Tutorial Description of the L Pt
Hewlett-Packard Interface Bus

-

DESIGNED FOR

SYSTEMS

|
\.J
]
i

Sylvain Cote

|DESIGNED FOR|

SYSTEMS

Not just IEEE-488, u
but the hardware,

documentation

and support

that delivers the i
shortest path to a
measurement
system.

Copyright© Hewlett-Packard Company 1980

Rev. January 1983
Rev. November 1987

Table of Contents

Chapter 1 - INTRODUCTION

1.1 FOregroundcoiieiieeseeesosenecsnacsasssssssasssasssasssasnncns 1
1.2 BaCKOrOUNGiivviieuenseanncsecececsnasasasossscssaascsssscssnssonss 1
1.3 What comprises an interface system?cciieiiieeccnntccecaennes 4

Chapter 2 - THE IEEE 488.1 BUS

2.1 Key Specifications of IEEE 488.1ccitiiiieenneecncncnansanncsanns 7
2.2 Interface FUNCHONS ...cvveveeeeeerenrsennceasaccasceocanscnscnsansonsans 8
2.3 Interface Capabllitiescceveiieetercccoccecsnceccccrsassancscccacanes 8
24 IEEE 4BB. 1 BUS LINGScccivtteeecenccnsescacsoncsccesesssssssansnsncns 10
25 AdAresSINgcccvirececnevcascsssscacssscasssscssssscscsscccssannns 17
2.6 IEEE 488.1 Bus COMMANGAS .ccocvcevescsscsssascasescossssssasscnascncns 20
27 POIING +vvvviineeraseeceaccsonsascsssscesssessnssasssscnssssassacsanne 23
2.8 Electrical ASPectS ..c.vcvcrernnncccsacscanane tecsecsensssssercsassasanns 24
2.9 Mechanical Aspectsccoene sesesnaceasesecsescsstrtsasasasaocesnons 28
2-10 Revislons tO IEEE 488ccccevetrennnrcscsccccnscccossonccncnscenes 30
211 Designand Service AldSccciieercecnervercceccssccssacaccscscsccns 31
2-12 Optimizing Performanceccccveeeeeceacccascccscsscnsascsccsscacces 32
Chapter 3 - THE IEEE 488.2 Standard
B OVOIVIBW . iviivivrereesveseesccassacsscasssascssoncscsasssnasassassons 39
3.2 Required Interface Capablilitiesccceeieiireniaiinncnciaioreneeeees 41
3.3 Data Formats and Syntaxc.cceceeeseccsceccascasesssscscacccancsans 42
3.4 Device Message ProtoColScccereeecceeecenceccscssosscascssanccass 43
3.5 Common Command Setcccceeeeeccccccascecsoccscsssscsnsvsscnses 44
3.6 Status Reporting Modelcceeeeeeeecnccnccacnnssassscncncecncones 45
Chapter 4 - DATA CODING AND FORMATS
8.1 OVOIVIOW .oovvvneereeceneacesacscancsossssssssssssssassacsassssssscssons 47
4.2 Message Data CodINgcceevececeescareaccenssscacasancasssccscncancs 47
4.3 Data Formats teesssessceesnseescecctsensstassssassasesnssesnnans 50
Chapter § - SYNTAX
5.1 Overview :
5.2 Listening Syntaxcccceceeesceccccccsccoccncccsccnss eeesesasesssseens 63
5.3 Talking Syntax ceiceassscaveseacacstnostassantasstssans Ceeescscsseanas 68
Chapm 6 STATUS REPORTING T e L ERERTEE R
6.2 Status Byle Heglste;\q. e vieecieenas . eeeaes ; oy B

6.3, Enabllng Service Request
6. 4*Evegt Regls;ers e
6.5 Queuls™, L .41,

xdh A

6.6 Standard’ Event' Status‘Register Ceen eiavede o £ o

67 output Queue .Qv.‘l‘-.ﬁvl’....'l.’“",........’l..‘i.ﬁ..;.o.t.....'....l’.l‘l.;‘l..n i

6.8 Parallel Poll S R T TR 78
Chapter 7 - COMMON COMMANDS

7.1 OVBIVIBW . ivieinreennececcessssrsesrsscecsascesossacancasesasansnncassns 79

7.2 Command Descriptionsccevveerereencncearccssoasaasosscascssassns 79

Chapter 8 - SYSTEM INITIALIZATION

Bl OVBIVIBW .o iiiiiiii it iieneiiiieeeenenenoeeasnasnsssesocscsssannansnns 95
B.2 Reset ProtoColiiiitiiiiiitiiiieeeernossuacecassoansasassesnansans 95
B3 Reset CoOMMaANASciiiiitinniiineeeeeeeensansssassssnsosnsannases 96
B.4 POWEr-0ON RSBtottt iiiiiiieteteeneaeeancaassasosasnssasncncsns 96
Appendix A - MULTIPLIERS & SUFFIXESocviiiueruecnnnecocasnnacnnns 97
Appendix B - FLOATING POINT FORMATccciiieerencnacreccsonccnnnns 99
Appendix C - IEEE 488.1 CAPABILITY SUBSETCODESccvvvvireeennnns 105
Appendix D - GLOSSARY OF HP-IB RELATED TERMScccieieieeennn. 107
Appendix E - GENERAL HP-IB BIBLIOGRAPHYcciiveitenennecenenennns 113

List of Tables
Table Page

2-1. IEEE 488.1 Interface Capabilitiesccciiiirerniiereerecenneenanns 9
23 General Bus Management LineScciceievencrencscnsaseccscccennns 16
24 Talk and Listen Addressesccccviveiieeieesscaacssonscancasccsanans 18
31 Minimum |EEE 488.1 Capabilitiescciciiiiriiineieciecnecnenenns 42
41 ASCHl 7-bit Code Chartcciiiiiiiiiiiecesssnssnssaacnsoannaans 48
4-2 Talker and Listener FOrmatsccoieiuiinsenccacascsncacencasronsns 49
71 Common Command GroUPScccveeecrcerassoscacssassessoassssncsns 80
A-1 Multiplier Mnemonicsiiiiiriiiiiiietnncessssancascnsnosnnnns 97
A2 Suffix Elementsciviiiiiiiiiiiiiiireseeeresacecsoasasssanscnannes 98
List of lllustrations
Figure Page
11, Interface SyStemciiiiiiiierieeceencccacaasosensscscssssasanannes 4
- 1-2. Functional Layers Dlagramcccieeeiecrecrcscancocsnscscascasaesnces 5
21 IEEE 488.1 BuS LINGSccovvivennveccncnnccceansascassssascsssonnane 10
22 Byte Transfer Diagramccceceeeeccroncascansssesssassossscccncas 1"
23 Data Byte Transfer TImingccoiiiiiecrniiecinencasansencncannes eeso 13
24 Handshake TImINg SeqUeNCeccceiereecrccnncsncccccsssccasanns 14
25 Typical Address SWItChccviiiiiiererenteneceanssasecsannnnnnns 19
- 26_ .Converting Electrical Specifications_to_Actual Circuit 0000ceecnceees 26
2-7 HP-I1B Connector PIn ASSIgNMeNntsc.cccvevneecctcrcesccscansansananne 27
28 Cable Configurations seseeecessesasasesesestcsneeranans eeeens veee.29
29 -Limited Space Adapter 0. eii i iiiiiciennanans ceeeseanea oe0n30
2-10 Bus Implementation WOrksheetc.cceeeceeecnccacccnccnceceadansseeedl
2-11 Installation Planning Checklistcciiciiiieiiennnnecnccecoscnssnnes 38
31 Functional Layers Diagramccccoeeeeeecencecesccscsscnnns e 40
32 Standard Status Modelcciiieieiiiitrcttnncencensnasacssnesens 46
6-1 IEEE 488.2 Status Reporting Structure Overviewcccevvtveicnnncns 4!
6-2 Status Byte Registercccveiiiiireiiennnnens N 72
6-3 Service Request Enablingcoveeiiiiiiietnerscarenesaacnocssssnnses 73
6-4 IEEE Standard Event Status Registercoviiiiiiiiieniiiennrensnsanes 75
6-5 Parallel Poll Response Handling Data Structurecccviveiienenns 78
C-1 HP-IB Connector and Codescciiiiererorrnnsacecencennanannasns 103

ii

Chapter 1
Introduction

1.1 Foreground

This book is a tutorial description of the technical fundamentals of the Hewlett-
Packard Interface Bus (HP-IB). HP-IB is Hewlett-Packard's implementation of the
IEEE 488.1 Bus. The IEEE 488.1 Bus is identical to the original 488 bus.

This book also includes information on the IEEE 488.2 Standard used with HP-IB
(IEEE 488). IEEE 488.2 is a set of standard codes, formats, protocols, and commands
used with 488.1.

This book is intended to provide a thorough overview of HP-IB basics for the first-
time HP-1B system designer, programmer, or user. It should be useful to instrument,
computer, and system oriented engineers or technicians for either self-study,
technical reference, or as an index for further research. In short, it’s a broad tutorial
for learning about the Hewlett-Packard Interface Bus. Let's begin with a look at what
HP-IB is and where it came from.

