> elements are separated by <RESPONSE DATA
SEPARATOR> elements, i.e., a comma. The <RESPONSE MESSAGE TERMINATOR>
is not sent.

TRIG:EXT This <PROGRAM MESSAGE UNIT> configures the device such that it will not perform
a measurement until an External Control Signal is stimulated. When the signal is
stimulated, the DVM will take a measurement.

*DDT #0 … This is an optional common command that is used to determine the function of a Group
Execute Trigger. It is defined in 10.4.

NOTE — The device-specific headers used by this hypothetical device have been selected to make the following examples
understandable. They are not intended to set a precedent for real devices .

B.2.3 Hypothetical Controller Language

For the purposes of the examples in this section, a hypothetical controller that has the following language will be used.
The keywords from Sections 16. and 17. have been used.

RESET a An Interface Clear (IFC) is performed. A Device Clear (DCL) is sent. The *RST common
command is sent to the device whose IEEE 488.1 address is represented by the number“a.”

SEND a; “ ” The number “a” will be used as the IEEE 488.1 address. Data enclosed in the quotes will be
sent to the device . The sent message will be automatically terminated using NL^END.

RECEIVE a; num The number “a” will be used as the IEEE 488.1 address. A <RESPONSE MESSAGE
UNIT> is read from the device . The numeric results are placed in the variable “num.”

Copyright © 1992 IEEE All Rights Reserved

225

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

TRIGGER al, a2, ... , an A Group Execute Trigger command (GET) will be sent to all devices whose IEEE 488.1
address is in the list of numbers “al” through “an.”

READ STATUS BYTE a; sts The number “a” will be used as the IEEE 488.1 address. The IEEE 488.2 status byte
is read from the device using a serial poll. The numeric result is placed in the variable
“sts.”

WAIT SRQ The controller waits for a SRQ on the IEEE 488.1 bus. During the waiting time, the
Application Programmer can use the controller to do other useful work. The details of how
the controller proceeds doing useful work while at the same time waiting for a SRQ will
not be shown.

REPEAT
BEGIN
END Statement between BEGIN and END will be repeated indefinitely.

IF (descriptive expression)
THEN If the descriptive expression is TRUE, statements after THEN will be processed. IF it is
ELSE FALSE, statements after ELSE will be processed. BEGIN and END may be used to group

statements after a “THEN” or an “ELSE.”

B.3 Synchronization With Stimulus-Devices

Stimulus-devices generally require device-defined setup commands to specify the desired output signal. The
application program must then determine that the stimulus is valid before it allows another component in the system
to utilize the signal. This synchronization can be done with the *OPC? query command. The “Operation Complete”
query permits a device to indicate when it has completed an operation that was initiated by a <PROGRAM MESSAGE
UNIT>.

A stimulus-device will indicate that it has completed a stimulus operation only when its outputs are valid.

For example, a stimulus-device is sent a programming message to change its output followed by an *OPC? query
command. The Operation Complete message is placed in the Output Queue when the device has recognized the
*OPC? query command and has also provided the output signal specified by the previous programming message.

B.3.1 Stimulus-Device Synchronization Using a <RESPONSE MESSAGE>

The following example illustrates the simplest method for synchronizing a stimulus-device with an application
program. In this example, the application program uses device-specific commands to specify the desired stimulus. The
*OPC? query command is used to provide a <RESPONSE MESSAGE> when the output signal is valid.

The principles of this example apply equally well to device functions that do not provide a stimulus, but do take time
and do not return a <RESPONSE MESSAGE> Note that, in the following example, the controller will not be able to
complete the read operation in STEP 5 until the device's output has changed to the new frequency This will cause the
IEEE 488.1 bus to be held-off while the controller is waiting for the device The read operation is used for
synchronization only; the numeric value read is ignored.

Stimulus Synchronization Using a <RESPONSE MESSAGE>

 STEP
 (1) RESET 19 Send IFC, DCL, *RST.
 (2) SEND 19; “*SRE 0” Turn off all Service Requests.
 (3) SEND 19; “SETUP”

 (4) SEND 19; “FREQ 10.0E3; *OPC?” Set Frequency to 10 kHz.

226 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

 (5) RECEIVE 19; num The number returned and stored in variable “num” is an ASCII character
“1,” discard it.

 ... proceed with application, knowing that the device's
 ...new output is valid.
 ...
 ...

B.3.2 Stimulus-Device Synchronization With Service Request

The following example illustrates how a stimulus-device can be synchronized with an application program by using
SRQ. In this example, the device is programmed to generate a new output signal and generate a service request when
the new stimulus signal is valid Upon receiving the service request, the controller programs other elements in the
system to make use of the stimulus signal.

The device designer will ensure that the SRQ will not be generated until the desired output signal is valid.

The controller can perform other useful work while the device is changing its output.

The application program sends the device-specific stimulus command “FREQ” followed by the *OPC? common query
command. The device sets the Message Available Summary bit in the status byte when the stimulus is valid. Note that
proper use of the Message Available Summary bit in the status byte eliminates the need for application program time
delays

Stimulus Synchronization With Service Request

STEP
 (1) RESET 19 Send IFC, DCL, *RST.
 (2) SEND 19; “SETUP”
 (3) SEND 19; “*SRE 16” Enable MAV Service Request.

 (4) SEND 19; “FREQ 10E3; *OPC?” Set Frequency to 10 kHz.

 (5) WAIT SRQ While waiting for Service Request controller can do other useful work.

 (6) READ STATUS BYTE 19; sts

 (7) IF (MAV message is NOT in sts)
 THEN unexpected SRQ!
 BEGIN
 ..process unexpected SRQ
 GO TO 5
 END

 (8) RECEIVE 19; num num is an ASCII character “1,” discard it.

 ... direct the system to do something useful
 ... with the stimulus signal.

B.3.3 Stimulus-Device Synchronization Without <PROGRAM MESSAGE> Elements

The following is an example of how a stimulus-device can be operated without requiring <PROGRAM MESSAGE>
elements after the initial setup.

Copyright © 1992 IEEE All Rights Reserved 227

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Assume that the device is the hypothetical Signal Generator (SIGGEN) defined above. Assume also that it can have its
output frequency incremented by use of the IEEE 488.1 Group Execute Trigger message (GET).

In this example, the output frequency of the SIGGEN is incremented each time a GET is received. The Message
Available bit (MAV) in the status byte is read via a serial poll so that the controller will know when the new frequency
is valid.

Each time a GET is sent to the SIGGEN, it is the same as sending the <PROGRAM MESSAGE> “FREQ:INC; OPC?.”
The new program message empties the Output Queue, which causes MAV to go FALSE. When the operation is
complete, the *OPC? response, an ASCII character “1,” will be placed into the Output Queue. Since the Output Queue
is not empty, MAV becomes TRUE, which in turn causes the device to make SRQ TRUE.

The new <PROGRAM MESSAGE> also causes the device to report a query error as the unread contents of the Output
Queue are discarded when a new <PROGRAM MESSAGE> is received. This error is ignored as the ESB bit is not
enabled by the *SRE 16 command.

Stimulus-Device Synchronization Without <PROGRAM MESSAGE> Elements

STEP
 (1) RESET 19 Send IFC, DCL, *RST.
 (2) SEND “*SRE 16” Enable (MAV) Service Request.

 (3) SEND 19; “SETUP; FREQ 1000” Initialize Frequency. Assume that SETUP includes setting the increment
size that will be used each time a GET is received

 (4) SEND 19; “*DDT #0 FREQ:INC;*OPC?” Causes device· to respond as though “FREQ:INC; OPC? NL^END”
had been received each time a GET is received.

 Device is now ready to Accept GET mes sages.

 (5) REPEAT

 (6) BEGIN

 (7) TRIGGER 19 Controller sends GET here. The SRQ will not occur until after the GET
is received and the SIGGEN has settled at the next frequency.

 (8) WAIT SRQ While waiting for Service Request, ·controller can do other useful work.

 (9) READ STATUS BYTE 19; sts

 (10) IF (MAV message is NOT in sts)
 (11) THEN Unexpected SRQ from another IEEE 488.1 device

 (12) BEGIN
 .. process unexpected SRQ!
 (13) GO TO 8
 (14) END

 ... direct the ·system to do something useful
 ... with the stimulus signal.

 (15) END

228 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The application performs the following in a loop:

STEP:

1) Controller sends GET to Signal Generator
2) Wait for Service Request
3) Perform a serial poll on the device

Since the GET message does the equivalent of a <PROGRAM MESSAGE> after a prior query command was
terminated, the Output Queue is discarded and, consequently, the MAV message goes FALSE. Discarding the Output
Queue causes a Query Error.

B.4 Synchronization With Response-Devices

Response-devices generally require device-defined setup commands and a query command followed by the controller
reading the resultant measurement The following examples illustrate this method

B.4.1 Simple Response-Device Synchronization

The following example illustrates the simplest method for synchronizing a response-device with an application
program. In this example, the application program requests a measurement and then waits at step 7 for the results. The
sequence is repeated indefinitely The read measurements are always valid because the device does not send data until
it has completed each measurement.

 Response-Device Synchronization Using a <RESPONSE MESSAGE>
STEP
 (1) RESET 8 Send IFC, DCL, *RST.
 (2) SEND 8; “*SRE 0” Turn off all Service Requests.
 (3) SEND 8; “SETUP”

 (4) REPEAT
 (5) BEGIN
 (6) SEND 8; “MEAS?”
 (7) RECEIVE 8; num
 (8) ... do something useful with the number...
 (9) END

B.4.2 Response-Device Synchronization With Service Request

The following example illustrates the Service Request method for synchronizing a response-device with an application
program. In this example, the controller requests a measurement and then waits for a service request to be generated.
Upon receiving the service request, the controller reads the results. The sequence is repeated indefinitely. The read
measurements are always valid because the device does not issue the service request until it has completed each
measurement. The controller can be used to perform other useful work while the device is performing the
measurement.

The application program sends the device a device-specific query to retrieve the measurement data. The device sets the
Message Available Summary bit in the status byte when the measurement data is available The Message Available
Summary bit in the status byte eliminates the need for application program time delays.

Copyright © 1992 IEEE All Rights Reserved 229

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Response-Device Synchronization With Service Request

STEP
 (1) RESET 8 Send IFC, DCL, *RST.
 (2) SEND 8; “*SRE 16” Enable (MAV) Service Request.
 (3) SEND 8; “SETUP”

 (4) REPEAT
 (5) BEGIN
 (6) SEND 8; “MEAS?”
 (7) WAIT SRQ While waiting, controller can do other useful work.

 .. program continues when SRQ is received

 (8) READ STATUS BYTE 8; sts
 (9) IF (MAV message is NOT in sts)
 (10) THEN unexpected SRQ!
 (11) BEGIN
 .. check other devices and
 .. process unexpected SRQ
 (12) GO TO 7
 (13) END
 (14) RECEIVE 8; num
 .. do something useful with the number...
 (15) END

B.4.3 Response-Device Synchronization Without <PROGRAM MESSAGE> Elements

The following example illustrates how a response-device can be made to take a series of measurements without
<PROGRAM MESSAGE> elements being used within the loop. The application allows for quick, low-overhead
reading of measurement results. In this example, the controller requests the device to return measurement results as a
continuous stream of <RESPONSE DATA> elements Read measurements are always valid because the device does
not send data until it has completed each measurement We assume that the controller returns comma (,) delimited
measurement values, one by one, to the application program.