1.2 Background

The Hewlett-Packard Interface Bus (HP-IB) is a carefully designed and defined
general purpose digital interface system and associated support which simplifies
the design and integration of instruments and computers into systems. It minimizes
electrical/mechanical hardware and functional compatibility problems between
devices, yet has sufficient flexibility to accommodate a wide and growing range
of products. As such, HP-IB is an interfacing concept, and a design technique. You
can take advantage of these concepts to define, design, build, and use your own
measurement system for maximum cost-effectiveness. It’s more than an interface.
It's a design philosophy.

1. Data exchanged among the interconnected apparatus is digital (as distinct
from analog). -

2. Fifteen devices may be interconnected to one continuous bus.

3. Total transmission path lengths over the interconnecting cables does not ex-
ceed 20 meters or 2 meters per device, whichever is less (when not using a
bus extension technique).

4. Data rate across the interface on any signal line does not exceed 1
Mbyte/second.

HP-IB evolved from an Internal Hewlstt-Packard need for a standardized instrumen-
tation interface system. The chronology of the HP-IB evolution is summarized here:

* Sept. '65 - HP began to look at how to standardize “the interfacing of all HP
future instruments.”

* March '72 - U.S. Advisory Committee (IEC) formed. The committee takes HP
proposal as starting point.

* Sept. '74 - IEC approves for ballot draft document (U.S. Proposal).
* April '75 - IEEE Publishes IEEE 488.

® Jan. 76 - ANSI Publishes MC1.1.

* Nov. '78 - IEEE Revises IEEE 488.

* June 80 - IEC 625-1 published.

* Dec. '81 - IEEE 728 published. (Recommended Codes & Formats)
* June '87 - IEEE revises 488 to become 488.1

* June '87 - IEEE 488.2 published. (Codes, Formats, Protocols, Commands)

Initial HP design efforts, beginning as early as 1965, formed the framework which
was later taken by the newly-formed International Electrotechnical Commission (IEC)
Technical Committee 66, Working Group 3 as a starting proposal. By September,
1974, a draft document of the HP proposal was approved for balloting by the IEC.
In April, 1975, the Institute of Electrical and Electronics Engineers (IEEE) published
their document |EEE 488-1975, Digital Interface for Programmable Instrumentation,
which contained the Electrical, Mechanical and Functional specifications of an
American Standard interfacing system. The identical MC1.1 was published by the
American National Standards Institute (ANSI) In"January 1976. A revision of the IEEE
488 occurred in Nov., 1978, primarily for editorial clarification and ‘addendum. In
June, 1980, the IEC published its version IEC 625-1, An Interface System for Pro- _
grammable Measuring Apparatus (Byte Serial Bit Parallel). :

Even though guidelines for preferred syntax and format conventions were not part
of the original IEEE 488 document, work continued in this area in order to Increase
the usability of different vendors’ equipment. This work resulted in IEEE 728-1982,
Recommended Practice for Code and Format Conventlons for IEEE Standard 488.
This document contains a series of recommendations (guidelines) rather than be-
ing a standard (in absolute terms). Also, an IEC document, IEC 625-2, dealt with
the same subject matter but its content is not identical to IEEE 728.

2

After nearly 10 years of experience designing and using IEEE 488 and 728, many
users realized the need to expand the definition of the standard. Many companies,
including Hewlett-Packard, had defined internal standards for data, protocols, and
device commands.

Bullding on the experience of these companies, the IEEE organized a committee
to draft a supplemental standard that became the |IEEE 488.2 Codes, Formats, Pro-
tocols and Common Commands For use with IEEE 488.1-1987. |EEE 488 was renamed
to IEEE 488.1. IEEE 488.2 does not replace 488.1. Devices can still conform only
to 488.1. IEEE 488.2 builds upon 488.1, defining a common set of data codes and
formats, a bus communication protocol, and a set of commonly needed commands.
This new standard replaces the IEEE 728 Recommended Codes. Several chapters
of this book describe this new standard.

STATUS TODAY

There are five major standards defining byte serial bit parallel interface systems
for instrumented systems.

1. IEEE 488.1-1987 (Orginal 488 Standard)

2. ANSI MC1.1 (Identical)

3. IEC 625-1 (Identical except for connector)

4. B.S. 6146 (British Standard Identical to IEC 625-1)

5. IEEE 488.2-1987 (Codes, Formats, Protocols, Common Commands)

The IEEE 488 is most widely used internationally and is implemented in several brand
versions:

o Hewlett-Packard Interface Bus (HP-IB) -
.. Genétal Eu_rpose Interface BUé?.“f@E,lB__):.,

o IEEE BUS*
« ASCII BUS

e PLUS BUS

The IEEE 488 standard has been published in 9 languages and has been used by
more than 250 manufactures in more than 14 countries to design thousands of pro-
ducts. It is one of the most carefully defined, consistent, and highly used interface
systems In the world. Let's pause to take a look at what makes it such a useful
interface.

NN

(MECHANICAL 6 ELECTRICAL)

FUNCTIONAL OPERATIONAL

Figure 1.1 Interface System
1.3 What comprises an interface system?

An interface system can be totally characterized in terms of the Functional, Elec-
trical, Mechanical, and Operational specifications of the interface.

e FUNCTIONAL - Total set of allowable interface functions and their logic
descriptions (Application independent)

e ELECTRICAL - Logic levels, protocol, timing, termination, etc. (Application in-
dependent)

e MECHANICAL - Connector, Mounting, Cable assembly, etc. (Application in-
dependent)

o OPERATIONAL - Total set of allowable device functions and their logic descrip-
tions (Application dependent)

—° ~~ “The IEEE 488, ANS| MC1.1; and1EC-625-1-standards-address-three of these areas.
but not the Operational area. This gives instrument and computer designers the
flexibility to optimize their products to the intended applications.

However, the IEEE developed IEEE Std. 488.2-1987, which provides a set of codes,
formats, protocols and common commands for use with 488.1 to provide a founda-
tion for the operational area.

The operational aspect of the interface can be depicted as various levels or layers
of operation. Figure 1.2 shows these levels graphically. Chapter 3 begins the descrip-
tion of IEEE 488.2. it further describes the operational aspects of the interface.

BUS

tevstcdimsrrcnsenssssmrsssnaes g essssmrsesserriensmmancnas

(Device Dependent Messages >

(Common Commands and Queries >

< Syntax and Data Structures >

<" Remote IF Messages >

D:C:B:A;: A:B:C:D
~g— System __p, ~g—_ System __g,
t x t y
Mfrs. ‘1ECE-488. 2. 1EEE-488. 1 ‘IEEE-488.2 Mfrs.
Specs. : Standard : Standard : Standard : Specs.
WHERE :

Layer D represents Device Functions

Layer C represents Common System Functions

Layer B represents Message Communication Functions
Layer A represents Interface Functions (IF)

Figure 1.2 Functional Layers Diagram

Comparing the standards

The IEEE 483 and ANSI MC1.1 are identical in Electrical, Mechanical and Functional
characteristic areas.

The IEC 625-1 differs from the others in the mechanical area. This standard specifies
- - .2.25 pin D type connector rather.than the_24-pin Ribbon:type_specified by-the -

American Standards (Pin 25 is an extra signal return line). Unfortunately, the 25 pin
connector is used extensively as part of the Electronic Industry Association (EIA) »
Recommended Standard RS-232-C Interface Between Data Terminal Equipment and
Data Communications Equipment Employing Serial Binary Data Interchange for data
communications. Signal lines utilizing this serial scheme employ voltage levels up

to = 25V with 0.5 ampere short-circuit current capabilities. Connecting an RS-232-C
circuit to an IEC 625-1 instrument can cause circuit damage.

CAUTION

Component damage, due to Incompatibls voltage levels, Is
possible if data communication and instrumentation inter-
faces are inadvertently interconnected (IEC 625-1 compati-
ble device to an RS-232-C compatible interface). Any
mechanical specification difference between the IEEE
488/ANSI MC1.1 and IEC 625-1 standards may. be accom-
modated by a simple (physical) adaptor assembly when pro-
ducts implemented from the two standards are
Intasrconnected.

In Europe about 90% of the bus-compatible products presently prefer or offer the
IEEE 488/ANSI MC1.1 connector. Many of the manufacturers offer the option of either
type and simple adaptors are available.

Further information on these standards can be obtained from sources described
in the Bibliography in Appendix E.

Chapter 2
The IEEE 488.1 Bus

The ANSI/IEEE 488.1 Standard Digital Interface for Programmable Instrumentation

provides an electrical and mechanical system for interconnecting electronic
measurement devices. Hewlett-Packard calls it's implementation of this standard

the Hewlett-Packard Interface Bus (HP-1B). HP-IB is totally consistent with the elec-
trical, mechanical and functional specifications of the ANSI/IEEE 488.1 standard.
Let's take a look at the IEEE 488.1 standard.