Response-Device Synchronization Without <PROGRAM MESSAGE> Elements

STEP
 (1) RESET 8 Send IFC, DCL, *RST.
 (2) SEND 8; “*SRE 0” Turn off all Service Requests.
 (3) SEND 8; “SETUP; MEAS:CONT?”

 (4) REPEAT
 (5) BEGIN
 (6) RECEIVE 8; num (delimited by “,”)
 (7) .. do something useful with the number...
 (8) END

B.4.4 Device Communications While Waiting for a Measurement

The following example illustrates how a response-device can be programmed to take a measurement and then, while
the device is performing it, allow the device to send and receive messages. This capability can be useful when a
measurement is very time consuming and there is some useful information that the controller may wish to read from

230 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

the device while the measurement is in process. The example uses the *OPC common command to generate the
Operation Complete message in the Standard Event Status Register when the measurement completes. This example
also uses a service request to eliminate the need to poll the Standard Event Status Register with the *ESR? common
query command.

Device Communications While Waiting for a Measurement

STEP
 (1) RESET 8 Send IFC, DCL, *RST.
 (2) SEND 8; “SETUP”
 (3) SEND 8; “*SRE 32; *ESE 1” Enable (ESB) Service Request. Allow
 OPC bit to set ESB message.
 (4) SEND 8; “MEAS; *OPC” Begin a measurement.
 (5) WAIT SRQ
...
...Perform other tasks involving the device by
...sending <PROGRAM MESSAGE> elements or reading
...<RESPONSE MESSAGE> elements. Avoid any of the
...following: *CLS, *RST, *SRE, *ESE
...or any device-specific command
...that has a pending operation.

 (6) READ STATUS BYTE 8; sts
 (7) IF (RQS message is TRUE in sts)
 THEN
 BEGIN
 SEND 8; “LAST?”
 RECEIVE 8; num
 .. do something useful with the number..
 END
 ELSE GO TO “Unexpected Service Request Handling”

NOTE — The Standard Event Status Register does not have to be read to determine that the Operation Complete message is TRUE
because this is the only message that has been enabled to generate a SRQ. A *CLS or a query of the Standard Event
Status Register is required to remove the SRQ if the procedure is to be repeated.

B.4.5 Synchronization Using an External Control Signal

The synchronization of a response-device with an application program can be accomplished by use of an external-
control-signal. This method may be necessary when an asynchronous event must determine when a measurement is
taken. This synchronization can be accomplished using any of the three methods indicated in the previous examples.
The only changes required are to add device-specific setup commands that direct the device to take measurements only
when the external-control-signal is received. (See the “TRG:EXT” command for the hypothetical DVM.)

The measurements read are always valid because the device does not send data until it has completed each
measurement.

B.4.6 Example Involving Simultaneous Trigger of Two Response-Devices

The following example shows how two response-devices can be commanded to take a measurement at the same time.
The IEEE 488.1 Group Execute Trigger (GET) command is used to start the measurement. Both devices are assumed
to be the hypothetical Digital Volt Meter (DVM) defined earlier. The two devices have IEEE 488.1 addresses of 8 and
9. The application requires that a pair of voltages be sampled at the same time.

Copyright © 1992 IEEE All Rights Reserved 231

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

This example uses the *OPC? query command to verify that each device has emptied its Input Buffer and has executed
all prior commands. Since the device's Input Buffer is known to be empty, the application is in a state in which it can
immediately execute the Group Execute Trigger (GET) command Since the two devices are the same make and model,
this example assumes that the two measurements will be taken close together in time.

If the timing needs to be controlled any closer than can be achieved with a Group Execute Trigger, then the application
program will have to use means outside of IEEE 488.1 to accomplish the parallel trigger. This triggering could be done
using special external trigger hardware in the devices.

Simultaneous Trigger of Two Response-Devices

STEP
 (1) RESET 8 Initialize (DVM-1).
 (2) RESET 9 Initialize (DVM-2).

 (3) SEND 8; “*SRE 0; SETUP” Turn off Service Requests. Set up (DVM-1).
 (4) SEND 9; “*SRE 0; SETUP” Turn off Service Requests. Set up (DVM-2).

 (5) SEND 8; “*DDT #0 MEAS?” Set DVM-1 to perform a measurement upon receipt of a Group Execute
Trigger.

 (6) SEND 9; “*DDT #0 MEAS?” Set DVM-2 to perform a measurement upon receipt of a Group Execute
Trigger.

 (7) SEND 8; *OPC?
 (8) RECEIVE 8; num The number returned and stored in variable num is an ASCII “1,” discard

it. DVM-1's parser is idle.

 (9) SEND 9; “*OPC?”
 (10) RECEIVE 9; num The number returned and stored in variable num is an ASCII “1,” discard

it.
 DVM-2's parser is idle.

 ... At this point, the application program directs other
 ...components in the system to provide the signals
 ...that are to be measured.

 (11) TRIGGER 8,9; This command addresses DVM-1 and DVM-2 to listen and then sends the
Group Execute Trigger Message.

 (12) RECEIVE 8; num-1 When the measurement from DVM-1 completes, it is sent to the
controller and placed in variable num-1.

 (13) RECEIVE 9; num-2 When the measurement from DVM-2 completes, it is sent to the
controller and placed in variable num-2.

 ...
 ... do something useful with the read
 ...measurement data in num-1 and num-2.

NOTES:

1 — Even though the measurements were read by the controller at different times, they were completed at the same time.

232 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

2 — The *DDT commands would be unnecessary if the device had implemented the “DTI” subset and simply defined Group
Execute Trigger to cause the device to take a measurement. If the device has been built this way, the above example might be
changed in the following manner:

The application program would have placed the DVMs in a deferred trigger mode as part of the setup. This mode would keep
the DVM from taking a measurement until triggered by a GET. The DVM “MEAS?” query commands would not need to be
sent to each DVM at all. The GET would be sent to both devices causing parallel measurements. The resultant data would then
be read from each DVM.

B.5 Generalized Synchronization Independent of Queries

Synchronization with device operation can also be done with the *OPC command This command is identical to the
*OPC? query command except that the OPC bit is set in the Standard Event Status Register instead of generating the
ASCII “1” as an output message. The *OPC command can be used to synchronize either stimulus-devices or response-
devices. The *OPC bit of the event status register can be monitored to determine that all pending operations have been
completed.

Assume a hypothetical device that can perform three overlapped operations: OP1, OP2, and OP3. Each of these
commands are Overlapped Commands as defined in 12.2.

Synchronization Independent of Queries

STEP
 (1) RESET 19 Send IFC, DCL, *RST.

 (2) SEND 19; “SETUP”

 (3) SEND 19; “*SRE 32; *ESE 1; *CLS” Enable (ESB) Service Request. Allow OPC bit to set ESB message
CLEAR Standard Event Status Register

 (4) SEND 19; “OP1; OP2; OP3; *OPC” Begin a measurement.

 (5) WAIT SRQ

 ...
 ...Perform other tasks involving the device by
 ...sending <PROGRAM MESSAGE> elements or reading
 ... <RESPONSE MESSAGE> elements. Avoid any of the
 ...following: *CLS, *RST, *SRE, *ESE
 ...or any Overlapped Command
 ...

 (6) READ STATUS BYTE 19; sts

 (7) IF (RQS message is TRUE in sts)
 THEN
 BEGIN
 ...Device has completed all three
 ... commands: OP1, OP2, and OP3.
 ...
 ... Proceed with application.
 ...
 END
 ELSE GO TO “Unexpected Service Request Handling”

Copyright © 1992 IEEE All Rights Reserved 233

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

NOTE — The Standard Event Status Register does not have to be read to determine that the Operation Complete Message is TRUE
because this is the only message that has been enabled to generate a SRQ. However, before the program could be written
as a loop, the Standard Event Status Register would have to be cleared each time. Clearing can be done by sending a
*CLS command or by reading the Standard Event Status Register by using the *ESR? query command.

B.6 Device Synchronization Using the *WAI Command

The following example illustrates the simplest method for ensuring that device operations are performed in order.

In this example, the application program uses device-specific commands to start an operation in a response-device.
The *WAI command is used to force the device to complete this operation before allowing the device to perform a
measurement.

The device will be commanded to initiate an internal calibration operation with the following command:

“CALIBRATE”

For the purposes of this example, it is assumed that the “CALIBRATE” command is an Overlapped Command and
starts an operation as defined in 12.2. By using the *WAI command directly after “CALIBRATE,” this Overlapped
Command operates as though it was a Sequential Command. The application program then commands the device to
perform a measurement. Since the *WAI command was used, the application program knows that the measurement
was performed after the calibration operation had been completed.

 Device Synchronization Using the *WAI Command

STEP
 (1) RESET 8 Send IFC, DCL, *RST.
 (2) SEND 8; “*SRE 0” Turn off all Service Requests.

 (3) SEND 8; “SETUP”

 (4) SEND 8; “CALIBRATE; *WAI” Start Calibration, the *WAI command forces the ·device to complete the
 cali bration operation before the <PROGRAM MESSAGE UNIT> in
Step 5 is executed.

 (5) SEND 8; “MEAS?” The ·device· is commanded to take a measurement and return its results
as a <RESPONSE MESSAGE>.

 (6) RECEIVE 8; num The number returned and stored in variable num is the valid
measurement results.

NOTE — If the *WAI command had not been used, steps (5) and (6) would have been completed before the calibration operation
had finished. Therefore, the measurement would not have been performed at the correct time.

B.7 System Example Involving Both a Response-Device and a Stimulus-Device

The following example involves a system with four components:

1) An IEEE 488.2 stimulus-device (hypothetical SIGGEN)
2) An IEEE 488.2 response-device (hypothetical DVM)
3) An IEEE 488.2 system controller (hypothetical language)
4) A two-port device under test (DUT)

234 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

The system topology is illustrated in Fig B-1.

Figure B-1—System Topology for Response-Device and Stimulus-Device Example

The application calls for a series of measurements to be made where the SIGGEN stimulates the DUT with 1000
different frequencies. The DVM measures the DUT response at each frequency and sends the data to the controller .

The IEEE 488.1 address for the SIGGEN is 19. The address for the DVM is 8.

The following example is very simple and does not use any Service Requests.

Step

 (1) RESET 8 Send IFC, DCL, and *RST to initialize (DVM).

 (2) RESET 19 Send IFC, DCL, and *RST to initialize (SIGGEN).

 (3) SEND 8; “*SRE 0; SETUP” Turn off Service Requests.
Setup (DVM).

 (4) SEND 19; “*SRE 0; SETUP” Turn off Service Requests.
Setup (SIGGEN).

 (5) SEND 19; “FREQ 1000; *OPC?” Set SIGGEN Start Frequency.

 (6) REPEAT 1000 TIMES

 (7) BEGIN

 (8) RECEIVE 19; num Response is ASCII “1,” ignore.

 (9) WAIT for DUT response time

 (10) SEND 8; “MEAS?” Command (DVM) to measure.