2.1 Key Specifications of IEEE 488.1

The key specifications of ANSI/IEEE 488.1 are summarized here:

¢ INTERCONNECTED DEVICES - Up to 15 maximum on one contiguous bus.

o INTERCONNECTION PATH - Star or linear (or both) bus network up to 20 meters
total transmission path length.

¢ SIGNAL LINES - Sixteen active lines; 8 data lines and 8 interface and com-
munication management lines.

¢ MESSAGE TRANSFER SCHEME - Byte-serial, bit-parallel, asynchronous data
transfer using interlocking three-wire handshake technique.

e MAXIMUM DATA RATE - One megabyte per second over limited distances;
250 to 500 kilobytes per second typical maximum over a full transmission path.
The actual data rate is determined by the devices in communication at the time.

e ADDRESS CAPABILITY - Primary addresses, 31 Talk and 31 Listen; secondary
(2-byte) addresses, 961 Talk and 961 Listen. There can be a maximum of 1 Talker
and up to 14 Listeners at a time on a single bus.

¢ PASS CONTROL - In systems with more than one controller, only one can be
--active-at a-time. The currently-active controllercan pass control-to one of-the-
others. A non-active controller may request control. Only the controller
designated as system controller can demand control.

e INTERFACE CIRCUITS - Driver and Recelver circuits are TTL and Schottky com-
patible.

2.2 Interface Functions

The operation of the bus can be compared tc the operation of 2 comm!tee Acom.
mittee chalrman controls who talks and who listens. in the same way, 1EEE 488.1
has one device that contro/s, deciding who taiks and who listens. Every IEEE 488.1
device must be capable of performing one or more of the following interface func-

tions (roles):

¢ LISTENER - A device capable of receiving data over the interface when ad-
dressed. Examples of this type of devices are: printers, display devices, pro-
grammable power supplies, programmable signal sources and the like. There
can be up to 14 active listeners simultaneously on the interface.

* TALKER - A device capable of transmitting data over the interface when ad-
dressed. Examples of this type of devices are: tape readers, voltmeters that
are outputting data, counters that are outputting data, and so on. There can
be only one active talker on the interface at a time.

¢ CONTROLLER - A device capable of specifying the talker and listeners for an
information transfer (including itself). A computer with an appropriate HP-1B
card is an example of this type of device. There can be only one active con-
troller on the interface at a time. In multiple controller systems only one can
be the System Controller (Master).

2.3 Interface Capabilities

Interface functions are pre-defined capabilities which can be designed into an IEEE
488.1 device. The designer is free to choose which are implemented in a device
depending on the particular device’s intended application. The Interface Capabilities
are summarized in Table 2.1. One or two letter codes, followed by a number indicate
the capability that is implemented from the available subsets.

Capability 1.D. (Not Mandatory)

The ANSI/IEEE 488.1 recommends that each device be marked near its connector
" with the interface capability codes for thé functions It supports. ‘

For example, a device with the basic talker function, the ability to send status bytes, A
the basic listener function, a listen only mode switch, service request capability,
full remote local capability without local lockout, local configuration of the parallel
poll capability, complete device clear capability, no capability for device trigger,
and no controller capability would be identified with these codes:

SH1 AH1 T6 L3 SR1 RL2 PP2 DC1 DTO CO Ei

E1 identifies open collector drivers and E2 would identify tristate drivers in the data
mode. Appendix C gives an in-depth description of these capability codes.

8

Table 2.1 IEEE 488.1 Interface Capabliities

IEEE 488.1 Function | Code Comments

Talker or T,TE | Capability required for a device to be a “talker.”

Extended Talker

Listener or L,LE | Capability required for a device to be a “listener.”

Extended Listener

Source Handshake SH | This provides a device with the capability to properly
transfer a multiline message.

Acceptor Handshake AH | This provides a device with the capability to guarantee
proper reception of multiline messages.

Remote/Local RL | Provides capability to select between two sources of
input information. Local corresponds to front panel
controls and remote to the input information from the
bus.

Service Request SR | This capability permits a device to asynchronously re-
quest service from the controller.

Paraliel Poll PP | Provides capability for a device to uniquely identify
itself if it requires service when the controller is re-
questing a response.

This capability differs from service request in that it
requires a commitment of the controller to conduct
a parallel poll.

Device Clear DC | This function allows a device to be initialized to a
cleared state. The effect of this command is device
dependent.

Device Trigger DT | This function permits a device to have its operation
initiated over the Bus. The result of this triggering Is
device dependent.

Controller C | This function permits a device to send addresses,
universal commands, and addressed commands to
other devices on the bus.

i | It.may also_include the ability to conduct polllng to
determine devices requiring service.

Drivers . - E - | This code describes the type of electrical drivers used

in a device..

2.4 |EEE 488.1 Bus Lines

The IEEE 488.1 interface system utiiizes a party-iine bus structure (devices share
signal lines) to which a maximum of fifteen devices may be connected in one con-

tiguous bus. Sixteen signal lines and eight ground lines are used to interconnect
devicesina nnrallpl arr:nnamant and maintain an orderly flow o of device and intar-

LR IIIBIIIEG 1l AV UI\JUlI TWw @il 111
face related information.

The |EEE 488.1 interface bus signal lines all use a low-true logic convention with
positive polarity. They can be grouped into three sets:

¢ Data Lines
e Byte Transfer Lines

e General Bus Management Lines

HEWLETT-PACKARD INTERFACE BUS m

DEVICE A DEVICE B DEVICE C DEVICE D
ABLE TO TALK ABLE TO TALK ABLE TO LISTEN ABLE TO TALK
LISTEN aND AND LISTEN ONLY ONLY
RO ¢ digital [¢ 1
e. Q. digits {e.g. =i !

i

GENERAL BUS HANDSHAKE DATA BuUS
MANAGEMENT LINES

Figure 2.1 |EEE 488.1 Bus Lines

24.

-h

The Data Lines are an 8-bit bi-directlongl bus used to transfer information from device
to device on the interface. The data is transfered using any commonly understood
BCD, alphanumeric, or binary code. Normally this is the 7-bit ASCIlI (American
Standard Code for information Interchange) code. The international equivalent to -
this is the 7-blt ISO (International Standards Organization) code. However, other
techniques may be utilized to encode information on these 8 lines. Information

transferred includes interface commands, addresses, and device dependent data.

The transfer of the three byte sequence of the ASCII characters, “BUS" would oc-

cur over the Data Lines as shown in Figure 2.2. Hence the Bit Parallel, Byte Serial
description.

10

BYTE SERIAL

B~ U ~ S
o) (e — G 1,
D102 4 / v N
o) (o To— Y \ 4, /
o
-
‘é" Py (oY p— Y 4
&
o
+ DIOS L/ e \ 1
m
) (e T o— v 4
D107 4, 4,
o) (o — 4 Y
ASCII/ISO B U S
DECIMAL 66 85 83
OCTAL 102 125 123
HEXADECIMAL 42 55 53

Figure 2.2 Byte Transfer Diagram
24.2 Byte Transfer. LInes

The Byte Transfer Lines are three lines used to coordlnate the transfer of data over-
the data bus from a source (an addressed talker or a controller) to an acceptor (an

addressed listener or all devices receiving interface commands) to ensure data

transfer integrity. This technique has the following characteristics:

1. Data transfer is asynchronous. The transfer rate automatically adjusts to the
speed of the sender and receiver(s). The bus runs at the rate of the slowest
participating device. Some of the devices on the bus may not be participating
in the data transfer. They would not affect the the handshake.

11

2. More than one device can accept data at the same time.
3. Every byte transferred undergoes the handshake.

4. When universal commands are sent over the data bus, the slowest device on

the bus will determine the transfer rate during the transfer of that command.

In this case, ALL devices always handshake the bytes.

5. The actual transfer rate of the data may also affected by the time it takes the
instrument to take the reading and the time necessary for the controller to
input the Information.

IEEE 488.1 signal lines use a low-true logic convention to implement the wired-OR
convention of the NRFD and NDAC lines, to provide active true-state assertion, and
to reduce noise susceptibility in the true state.

The three handshake lines are:

DAV — Data Valid Used to indicate the condition of the information on the Data (DIO)
lines. Driven TRUE (low) by the source when data is settled and valid and NRFD
FALSE (high) has been sensed.

NRFD — Not Ready For Data Used to indicate the condition of readiness of device(s)
to accept data. An acceptor sets NRFD TRUE (iow) to indicate it is not ready
to accept data. It sets this line FALSE (high) when it is ready to accept data.
However, the NRFD line to the source will not go high until all participating
acceptors are ready to accept data.

NDAC — Not Data Accepted Used to indicate the condition of acceptance of data
by device(s). The acceptor sets NDAC TRUE (low) to indicate it has not accepted
data. When it accepts data from the DIO lines, it will set its NDAC line FALSE

(high). However, the NDAC line to the source will not go high until the
last/slowest participating-acceptor accepts the data.

ST Er sV ST e it w&s

Figure 2.3 illustrates the handshake timing sequence.

The handshake sequence is depicted in flowchart form in Figure 2.4.