 (11) RECEIVE 8; num Read from (DVM).

 ...
 ...do something useful with the read

 ...measurement data

 ...
 (12) SEND 19; “FREQ:INC; *OPC?” Increment SIGGEN Frequency.

 (13) END

NOTE — The WAIT statement in step (9) is to allow time For the DUT to respond to the stimulus signal that was applied. It is not
necessary to allow for timing in the SIGGEN or DVM. Their timing requirements are taken care of by correct
implementation of the synchronization features of this standard.

Copyright © 1992 IEEE All Rights Reserved 235

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Annex C Automatic System Configuration Example
(Informative)

The following example illustrates the interaction of the SETADD protocol and the *AAD common command in
detecting three address-configurable devices on a IEEE 488.1 bus. The identifiers for the three devices are shown in
Table C-1, along with the addresses that will be assigned. Each identifier consists of the four fields shown.

The protocol searches out each character (a data byte on the IEEE 488.1 bus) of each identifier from left to right
(manufacturer to current listen address) and will conduct the search for as many times as there are unique identifiers.

Table C-1—Device Identifiers/Assigned Addresses

C.1 Overall Flow of the Protocol

The devices are detected in the order shown in Fig C-1. Each identifier search is initiated with the STX character
(decimal value of 2).

Figure C-1—Overall Protocol Flow

Device #3 is detected first because the protocol chooses the identifier that has the lowest-valued character in the
position it is testing. In this example, the “M” appears first as the lowest-valued character. Its decimal value is 77,
whereas “N” has a value of 78. Device #2 is detected next because the protocol chooses a superset of a field over that
field itself. That is, the superset field “BB” is chosen over “B.” Finally, only Device #1 is left and is guaranteed to be
detected since it has exclusive control in guiding the controller to its identifier characters.

C.2 Description of the Identifier Searches

The three searches are described in more detail in Fig C-2. The participation profile of each device is given along with
the identifier characters that have been determined by the controller. <eof> indicates that an end-of-field condition has
occurred. The controller detects <eof> when SRQ is found to be FALSE after the byte with a value of 127 is sent. A
succession of two <eof>'s is a signal that the entire identifier has been searched and a device has been detected (only
one still participating).

|< Identifiers > |

 Device Manufacturer Model # Serial #
Current
Address

Assigned
Address

#1 N B 4 ! (1) ! (1)

#2 N BB 3 $ (4) % (5)

#3 M A 6 ! (1) # (3)

236 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure C-2—Identifier Searches

C.3 Description of the Character Search

Each character search is made up of a character search initiation character and a character search body, Fig C-3.

Copyright © 1992 IEEE All Rights Reserved 237

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure C-3—Character Search Elements

C.3.1 The Search Initiation Character

A participating device is required to assert SRQ TRUE if the controller places a data byte on the bus whose value is
greater than the identifier character it is using for comparison. Otherwise, the device is required to assert the SRQ line
passive FALSE. Since the maximum value that an identifier character can have is decimal 126, the Character Search
Initiation Character, decimal 127, will cause any device desiring a character to be searched to assert SRQ TRUE. This
action will cause the controller to execute the search body.

C.3.2 The Search Body

The search body consists of a seven-step successive-approximation binary search that starts with a data byte having a
decimal value of 64 (the “@” character) and a delta of value 32. If the data byte causes an SRQ indication, the
controller subtracts the delta from the data byte to form the next data byte. Otherwise, it adds the delta. It then halves
the delta. This process continues until the data byte calculated with the delta of I is sent. From the resulting SRQ
indication, the controller can determine the lowest-valued character active in the search. If the SRQ line is FALSE, the
character is equal to the last data byte sent. If it is TRUE, the character is one less than the last data byte sent. At this
point, the controller sends the character it has determined with the DI08 line asserted TRUE. (Previously, DIO8 was
FALSE.) This line asserted TRUE indicates to each participating device that if its character equals the data byte
(excluding the DIO8 value), then the device is to continue participating. Otherwise, the device is to cease participating
until the next STX character signals the beginning of a new identifier search. A graphical representation of this process
is shown in Fig C-4.

C.4 Detailed Description of the Search Process

C.4.1 Manufacturer Search for the Three Sample Identifiers

Fig C-5 illustrates the searching sequence for detecting the “M” character of Device #3. The SRQ lines of the active
devices interact to guide the controller to the lowest-valued character being presented.

238 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure C-4—Search Body

The lowest-valued character “M” (value 77) caused no SRQ TRUE indication with the delta of 1. Thus, it was sent
again with DIO8 TRUE. This action caused Devices #1 and #2 to cease participating in the protocol because their
characters did not equal “M.”

Immediately after the “M” is detected, the figure shows that an end-of-field (<eof>) was detected. That is, Device #3
did not assert SRQ TRUE upon receiving the next character search initiation character (decimal 127) in step 10. Had
Device #3 been at the end of its last field, it would again indicate an <eof> condition upon receiving the character
search initiation character to indicate a zero length field. The controller is then aware that a device has been detected.

C.4.2 Detection of a Superset Field

Fig C-6 illustrates the manner in which the protocol selects the superfield. The first “B” is detected in steps 1-9. Then,
the controller sends the next search initiation character in step (10). Device #1 responds by asserting SRQ passive
FALSE as an indication that <eof> has been reached. Device #1 then expects the controller to send another search
initiation character to start the search of its serial number field. However, the controller detected an active TRUE SRQ
assertion from Device #2 and starts the search body with a decimal 64 data byte. As a result of not seeing the second
decimal 127 data byte, Device #1 ceases participating.

Copyright © 1992 IEEE All Rights Reserved 239

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Figure C-5—Character Search Action for a Manufacturer Character and End-of-Field <eof>

240 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Figure C-6—Detection of the Superset Field BB

Copyright © 1992 IEEE All Rights Reserved 241

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Annex D Reset Guidelines
(Informative)

Several events can occur that cause a device function to enter a specific default state. Besides the common commands
*RST and *CLS, the interface messages dcas and IFC, or a power-on event, also may cause particular device functions
to become reset and enter a specific default state. The reset requirements, as specified throughout this standard, depend
both upon the class of a function and its hierarchical level. This appendix defines several device functional classes and
levels and then presents the overall reset strategy in a set of tables using this classification system. Tables D-1 through
D-4 summarize the specific reset actions of *RST, dcas, *CLS, and power-on respectively. Table D-5 summarizes all
reset actions.

This standard also specifies documentation requirements relating to resetting. See 4.9 for specific information on these
requirements.

D.1 Definitions

D.1.1 Device Functional Class Definitions

device settings: Device conditions that can be specified typically by program message units. Device settings do not
depend upon the progress of device processes. This means that they do not depend upon the successive states of these
processes. Device settings remain unchanged and available within the Device until otherwise specified. Device
settings affect (condition) the device (measuring) process rather than control these processes (control = specify action,
initiate process). In general, a value can be assigned to a device setting, such as on/off, 1 through 5, etc.

current device settings: Device settings that are currently in use. When a device is equipped with a nonvolatile
memory, they are the settings that are saved in such memory (see also memorized device settings).

memorized device settings: Device settings that are saved in some memory location that do not affect current device
processes (e.g., measuring process). However, memorized device settings need to be recalled to become the current
device settings.

protected settings: Device conditions that cannot be changed by remote program messages unless particular, specific
measures are taken. Protected settings remain unchanged during power-off (e.g., calibration data, user-defined data,
etc.).

device states: Device conditions that typically reflect the states of device processes (e.g., the execution phase of a
measuring process). They change with the progress of the device processes and are not explicitly specified by program
messages. A device state may be the result (directly or indirectly) of a (process) control command.

operation modes: Device conditions that have the same characteristics as current device settings, except that they
would not be saved in a nonvolatile memory location. For example, suppose a device is operating in a particular scan
mode. When the settings are saved and then recalled later, the scan mode appears to be switched off because it was not
saved. In that case, the scan mode is identified as an operation mode. Whenever the scan mode is not switched off after
a recall, it is identified as a device setting.

configuration settings: Settings that describe the hardware and software configuration and its characteristics.
Configuration settings typically are not changed during execution of an application program. Configuration settings
are mostly fixed, manually selectable by hard local controls (such as dip switches), or have restricted programmability.
They have a fixed value at power-on, depending mostly upon hard local controls.

power-on reset flags: Device flags to which a TRUE or FALSE value is assigned that determines the resetting of
device functions at power-on (e.g., power-on-status-clear flag, see 10.25).

macros: Predefined program message units than can be executed by the device upon receipt of the macro label.

242 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

device events.: Events that occur within or are detected by a device function. As distinct from conditions, which are
identified as states, the changes of device states are considered as events. Events are generally reported only once (e.g.,
process state transitions, error detected, local control occured, power-on detect, etc.).

D.1.2 Device Functional Layer Definitions

Device functions: Consists of device-status functions and device-specific functions.

device-status functions: Functions that are identified in the IEEE 488.2 Status Reporting Model, see Section 11., and
whose settings cannot be programmed by IEEE 488.2 common commands from the Status and Event group, see Table
10-2. Although the structure of IEEE 488.2 standard status functions is specified by this standard, they are part of layer
D because they are controlled by device-specific program messages.

device-specific functions: Device-dependent functions that are neither defined nor identified by IEEE Std 488.1-1987
[4] or this standard.

IEEE 488.2 common functions: Device functions whose settings can be programmed or whose state can be queried
by IEEE 488.2 defined common program messages. The IEEE 488.2 common functions are classified into groups that
are defined in Table 10-1. IEEE 488.2 common functions consist of IEEE 488.2 standard status functions and IEEE
488.2 common operation functions.

IEEE 488.2 standard status functions: Functions identified in the IEEE 488.2 Status Reporting Model, see Section
11., whose settings can be programmed by IEEE 488.2 common commands from the Status and Event groups, see
Table 10-1).

IEEE 488.2 common operation functions: IEEE 488.2 common functions that are neither IEEE 488.2 standard
status functions nor belong to the IEEE 488.2 message exchange interface functions.

IEEE 488.2 message exchange interface functions: These are the functions that belong to the Message Exchange
Interface, as defined in 6.1. The Input Buffer, Parser, Execution Control, Response Formatter, Output Queue, Trigger
Control, and Message Exchange Control are part of the message exchange interface functions.

IEEE 488.1 Interface Functions: These are the I/O Control functions as defined in 6.1.4.

D.2 *RST Reset Summary

The common command *RST sets several functions to a specific default state. See 10.32 and Table D-1.

Copyright © 1992 IEEE All Rights Reserved 243

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table D-1—*RST Reset Summary

D.3 dcas Reset Summary

The Device Clear Active state requirements are summarized in 5.8 and Table D-2.

D.4 *CLS Reset Summary

The *CLS common command is described in 10.3, Section 11., and Table D-3.

D.5 Power-On Reset Summary

Power-on requirements are described in 5.12 and Table D-4.

D.6 Reset Summary

This section contains a summary of the reset requirements for all device functions.

In addition to the classification and layering, reset requirements are mentioned for each group. In Table D-5, the
grouped functionality is not affected by *RST, *CLS, dcas, or pon when no requirements are mentioned.