12

5
o
S
2
o

Dlol—a eecssossarrssersne 'DATA BYTE ';:x;':x o I 2

gggggggg AAAA A SO

H
o8
o°,

®
Soled
)
X

K
K

Y NOT VALID
DAV '

L-

H- PTLIITITE TXY)

2 2

NRFD i

L . .

H- ALL ACCEPTED
NDAC

L

1| L | |
teg tg 4y 'Jz t|4 ts tg

Preliminary: Source checks for listeners and places data byte on data lines.
t_ 4. All acceptors become ready for byte. NRFD goes high with siowest one.
to: Source validates data (DAV low)

ty: First acceptor sets NRFD low to indicate it is no longer ready for a new byte.
t;: NDAC goes high with slowest acceptor to indicate all have accepted the data.
t3: Source sets DAV high to indicate this data byte is no longer valid.

t;: First acceptor sets NDAC low in preparation for next cycle.

ts: Back to t-1 again.

Figure 2.3 Data Byte Transfer Timing

13

Source Operation

High
?

Error Condition |

Put or Change Data
on DIO Lines

¥

Delay for Lines to
Settle.

®

+*

Acceptor Operation

" Logical flow of events for Source and Acceptor when
. - transferring data using the handshake process. L

' Figure 2.4 Handshake Timing Sequence

14

Patents

Hewlett-Packard holds a patent on the three-wire handshake technique. It offers
use of this technique to a company and all subsidiaries for a one time charge of
$250. No disclosure is required.

Patents have been issued on this technique by the following countries: U.S.A,, Italy,
Germany, Holland, United Kingdom, Switzerland, France and Japan.

2.4.3 General Bus Management Lines

The General Bus Management Lines are five lines used to manage an orderly flow
of information across the interface.

ATN (Attention) All devices must monitor ATN at all times and respond to it within
200 ns. When true, ATN places the interface in the “Command Mode” where
all devices accept (handshake) data on the Data Lines and interpret it as Com-
mands or Addresses. When false, ATN places the interface in the “Data Mode”
where the active talker sources device dependent Data to all active listeners.

IFC (Interface Clear) The IFC line is used only by the System Controller to halt
current operations (communications) on the bus (i.e. unaddress all talkers and
listeners and disable Serial Poll). All devices must monitor IFC at all times
and respond within 100 pus.

REN (Remote Enable) The REN line is used only by the System Controller to enable
devices to be subsequently placed in the remote programming mode. When
true, all listeners capable of remote operation are placed in remote when ad-
dressed to listen. When false, all devices return to local operation. All devices
capable of both remote and local operation must monitor REN at all times.
Devices must respond to REN within 100 ps.

SRQ (Service Request) The SRQ line is used by one or more devices to indicate the
need for attention and can be used to interrupt the current sequence of events. -

Typically, SRQ indicates data is ready to be transmited and/or an error condi-

tion exists (e.g. syntax error, overioad, trigger too fast, etc.). The controller per-
forms a Poll of devices, tofdetenplne ,wno requested service and why A Serlal-
Poll will clear the SRQ.’

EO! (End or Identify) When ATN is true the EOI line is used by a controller to
execute a Parallel Poll (described later). When ATN is false, the EOl line is
used by an active talker to indicate the last byte of a data message (e.g., burst
amplitude and phase measurements, programming strings, etc.)

15

Table 2.3 General Bus Management Lines

Name Mnemeonic Description

Attention ATN Controls whether the bus is in Command Mode (ATN TRUE)
or Data Mode (ATN FALSE).

Interface IFC Initializes the Interface to an idle state (no activity on the
Clear bus).
Service SRQ Alerts the Controller to a need for communication.
Request
Remote REN Enables devices to respond to Remote Program Control
Enable when addressed to listen.
End Or EOI Indicates last data byte of a multibyte sequence; also used
Identify with ATN to Parallel Poll devices for their status bit.

2.4.4 Command Mode (ATN true)

In the Command Mode, the controller sends commands to all devices. These com-
mands serve several different purposes:

1. Talk or listen addresses select the instruments that will source and accept
data. They are all multiline messages (i.e., messages sent over the data bus).
Addresses are sent to all devices.

. Universal commands cause every instrument so equipped to perform a specific
interface operation. They include five multiline commands and four uni-line
commands.

. Addressed commands are similar to universal commands, except that they
affect only those devices that are addressed. These are all multiline commands.

An instrument responds to an addressed command, however, only after a con-
troller has already addressed it to be a listener or a talker.

. Secondary commands are multiline messages that are always used in con-
junction with an address, multi-line universal command, or addressed com-
mand (also referred to as primary commands) to provide additional command
codes. Thus they extend the code space when necessary. For example, secon-

dary addresses allow the controller to address subdevices in a complex in-
strument.

16

2.4.5 Data Mode (ATN False)

In the Data Mode (ATN False) device dependent data (e.g. programming data, IEEE
488.2 Common Commands, measurement data, or status data) is sent from the ac-
tive talker to the active listener(s) on the interface. Note that only the addressed
devices actually handshake the data. The encoding and formatting of this data is
an operational area issue of the interface and as such is beyond the scope of the
IEEE 488.1 Interface Standard. The IEEE 488.2 Standard covers this aspect of the
interface function. Chapter 3 begins the explanation of the IEEE 488.2 Standard.

2.5 Addressing

Every IEEE 488.1 device has at least one? talk or listen address. Device Addresses
are sent by the active controller in the Command Mode to specify who talks (via
aTalk Address) and who listens (via Listen Addresses). A device's address Is usually
pre-set at the factory and is resettable during system configuration by an address
switch, jumpers, or front panel entry. This address switch is typically located on
the outside rear panel of the device but could be internal. The decimal equivalent
of the five bits of this switch determines the device’s address on the interface and
can be from 0 to 30 inclusive. Any given Device Address specifies both the listen
address and talk address (though it may only respond to one of these).

The sixth and seventh bits (DIO6-DIO7) of address messages are used to distinguish
between a device’s talk and listen address. High-level /O drivers typically configure
these two bits for you. Changing a device’s address switch changes both. Two ad-
dress codes, corresponding to address 31, are used to tell every device to UNTALK
(“-”") or UNLISTEN (* ?"). Therefore device address 31 is illegal and the maximum
useable set of addresses totals 31 (0 through 30). Controllers usually treat IEEE 488.1
addresses via global variables, common memory, Logical Unit (LU) numbers, or sym-
bol tables so that address changes require minimal program modification. Let's
try an example.

' Say")iﬁi.l WlSh toseta CUUNTER fdr"ari 1EEE“188.T'a'ddre§s" of "déélrﬁﬁl’"25.

%Declmal 25 corresponds to blnary 11001 Locating the address on the back of the
lnstrument you set switches A1, A4, and A5 to “1" and switches A2 and A3 to “0".
Typlcally, devices must be turned off and back on again, after changing this switch
to actual!y set the address.

TUnless it's totally transparent or a Talk-or Listen Only device.

17

Table 2.4 Talk and Listen Addresses

Switch No. Addr. Char. | Hex. | Octal | Decimal
§ 4 3 2 1| Talk | Listen | Value | Value | Value
00000 @ SP 00 00 00
C 00 C 1] A i 01 01 o1
00010 B ” 02 02 02
00011 C # 03 03 03
00100 D $ 04 04 04
0 010 1] E % 05 05 05
001 10| F & 06 06 06
0011 1] G ! 07 07 07
01000 H (08 10 08
01001 |) 09 1 09
01010} J * 0A 12 10
0101 1] K + o8 13 1
01100]| L , oC 14 12
01101 M - oD 15 13
011 10| N . OE 16 14
01111} 0 / OF 17 15
10000 P 0 10 20 16
1000 1| Q 1 1 21 17
100 10| R 2 12 22 18
1001 1] S 3 13 23 19
10100 T 4 14 24 20
1010 1] U 5 15 25 21
101 10] vV 6 16 26 22
10111} W 7 17 27 23
1100 0] X 8 18 30 24
11001} Y 9 19 31 25
110 10| Z : 1A 32 26
11011 [; 1B 33 27
11100} \ < iC | 34 28
1110 1] = 1D 35 29
111 10| A } 1E 36 30
111 1 1] _ ? 1F 37 31

Address 21 is usually reserved for the Computer interface TaIkIListen address (not
advisable for use as an instrument address).- e o e

Address 31 is not an address but “untalk” or “unlisten ",

Figure 2.5 shows a typical address switch. Many devices allow their addresses to
be changed from the device front panel instead of using this type of switch.

18

The additional switches on some devices are typically used to establish the device
in Talk Only or Listen Only modes or to implement self-test features such as
Signature Analysis or other service aids. Talk or Listen Only switches can be set
to activate a talker or listener(s) without a controller addressing them to do so
(typically done in a controller-less system). One additional mode enabled by these
switches is Talk Always or Listen Always. In this mode the device ignores all address
messages and always is enabled as a talker or a listener.

ADDRESSABLE —
i _ |paRaggH(;
© (= !‘S @ l:IST!A.L.KA 1ONLY

(ONG

Figure 2.5 Typical Address Switch

Extended Addressing

IEEE 488.1 devices with Extended Addressing capabilities (secondary commands)
recognize an additional address byte to establish itself as a talker or listener. Ex-
tended Talker and Extended Listener capabilities are mutually independent in a
device (e.g., you could have a 488.1 device which is an Extended Talker but only
a Basic Listener, etc.).