DEVICE
FUNCTIONAL CLASS

DEVICE FUNCTIONAL LAYER

Device
Specific

Device
Status

Standard
Status

Common
Operation

Message
Exchange
Interface

IEEE
488.1
I.F.

Configuration settings - - -

Current device settings + - - +

Device states + - + -

Operation modes + -

Memorized device settings - -

Protected settings - -

Power-on reset flags - -

Macros - -

Device events - - -

+ function affected by *RST
- function not affected by *RST
<no entry> not applicable

244 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table D-2—dcas Reset Summary

Table D-3—*CLS Reset Summary

DEVICE
FUNCTIONAL CLASS

DEVICE FUNCTIONAL LAYER

Device
Specific

Device
Status

Standard
Status

Common
Operation

Message
Exchange
Interface

IEEE
488.1
I.F.

Configuration settings - - -

Current device settings + - - - -

Device states - - + +

Operation modes - +

Memorized device settings - -

Protected settings - -

Power-on reset flags - -

Macros - -

Device events - - -

+ function affected by dcas
- function not affected by dcas
<no entry> not applicable

DEVICE
FUNCTIONAL CLASS

DEVICE FUNCTIONAL LAYER

Device
Specific

Device
Status

Standard
Status

Common
Operation

Message
Exchange
Interface

IEEE
488.1
I.F.

Configuration settings - - -

Current device settings - - - -

Device states - + + -

Operation modes - -

Memorized device settings - -

Protected settings - -

Power-on reset flags - -

Macros - -

Device events + + -

+ function affected by *CLS
- function not affected by *CLS
<no entry> not applicable

Copyright © 1992 IEEE All Rights Reserved 245

FOR USE WITH IEEE Std 488.1-1987 IEEE Std 488.2-1992

Table D-4—Power-On Reset Summary

DEVICE
FUNCTIONAL CLASS

DEVICE FUNCTIONAL LAYER

Device
Specific

Device
Status

Standard
Status

Common
Operation

Message
Exchange
Interface

IEEE
488.1
I.F.

Configuration settings - - -

Current device settings +(1) [posc] posc x

Device states x x + +

Operation modes + +

Memorized device settings x x

Protected settings - -

Power-on reset flags - -

Macros plus; +

Device events x x +

+ function affected by CLS
- function not affected by CLS
<no entry> not applicable
x may or may not be affected by pon
posc controlled by posc-flag value (when flag is implemented
[posc] may or may not be controlled by posc-flag value (1) see 5.12

246 Copyright © 1992 IEEE All Rights Reserved

IEEE Std 488.2-1992 IEEE STANDARD CODES, FORMATS, PROTOCOLS, AND COMMANDS

Table D-5—Reset Summary for All Layers

DEVICE
FUNCTIONAL

CLASS

DEVICE FUNCTIONAL LAYER

Device
Specific

Device
Status

Standard
Status

Common
Operation

Message Exchange
Interface

IEEE
488.1 I.F.

Configuration
settings

*IDN? response
*OPT? response
Resource description

Bus
address

Current device
set- tings

*RST, pon
(1)

Device Event
Status Enable
Registers

[posc]

Service Request Enable
Reg. Std. Event Status
Enable Reg. [posc]

*DDT Trigger
commands Enable/
Disable macros
*PCB address

*RST, [pon]

Device states *RST,
[pon]

Device Queues
*CLS, [pon]

OCC and OCQ
functions

RST, dcas , *CLS, pon

Parser, Execution
Control, Response
Formatter, Input
Buffer, Output Queue
dcas, pon

Operation modes *RST,
pon

Automatic System
Config. (*AAD/*DLF
functions)

dcas, pon

Memorized device
settings [pon]

* SAV/*RCL registers

 [pon]

Protected settings *PUD data

Power-on reset
flags *PSC (posc) flag

Macros [pon] [pon], *PMC

Device events

Device Event
Registers Status
Bite bits 0-3 and 7)

*CLS

Standard Event Register
Status Byte (bits 4 and 5)
ist message

*CLS

rsv
message

pon,
*CLS

*RST functions to be set to initial value on receipt of *RST
*CLS functions to be cleared upon receipt of *CLS
dcas functions cleared or reset upon receipt of dcas message
pon functions to be set to initial value when power-on occurs
[pon] functions may or may not be set to initial value when power-on occurs
posc clearing or resetting of function at power-on depends upon the value of the power-on-status-clear flag, when implemented
[posc] clearing or resetting of function at power-on may or may not depend upon the value of the power-on-status-clear flag
(1) see 5.12

	Title page
	Foreword
	Participants
	CONTENTS
	1. Introduction
	1.1 Scope
	1.2 Objectives
	1.3 Notation

	2. References
	3. System Considerations
	3.1 Definitions
	3.2 System Message Traffic
	3.3 Functional Layers

	4. Device Compliance Criteria
	4.1 IEEE 488.1 Requirements
	4.2 Message Exchange Requirements
	4.3 Syntax Requirements
	4.4 Status Reporting Requirements
	4.5 Common Commands
	4.6 Synchronization Requirements
	4.7 System Configuration Capability
	4.8 Controller Capability
	4.9 Device Documentation Requirements

	5. Device Interface Function Requirements
	5.1 Handshake Requirements
	5.2 Address Requirements
	5.3 Talker Requirements
	5.4 Listener Requirements
	5.5 Service Request Requirements
	5.6 Remote/Local Requirements
	5.7 Parallel Poll Requirements
	5.8 Device Clear Requirements
	5.9 Device Trigger Requirements
	5.10 Controller Function Requirements
	5.11 Electrical Requirements
	5.12 Power-On Requirements

	6. Message Exchange Control Protocol
	6.1 Functional Elements
	6.2 Protocol Overview
	6.3 Message Exchange Control Operation
	6.4 Protocol Rules
	6.5 Protocol Exceptions

	7. Device Listening Formats
	7.1 Overview
	7.2 Notation
	7.3 Terminated Program Messages—Functional Syntax
	7.4 Separator Functional Elements
	7.5 <PROGRAM MESSAGE TERMINATOR>
	7.6 Program Header Functional Elements
	7.7 <PROGRAM DATA> Functional Elements

	8. Device Talking Elements
	8.1 Overview
	8.2 Notation
	8.3 Terminated Response Messages—Functional Syntax
	8.4 Separator Functional Elements
	8.5 <RESPONSE MESSAGE TERMINATOR>
	8.6 <RESPONSE HEADER>
	8.7 <RESPONSE DATA> Functional Elements

	9. Message Data Coding
	9.1 ASCII 7 Bit Codes
	9.2 Binary 8 Bit Integer Codes
	9.3 Binary Floating Point Code

	10. Common Commandsand Queries
	10.1 *AAD, Accept Address Command
	10.2 *CAL?, Calibration Query
	10.3 *CLS, Clear Status Command
	10.4 *DDT, Define Device Trigger Command
	10.5 *DDT?, Define Device Trigger Query
	10.6 *DLF, Disable Listener Function Command
	10.7 *DMC, Define Macro Command
	10.8 *EMC, Enable Macro Command
	10.9 *EMC?, Enable Macro Query
	10.10 *ESE, Standard Event Status Enable Command
	10.11 *ESE?, Standard Event Status Enable Query
	10.12 *ESR?, Standard Event Status Register Query
	10.13 *GMC?, Get Macro Contents Query
	10.14 *IDN?., Identification Query
	10.15 *IST?, Individual Status Query
	10.16 *LMC?, Learn Macro Query
	10.17 *LRN?, Learn Device Setup Query
	10.18 *OPC, Operation Complete Command
	10.19 *OPC?, Operation Complete Query
	10.20 *OPT?, Option Identification Query
	10.21 *PCB, Pass Control Back
	10.22 *PMC, Purge Macros Command
	10.23 *PRE, Parallel Poll Enable Register Command
	10.24 *PRE?, Parallel Poll Enable Register Query
	10.25 *PSC, Power-On Status Clear Command
	10.26 *PSC?, Power-On Status Clear Query
	10.27 *PUD, Protected User Data Command
	10.28 *PUD?, Protected User Data Query
	10.29 *RCL, Recall Command
	10.30 *RDT, Resource Description Transfer Command
	10.31 *RDT?, Resource Description Transfer Query
	10.32 *RST, Reset Command
	10.33 *SAV, Save Command
	10.34 *SRE, Service Request Enable Command
	10.35 *SRE?, Service Request Enable Query
	10.36 *STB?, Read Status Byte Query
	10.37 *TRG, Trigger Command
	10.38 *TST?, Self-Test Query
	10.39 *WAI, Wait-to-Continue Command
	10.40 *RMC, Remove Individual Macro Command
	10.41 *SDS, Save Default Device Settings Command

	11. Device Status Reporting
	11.1 Overview
	11.2 Status Byte Register
	11.3 Service Request Enabling
	11.4 Status Data Structures
	11.5 Standard Status Data Structure
	11.6 Parallel Poll Response Handling

	12. Device/Controller Synchronization Techniques
	12.1 Overview
	12.2 Sequential and Overlapped Commands
	12.3 Pending-Operation Flag
	12.4 No-Operation-Pending Flag
	12.5 Controller/Device Synchronization Commands
	12.6 Synchronization With External-Control-Signals
	12.7 Improper Usage of *OPC and *OPC?
	12.8 Design Considerations

	13. Automatic System Configuration
	13.1 Introduction
	13.2 Overview
	13.3 Generic Approach to Automatic System Configuration
	13.4 Detailed Requirements of the Auto Configuration Commands
	13.5 Additional Automatic Configuration Techniques
	13.6 Examples

	14. Controller Compliance Criteria
	14.1 IEEE 488.1 Requirements
	14.2 Message Exchange Requirements
	14.3 Protocols
	14.4 Functional Element Handling
	14.5 Controller Specification Requirements

	15. IEEE 488.2 Controller Requirements
	15.1 Controller Interface Function Requirements
	15.2 Additional IEEE 488.2 Controller Requirements
	15.3 IEEE 488.2 Controller Recommendations

	16. Controller Message Exchange Protocols
	16.1 Definitions
	16.2 Control Sequences

	17. Common Controller Protocols
	17.1 Reset Protocols
	17.2 Find Device Requesing Service Protocol
	17.3 Serial Poll All Devices Protocol
	17.4 Pass Control Protocol
	17.5 Requesting Control
	17.6 Find Listeners Protocol
	17.7 Set Address Protocol
	17.8 Test System Protocol

	Annex A—Compound Headers—Usage and Examples
	Annex B—Device/Controller Synchronization Techniques
	Annex C—Automatic System Configuration Example
	Annex D—Reset Guidelines

	blank box:
	1: 1
	Note the additional: Note the additional requirement for inactivating the Acceptor Handshake function on an ATN FALSE transition in
	Listen Idle State (LIDS: Listener Idle State (LIDS). See 5.1.2.
	blank:
	em: —
	>: >
	Default Suffix: Default Suffix
	Notes: Notes:
	1—: 1—The END message provides an unambiguous termination to an element that contains arbitrary ASCII characters
	2—: 2—
	ASCII: ASCII 7 Bit Code Chart (continued)
	Blank:
	with the supplied addresses: with the supplied addresses