Muitiple Addresses

IEEE 488.1 devices with multiple device capabilities which can be treated individually
(e.g. Plotter/Printers, etc.) may have more than one talk or listen address (as opposed
to extended addresses). : S

Multiple-address devices typically use fewer switch address switches — two adja-
cent addresses require just four switches.:A single four: switch setting wlll deter-
mine two talk addresses and two listen addresses. Four switches would control
the A2 through A5 positions. (There is no switch for A1.): e

Setting AS and A2 switches to a value of one produces two listen addresses of 18
and 19 decimal.

A5 A4 A3 A2 A1 (Notice no A1, therefore, switches are

set for decimal 18, 19)
i 0 0 1 -

19

2.6 IEEE 488.1 Bus Commands

There are four different types of Bus Commands: Universal, Uniline, Addressed, and
Secondary. These commands control the operation of the 488.1 Bus and not the
actual operation of the device.

2.6.1 Universal Multiline Comman_ds

The five2 Universal Multiline3 commands are:

Multiline Dscimal Hexa- Octal | ASCIISO
Command Mnemonic Code decimal Code | Character
Device '
Clear DCL 20 14 24 DC4
Local
Lockout LLo 17 11 21 DC1
Serial Poll
Enable SPE 24 18 30 CAN
Serial Poll
Disable SPD 25 19 31 EM
Parallel Poll
Unconfigure PPU 21 15 25 NAK

Refer to Table 4.1 for a complete list of the ASCII characters.

Untalk Command (UNT) The Untalk Command unaddresses the current talker.
Sending an unused talk address would accomplish the same thing. This com-
mand is provided for convenience since addressing one talker automatically
unaddresses all others.

Unlisten Command (UNL) The Unlisten Command unaddresses all current listeners
on the bus. Single listeners cannot be unaddressed without unaddressing all
Histeners.-It is necessary-that this-command- be used to-guarantee that only--
desired listeners are addressed.

Device Clear Command (DCL) The universal Device Clear Command causes all

devices that implement the function to return to a pre-defined device-dependent
state. These devices respond whether they are addressed or in remote mode.
Device manuals define the cleared state for each device that recognizes the
command. IEEE 488.2 specifies certain things that devices can and cannot
do in response to this command. See Chapter 8 for more more detailed infor-
mation.

2 Untalk and unlisten are classified as addresses

3 The inclusion of these commands in the instrument is optional to comply with IEEE 488.1. However
some of these commands are required for IEEE 488.2. See Chapter 3.

20

Local Lockout Command (LLO) The Local Lockout Command disables the
retum-to-local control (typically a ‘local’ key) on devices that recognize the com-
mand. Recognizing devices accept the command whether they are addressed
or in remote or local mode. REN must be set false to re-enable the return-to-
local control. This also places all devices under local control.

Serial Poll Enable Command (SPE) The Serial Poll Enable Command establishes the
serial poll mode for all responding talkers on the bus. When addressed to talk,
each responding device will return a single eight-bit byte of status. Devices
which recognize this command must have Talker interface capabilities to allow
the device to output the status byte.

Serial Poll Disable Command (SPD) The Serial Poll Disable Command terminates
the serial poll mode for all responding devices, returning the devices to their
normal talker state where they output device-dependent data rather than status
information.

Parallel Poll Unconfigure Command (PPU) The Parallel Poll Unconfigure Command
resets all parallel poll devices to the idle state (no response to a parallel poll).

2.6.2 Uni-Line Commands

"~ The four Uni-line Commands are:

Uniline Command | Interface Management Line

Interface Clear IFC
Remote Enable REN
Attention ATN
Identify (IDY) EOI A ATN

The Uni-line Universal Commands IFC and REN were described previously in Sec-
tion 2.4.3. ATN was described in Section 2.4.4 and 2.4.5. IDY will be discussed in
_conjuction with Parallel Poll in Section 2.7.2.

21

2.6.3 Addressed Commands

The foiiowing tabie lists the commands in the Addressed Command Group.4

Addressed Command Mnemonic Decimal | Hex | Octal ASCH
Group Execute Trigger GET 08 08 10 BS
Selected Device Clear SDC 04 04 04 EOT
Go To Local GTL 01 o1 01 SOH
Parallel Poll Configure PPC 05 05 05 ENQ
Take Control TCT 09 09 11 HT

Group Execute Trigger Command (GET) This command causes all devices whi¢h
have the GET capability and are currently addressed to listen to initiate a pre-
programmed action (e.g., trigger, take a sweep, etc.). Some devices may also
recognize a device-dependent data character or string for this function
(equivalent but requires entry into Data Mode). The GET command provides
a means of triggering devices simuitaneously.

Selected Device Clear Command (SDC) This command resets the devices currently
addressed to listen to a device-dependent state (e.g., turn-on state, open all
relays, etc.). Device manuals define the reset state for each device that
recognizes the command. Same as DCL.

Go to Local Command (GTL) This command causes the devices currently addressed
to listen to return to local control (exit the Remote state). The device will return
to remote when it is addressed to listen again and REN is True.

Parallel Poll Configure Command (PPC) This command causes the addressed
listeners to be configured according to the parallel poll enable secondary com-
mand which immediately follows this command.

Take Control Talker COmmand (TCT) This command causes the device that is
addressed to talk to begin operating as bus controller.

4 A device may or may not be designed to respond to any particular addressed command.

22

2.6.4 Secondary Commands

Secondary Commands consist of the ASCII characters 96-127 decimal. They are
used for extended talk and listen secondary addresses and secondary parallel poll
commands.

Secondary Hex Octal Decimal | ASCIIISO

Command Mnemonic | Code Code Code Character
Parallel Poll Enable PPE 60-6F | 140-157 | 96-111 ‘thruo
Parallel Poll Disable PPD 70 160 112 p

Parallel Poll Enable Command (PPE) The Parallel Poll Enable Secondary Command
configures the devices which have received the PPC command to respond to
a parallel poll on a particular IEEE 488.1 DIO line with a particular level. Some
devices may implement a local form of this configuration through the use of
jumpers, switches, etc. :

Parallel Poll Disable Command (PPD) The Parallel Poll Disable Command disables
the devices which have received the PPC command from responding to the
paraliel poll.

2.7 Polling

There are two possible polling procedures on the bus, Serial Poll and Parallel Poll.

2.7.1 Serial Poll

A Serial Poll is a sequence which enables a controller to learn the status of a device.
Using Serial Poll the controller can determine if a device or group of devices re-
quire service. It can also determine multi-bit status of devices on the interface, one
device at a time.

Devices which can be Serial Polled will return a Status Byte (requires Talker subset)
to the controller to indicate their status. The controller sequentially polls each in-
dividual device on the interface (sends a SPE and sequentially addresses devices
to talk) and evaluates each status byte in turn. Therefore, this procedure can be
lengthy in larger systems. However, the Status Byte provides the nature of the re-
quest as well as identifying the requester.

23

You should (although it's not mandatory) poll every device to be sure you find every
requester. Remember to send Serial Pol!l Disable (SPD) and Untalk (UNT) commands
when you're done with the procedure. Most controllers now do this for you using

high level commands.

2.7.2 Parallel Poii

Parallel poll is a controller initiated operation to obtain information from several
devices simultaneously. When the controller initiates a Parallel Poll, each device
returns a Status Bit via one of the DIO lines. Device DIO assignments are made
by switches, jumpers, or by the controller using the PPC (paralle! pol!l configure)
sequence. Devices respond either individually, each on a separate DIO line, or col-
lectively on a single DIO line or any combination thereof. When responding collec-
tively, the resuit is a iogical AND (True High) or OR (True Low) of the groups of status
bits. Configured devices must respond to a Parallel Poll (the simultaneous asser-
tion of ATN and EOI) within 200 ns. The controller can then read the results of the
poll 2 us later. Parallel poll is often used by computers to check the status of an
action, i.e., which peripherals are ready for data, sending data or receiving data.
By knowing this information dead times are reduced and the system bandwidth is
used more efficiently.

2.8 Electrical Aspects
General
The relation between logic and voltage levels is:

Logic Level Voltage Level

0 (Faise) > +2.0V (High)
1 (True) < +0.8V (Low)

Driver Types

Open Coliector Only | Open Collector or Tristate |-

SRQ, NRFD, NDAC | ATN, IFC,.REN, EOI, DAV
DIO 1-8

Tristate drivers are useful to reach data rates above 250,000 bytes'/s.

24

Driver Specifications
VoL < + 0.5V @ 48 mA continuous sink (tristate or open collector)
Von > 2.4V @ 5.2 mA source (tristate)

(see DC Load Line Graph (open collector) in Figure 2.6)

Recelver Specifications

Preferred (Schmitt-type) Allowed (non-Schmitt type)

Vie = Vineg < +0.8V vV, < +0.8V
Vit = Vipos > +2.0V Viy > +2.0V

Hysteresis: Vipps — Vingy > +0.4V
Device Load Requirements

The DC and small signal AC load requirements are summarized and clarified with
a typical circuit design in Figure 2.6.

25

CURRENT INTO DEVICE
LOAD LINE
S B it N > ExT | INT ares Support
: ! Exiating P1 of LS| Desion S 3
e L O @ " —
| : m! -~ P P i
|] !~ T o VOLTAGE ! ' '
T T ® o7 Ay ' ' '
-9 1), | UN
2 :“V i SIGNAL yo—ves i
]
- : ' LINE ' ' A
/ 1 1) R ' '\]]
A TSR T ek —- ' Ll i DRIVER
lC) ' !) ' i
! Lo N ' '
L | 1 4t 1 ! i
[! ' 1 (] [}
Cy =i RECEIVER
1 1 1 1 = 1]
—1 ' ' ' Rz]
'] []] : '
! ' ' 1
1 ' g i 01 i
}-:]]] 1)]
' ' ' L ! F !
! Lo ! ! !
! . .
Resistive Loading Yee: *Sv ¢ 52
Ry y: 3.1 ki) 2 SX (to Vee)
11 <6mA V shall bes 3.7V R 3t 6.2 kKfl 2 5% (to ground)
Driver: Output leskasge current (open
1f 12 6mA, V shall be = 2.5V ool driver) +0.25 mA max
if 12 -12.6m, V shall be 2 -1.5V st Vo = 5.28v
(only if receiver exists) Output 1eskage current
()irvs8.4V. 1 ehall bes-1.3m Mhridedviaiait-S ekt
(5)ifvaesv. 1 shall boz-3.2m Receiver: Input current —1.6mA max
at Vo = +f. 4V
(6)1rvsssv. 1emllbes2.5m : Teaknge
()1rvasev. 1 ehall bez 8.7 m o the +40 A max at Vo = +2.4V
srall-signsl Z shall be 5 2 k{3 at 1 Mz 41.8 mk mex at Vo = +5 25¢
Note: The siope of the dc iocad 1ime shouid, ¢ ¢ eC < 158
in general, correspond to a resistance not * Ceabli [te
in excess of 3 k{} meLr01 ® §-5v
Captive Loading
C‘| ,(nslnafo:zv

DESIGN SPECS (P/0 STANDARD) TYPICAL DESIGN

-

H
Figure 2.6 Converting Electrical Specifications to Actual Circuit

26

SIGNAL GROUND

P/0 TWISTED PAIR WITH 11
P/0 TWISTED PAIR WITH 10
P/0 TWISTED PAIR WITH 8

P/0 TWISTED PAIR WITH 8

P/0 TWISTED PAIR WITH 7

P70 TWISTED PAIR WITH &

SHOULD BE GROUNDED
NEAR TERMINATION OF
OTHER WIRE OF TWISTED PAIR

THE HP-1B LOGIC LEVELS

ARE TTL COMPATIBLE i.e.
TRUE STATE < .08 vV DC
FALSE STATE 2 +20 v DC

FOR A POWER SOURCE

THAT DOES NOT EXCEED

+5.25 v DC AND REFERENCED

TO LOGIC GROUND.

MICRORIBBON CONNECTOR

Figure 2.7 HP-IB Connector Pin Assignments

27

2.9 Mechanical Aspects

The connector, mounting, and cabling specifications of the interface define a robust
cabling system for interconnecting devices. Devices can be interconnected in STAR,

LINEAR, or combinational arrangemasnts.

The |EEE 488/ANSI connectoris a 24-pin ribbon type connector with contacts assign-
ed as shown in Figure 2.9.

2.9.1 IEEE/ANSI Connector

Voltage rating: 200 Vdc
Current rating: 5A
Endurance: > 1000 insertions
Temperature and Humidity: MIL STD 202E

Suggested connectors: Microribbon (Amphenol or Cinch Series 57) or Champ (AMP)

2.9.2 |EC Connector

The IEC 625-1 connector Is a 25-pin typs connector (MIL-C-24308). A few key elec-
trical and mechanical specifications:

Voltage rating: 60 Vdc
Current rating: 5A
Endurance: > 1000 insertions
Temperature and Humidity: IEC Publication 68 for climatic
category 25/070/21.

2.9.3 Mounting. (IEEE/ANSI Connector)
Metric threads (ISO M3.9 x 0.6 type) are specified. Metric fasteners are typically
. colored black. Some existing cables use English threads (6-32UNK). They are col-

ored silver. DO NOT ATTEMPT TO MATE METRIC AND ENGLISH FASTENERS, as
damage to hardware may result.

28

2.9.4 HP-IB Cabling

HP's HP-IB Interconnect cables offer improved shielding for reduced radiated emis-
sions from cabling in systems environments. Here’s some helpful information:

Interconnection Rules

An HP-IB system may be connected together in any configuration (star or linear
or combination) as long as the following rules are followed:

1. The total number of devices is less than or equal to 15.

2. The total length of all the cables used is less than or equal to 2 meters times
the number of devices connected together up to an absolute maximum of 20
meters. For example, the maximum cable length is 4 meters if only 2 devices
are involved. The length between adjacent devices is not critical as long as
the overall restriction is met.

The cable length between adjacent devices is not critical as long as the total ac-
cumulated cable length is less than or equal to the maximum allowed. Star, linear,
and combinational configurations are allowed.

Itis recommended that no more than three of the connector blocks be stacked one
on top of another. The resultant cantilevered structure can exert excessive force
on the mounting panels when the stack of connector blocks becomes too long.
The lock screws are designed to be tightened with the fingers only. Do not use a
screwdriver. The screwdriver slots in the lock screws are provided for REMOVAL
purposes only.

The new cables are completely compatible with, and can be used In combination
with, the older cables. However, this will affect the continuity and effectiveness
of the shielding.

STAR OR LINEAR

I.I“

IR

Figure 2.8 Cable Configurations
29

Limited Space Adapter

The HP 10834 adapter was designed to help in those cases where limited rear panel

space and other design considerations have resulted in difficuit cabling situations.
The adapter extends the first cable approximately 2.3 cm away from the rear panel

to provide clearance for other connectors, switches and cables that may be in close
proximity to the HP-IB connector.

il
AW

@3] 108344
[a] { J

Figure 2.9 Limited Space Adapter

2.10 Revisions to IEEE 488

The November 1978 revision to the ANSI/IEEE 488.1 standard was mostly (~90%)
for clarification. Heavy use in the 1970’s had brought out several areas of possible
misinterpretation and several useful new guidelines and recommendations.

Summary of 1978 and 1980 Revisions

¢ Additional restrictions on allowable combinations of interface functions were
added.

¢ Clarification of exactly how the END message is treated in source and accep-
tor interface functions was added.

A revision to the CONTROLLER function (deiay) was made to ensure against
the possible simultaneous assertion of DAV and ATN which could be inter-

_preted by idle devices as COMMAND MODE information, initiating a handshake
sequence. P . ‘

o The electrical specification for Vo, the minimum low-state odtput voltage for
bus drivers was raised to + 0.5V to accommodate modern lowpower Schottky
drivers. : .

* More information was provided on how to maximize the Data Transfer rate over.
the interface.

* Warnings with guidelines about conducting and/or exiting particular opera-
tional sequences were added. For example, remembering to send Serial Poll
Disable (SPD) followed by Untalk (UNT) to exit a serial poll sequence.

30

* A non-mandatory recommendation to mark the device's interface function
codes and electrical driver type near the device's connector to aid the system
designer and user.

2.11 Design And Service Aids

Among the most useful design aids for designing ANSI/IEEE 488.1 and IEC 625-1
capabilities into a product are:

¢ LSl chips for implementing CONTROLLER, TALKER, and LISTENER interface
function combination

¢ A flexible BUS ANALYZER
* Timing Analysis for the bus (plus State Analysis)

 Serial Analysis for Data Communications and Interfacing applications in a
Distributed Measurement Systems Environment

LSI IEEE 488.1 IC’s

LSI chip versions of the Controller, Talker, and Listener Interface Functions are
available to facilitate your design process. These chips can implement selected
functions or combinations. More recent chips include Controller capabilities (may
be a separate chip). In all cases they typically replace between 40 to 60 MS! or SSI
parts per function (Controller, Talker, Listener) on partially dedicated I/O boards.
That’s 120 to 180 parts for a full hardware version.

To perform the same functions via a typical MPU/ROM implementation might re-
quire 500 bytes per function. That’s a full 1.5K bytes and a dedicated processor.

Bus Analyzer

A flexible Bus Analyzeris a very useful product aiding the HP-IB hardware/software
-designer in development and diagnosing HP-1B hardware/software problems. Most™
Bus Analyzers operate with complete Talker, Listener, Controller, and System Con-
troller Interface Function-capabilities which are mutually Independent’and exhibit
near-ideal (typically <750 ns with’&200 ns possible) accept times (T3 in'the IEEE
488.1 standard) for almost complete transparent bus monitor and test applications.
Other applications include device and controller simulation and interface function
verification.

31

Timing Analysis

Timing Analysis is sometimes usefui when optimizing or characterizing HP-iB pro-
duct or system performance; or when diagnosing noise, timing, or software-
synchronization-related faults in a product or system. Most Timing Analyzers pro-
vide at least the 16 channels required to monitor HP-IB signal lines and more than
enough bandwidth.

Serial Data Analysis

Seriai Data Analysis (Monitoring or DTE/DCE Simulation) is sometimes usefui when
you expect your HP-IB Measurement System to be or evolve into a Measurement
Node in a larger distributed system environment via a serial network link or HP-I1B
extension technique. The network link would tie the local measurement-intensive

system to a centralized compatational-intensive system via a local networking
scheme (Public Data Networks).

2.12 Optimizing Performance

Many HP-IB users ask how they can optimize system performance and overcome

constraints. There are three areas of HP-1B performance that are most often asked
about.

¢ Surpassing the 15 device-per-bus constraint (Number of Devices per Bus).

e Surpassing the 20 meter total cable length constraint (Total Accumulated Cable
length).

¢ Maximizing the data transfer rate of the interface. (Maximum Transfer Rate).

Each of these topics is discussed ssparately.

2.12.1 Number Of Devices Per Bus

Fifteen devices can fill about three 56-inch bays with equipment and constitutes
afairly elaborate system. In most cases, this is not a major restriction. If you should
have a need for more devices you can use an additional interface (another card in
your desktop or minicomputer). If you run out of slots, some computers have U[e
Expanders for increasing the number of slots available.

2.12.2 Total Accumulated Cable Length
For data rates below 500 kbytes/s you are constrained to 20 meters total or 2 meters

per device, whichever is less. There are 2 techniques for surpassing this limitation
using HP-IB extenders.

32

Intra-Facility and Inter-Facility HP-IB Extension

Intra-Facility HP-1B Extension Can:
e Extend HP-IB capabilities up to 1000 meters away.
* Save you money on cabling (can be up to $10/ft!).
* Avoid the cost of additional computers.

¢ Protect your computer from harsh environments, extreme noise, or unwanted
user access.

¢’ Preserve HP-IB flexibility at the remote end of the extension.
* Be partially or totally transparent to the user.
Inter-Facility HP-1B Extension Can:

* Provide all of the benefits of Intra-Facility over unlimited distances with
leveraged savings.

* Provide you with auto dial-up on one or more remote instrument clusters.

2.12.3 Maximum Transfer Rate

You'll find for most instrument systems that your throughput s limited by the in-
struments in the system. Precision measurements typically take a long time relative
to the cycle times in desktop or minicomputers. High resolution (5% - 6% Digit)
voltage measurements using integrating analog-to-digital techniques, precision low
frequency counting, and narrow band spectrum analysis are all good examples of
relatively slow real-time measurement processes. As instruments and peripherals
get smarter and digital signal processing becomes easier and less expensive to
implement in instrument, the short term (high-speed sampling, burst measurements,
_computer “dumps,” block memory transfers) HP-IB demands willincrease. In these
cases the system throughput can become bound by the transfer rate of the com-
puter interface -

Speed
With one device for every 2 meters of cable, the data rate can be 250 kbytes/s over

distances of 20 meters using open collector drivers. Tristate drivers can increase
the data rate to 500 kbytes/s.

33

To achieve data rates faster than 500 kbytes/s and up to 1 Mbyte/s do the following:

1

)

6.

Be sure all high rate devices use Tristate drivers (Interface capability E2) and
that every device is turned on.

not exceed 15 meters totai cabie iength and en-
for every meter of cable.

»
S
o©
5 =
(714
7]
—
>
o
3
o
3
o©
Q
®
=
[}
o®

Limit the capacitance of each device on each line to at most S50pf (@ <2V)
(except REN and IFC).

. All high rate Talkers should use a minimum multiline message settling time

(T1 in the |IEEE-488 Standard) of 350 ns.

. Also buffered data byte storage in a device is advantageous. Devices with a

T1 value less than 500 ns, an internal device capacitance of >50pf, or multi-
ple resistive ioads shouid be marked accordingly (typically done on Controllers).

See also IEEE standard 488—1987 Section 5.2.3, Higher Speed Operation.

Devices Powered Off And On

Systems will operate normally with up to ¥a of the devices powered off and even
more as long as Vo, on each line on each device still exceeds the + 2.5V specifica-
tion. Turning a device on or off while a system is running may cause faulty operation.

2.12.4 Improving Software Performance

If speed is critical in your application the following guidelines may prove useful:

General (Device Dependent)

1.

Familiarize yourself well with the operational aspects of the devices you're
optimizing your routines for. Newer devices have fast-handshake and speed-

advantageousfeaturese.g. buffering, program storage, hardware overlap, etc.) -
built-in. -

- Use interrupt-driven processes and down-load smart devices where possible.

Some card-cage-type instruments can perform many time consuming tasks
through hardware features that otherwise might require significant software
dedication and the associated overhead.

. Avoid unnecessary unaddressing and readdressing steps where possible.
. Use HP-IB Commands rather than device dependent messages where possible.

. Suppress unneeded terminators.

34

6. Use system commands (already optimized) and binaries when they exist.

7. Get to know your HP-IB Specialist and Systems Engineers if you use HP equip-
ment. They're highly trained specialists with timely answers to critical ques-
tions when you need them. Systems Engineers are also available on a
consulting basis for a fee when you need dedicated consulting.

Programming Language Dependent

Develop the driver at the lowest-level possible and appropriate (e.g. assembly for
repetitive fixed point processes, interface control for single interface commands,
etc.). But develop larger programs and-non speed-critical subprograms at higher
levels as appropriate.

Use compiled languages when available. If you can link compiled modules in an
interpretive environment, you may find it's speed advantageous.

2.12.5 Generally Helpful Information

Avoid Typical HP-IB System-Related Problems. Here are some suggestions:

1. Use an ALGORITHMIC DESIGN approach. It’s simple, well structured, and has
a history of success.

DEFINE your system needs well.

DESIGN a system solution.

EVALUATE the expected cost-effectiveness of your design.

‘BUILD the chosen solution.

USE the system once buiit.

- 2. Order system prestudy or device manuals and application notes as early as’
possible. A '

3. An: HP-IB BUS IMPLEMENTATION WORKSHEET is sometimes useful t0
© visualize the' ADDRESS and MESSAGE compatabmty ‘of the'devices in’ ‘your
~ system. This technique can aid the system programmer in larger HP-1B systems.
Once you've got documentation on the devices, the programmer can fill in the
SEND and RECEIVE message capabilities of the devices vertically and com-
pare horizontally. A blank worksheet is found at the end of this chapter.

4. Develop hardware and software block diagrams or flowcharts for the tasks
(measurement, test, control, data manipulation, presentation, etc.) you will

35

need. You could do this while waiting for component or system delivery. Even
better, do it as part of the Definition and Design steps of your system design.

. Prepare the systems installation site adequately. Don't forget provisions for
power distribution, interference protection, and such environmentai considera-
tions as temperature, humidity, static protection, and physicai ciearances. Refer
to the installation documents with your system and system components. A
typical pre-installation planning checklist is found at the end of this chapter.

. Appoint a system manager who is responsible for maintenance and calibra-
tion schedules, operator training, configuration control and systems logs as
well as for ordering such consumables as paper, ink, diskettes, and cartridges.
Giving the user this responsibility will typically result in further job enrich-
ment and self-fulfiliment.

. Don't try to automate too much or the wrong things. Some interconnect pro-
cesses may best be done manually to avoid the error terms associated with
system switching. Many processes just do not make sense to automate
(Microwave connections, etc.).

. Take care when estimating software requirements for the system. Expect a
decreasing exponential learning curve on test programs. The time to learn a
mini-computer based system and write the first test is typically 10 times that
required for an equivalent desktop computer based system. The steady state
ratio drops to about 2 times as long as fluency and mastery are achieved.

. The STAR cabling configuration will minimize worst-case transmission path
lengths but can lump large capacitance values at a single plane on the line.
The LINEAR cabling configuration may produce longer electrical lengths but
provides more control to distribute capacitive line loads for maximum error-
free transmission.

36

e1°2'4 1n1°81"7aH

jeaysioM uojjejuewejdw) sng 0}°Z einbiy
G3IN3WIWIWI LON = N 3AI3O3N OGNV ON3S = 9SS ANO JAI303Y = ¥ ANO ON3S = S

ldoayv

JOYLNOO SSVd

118
SNLVLS

31A8
SNLVLS

JOIAY3S
341N03Y

1NOX0071 13S
® 071 dv310

1NOXJ07
Vo0

310W3Y

vO07

dv3ao

4399141

vivd

3NWwA 118 S

AL

N3LSIT

1300W

ss3aav

8I-dH ONV
NOILVIOI4IAIN3AI
ININNYULSNI

3JIA30

396SS 3K

L33HSAAN0M NOILULNIUITIUI

sna 81-gH

37

INSTRUCTIONS.

Check when each planning question has been compieted. If a question does not pertain to your installation,
mark the gquestion N/&.

Suitebility of site

1. Is proper and sdequate power svailable to site?

If below ground level, is the water drainage system adequate?

Has possible nesd for rigging been investigated?

Are slevators sdequate to support size end weight of equipment?

Will stairways aillow passage of equipment?

Wil)l flooring enroute to Inatallation site support weight of equipment?

Will all doorways enroute to Installation site allow clearance for equipment?
Will hallways and corridors enroute to inetallation site allow clearance

Are RF1 sources or susceptible isstruments nearby?

© 0 ~NOOW A WN

Floor plan
10. Has grid layout been carpleted?

—— 11. Does it show the locations for all the proposed equipment?

e 12. Does 1t sllow for adequate clearance In front and reer of the cambining case or cabinet
for operation snd service?

———— 13. Does it sllow for future expantion?

——— 14. 1s sufficient space provided for personnel safety. camfort and freedam of movement?
——— 15. Does it show locations of all doors and alsle ways?

16. 1s sufficient space provided for supplies?

Electric Power

17. Have tests been conducted to determine the voitage and freguency fluctuations
throughout the day?

——— 18. If testa Indicated a greater then =182 or +5X fluctustion. have provisions been made for
voltage or frequency regulation?

—— 19. Have provisions been made for the installation of a sufficlent amount of receptacles
throughout the site for free-standing equipment?

—20. Considering all factors such as wirs size. distribution equipment, etc.. is the proposed
electrical installation plan sdequate for the presently proposed system
and possible future expansion?

Terperatures

21. Has the installation ares been checked for minimum terperature ranges
of 8°C (32°F) to 55°C (131°F) respectively?

Signal and Power Cables

22. Have signal and powsr cable lengh restrictions been adhered to?
——— 23. Will cables other than those supplied with equipment be required?
——— 24. Wil powsr plugs other than that supplied with equipment be required?

~Safety Precautions—
———— 25. Has the nesd for emergency exits been conaidered?
_25 ‘Have provisions been made for sn adequate nurber of CO2 fire extinguishers?
——— 27. .1a there & FIRST AID KIT available at the installation site?

Figure 2.11 Installation Planning Checklist

38

Chapter 3
The IEEE 488.2 Standard

3.1 Overview

With the adoption of IEEE 488 in 1975, instrument designers and users solved many
interfacing problems. However, they also realized that they did not know and unders-
tand all of the problems of interfacing instruments to computers. Therefore, they
attacked the first hurdle of connecting computers and instruments, the electrical
connection and very basic aspects of communication. Even though IEEE 488
eliminated the problem of looking for the right type of connector, and which signal
line went to which pin, it purposely left some other problems unsolved.

During the next ten years instrument users discovered many of the difficulties in
implementing IEEE 488 systems. They found that device capabilities could range
from Listen Only to System Controller. Because of this, the system designer had
to determine if each device had the appropriate interface capability as well as other
performance criteria. Designers also found that each company handied message
protocol and data formating in a different manner. Again, device communication
compatiblity became an important issue. Each company also used different com-
mand sets for similar type functions in different instruments. To compound the pro-
blem further, each instrument reported its status in a different set of bits in the
status byte. This meant that replacing a device in a system with different device
required extensive and expensive reprogramming.

A first attempt to standardize data formats.resulted in the creation of IEEE 728
Recommended Practice for Code and Format Conventions for Use with IEEE Std
488-1978. These formats evolved over time as designers and users determined which
formats worked well and which did not. Since these were only recommendations
and included several different formats for the data it only partially solved the pro-

blem. But it did help reveal the information necessary to develop a better data for-
mat standard. :

To solve these problems, the IEEE developed the IEEE Std 488 2 Codes, Farmats,-
Protocols and Common Commands For use with ANSI/IEEE Std'488.1%1987. This..
latest standard describes a set of codes, data formats, message protocols; and‘com-
mon commands to use with the very successful IEEE 488 (now 488.1) standard. IEEE
488.2 addresses many of the problems that users encounter in using 488.1.

To help you understand this new interface standard, consider how an interface is
defined. The instrument interface can be divided into several functional layers, shown
graphically in Figure 3-1. The lowest layer is the Remote Interface Messages layer
orthe |IEEE 488.1 Bus. This layer is the physical interface. It includes the mechanical
connector, wiring, electrical signals, handshaking of data, etc.

39

The IEEE 488.2 standard defines the middle two layers. They consist of the Syntax
and Data Structures iayer and the Common Commands and Queries iayer. The Syniax
and Data Structures layer defines how data is communicated between devices. For
exampie, it defines the usage of the ASCII character set for data representation.
It also defines data formats for binary numbers.

The final layer is the Device Dependent Messages layer which each manufacturer
defines. These messages could also be termed the device commands. They tell the
device what function to perform.

BUS
(Device Dependent Messages)
< Common Commands and Queries)

< Syntax and Data Structures >

M

<L: Remote IF Messages)

N4

D:C:B:A :A:B:C:D
~q— Systen g, - sm-nl —
x y
Mfrs. :IEEE-488.2: IEEE-488. 1 ‘IEEE-488.2: Mfrs.
Specs. : Standard : Standard : Standard : Specs.
WHERE:
‘Layer D represents Device Functions
Laysr C represents Common System Functions

-
Layer B represents Message Communication Functions
Layer A represents Interface Functions (IF)

Figure 3.1 Functional Layers Diagram

So what does this new standard really provide? How does it solve the problems
found in the past? What were the problems?

40

The problems encountered using IEEE 488.1 alone are:

¢ Varying device interface capabilites — for example, two different Voltmeters
that perform the same measurement. One might have Talk-Only capability, while
the other could talk and listen.

* No common data format — two devices could physically communicate over
the 488 bus but one device might not use the data format that the other uses.

* No standard message protocol — for example, the order in which a device
sends commands and data.

* No common command set — two devices that perform identical functions may
have completely different device dependent commands.

¢ Status reporting unique to each device — each device reports status in a dif-
ferent set of bits in the status byte. In addition, each device could include dif-
ferent status information.

How does IEEE 488.2 solve these problems? It defines:
e A minimum set of IEEE 488.1 interface capabilities (See Table 3.1)
¢ Data formats and syntax (how data is represented)
e Device message protocols (what is sent and when)
e Common command set — commonly needed commands defined.
o Status reporting model — clearer status reporting definition

Let's take a closer look at each one of these probiems and how IEEE 488.2 solves
them.

32 Required Interface Capabilities.

IEEE 488.2 defines a set of minimum capabilities that each device must have.
Table 3.1 lists these required capabilities. , A L

In essence, all devices are able to send and receive data, request service, and
respond to a device clear command. It also details the minimum capabilities that
adevice has when it implements controller, parallel poll, and the remote local func-
tions. The user now knows that every 488.2 device in the system has certain
capabilities. This simplifies system design.

41

Table 3.1 Minimum IEEE 488.1 Capabilities

Capability Code* Comment

Source Handshake SH1 Full Capability

Acceptor Handshake | AH1 Fuil Capabiiity

Talker T(TE)S, or Basic Talker, Serlal
T(TE)6 Poll, untalk on MLA

Listener L(LE)3, or Basic Listener,
L(LE)4 unlisten on MTA

Service Request SR1 Full Capability

Device Clear DC1 Full Capability

Remote Local RLO or RL1 None or Full Capability

Parallel Poll PPO or PP1 None or Full Capability

Device Trigger DTO or DT1 None or Full Capability

Controller C0 or C4 with None or Respond to SRQ,
C5, C7, C8 or C11 Send IF Msg., pass,

receive control
Electrical Interface E1 or E2 Open Collector or Tristate
*See Appendix C for Code definitions

3.3 Data Formats and Syntax

IEEE 488.2 provides a set of data formats for everything from decimal numbers to
arbitrary strings of characters. For exampie, it defines a format for binary, octal,
and hexadecimal numbers. it also defines formats to send long blocks of 8-bit bytes
or strings of ASCIl characters. Table 4.2 lists these formats.

IEEE 488.2 also introduces a new concept that makes it possible for older devices
to communicate with devices that use this new standard. This concept is

Forgiving listening. Precise talking.

It requires devices to accept a wide variety of data formats and codings, forgiving
listening. But, it restricts the data transmitted to a rigorous set of formats, precise
talking. New devices will be able to communicate with devices using older format
standards such as'1EEE 728. ~

Chapter 4, Data Coding and Formats, describes these formats in greater detail. But

remember the idea forgiving listening, precise talking. It is important to many of
the ideas presented later in this book.

42

3.4 Device Message Protocols

Device message protocols enable devices to communicate by defining how to send
commands, parameters and data. IEEE 488.2 carefully describes a message ex-
change protocol, for the 488.1 bus. It describes what to do when a device receives
multiple commands, an incomplete command or when it is interrupted while pro-
cessing acommand. It defines a set of device operational states to implement this
protocol. These states are:

STATE PURPOSE

IDLE Wait for messages

READ Read and execute messages

QUERY Store responses to be sent

SEND Send responses

RESPONSE Complete sending responses

DONE Finished sending response

DEADLOCK The device cannot buffer more data
UNTERMINATED The device has attempted to read an unterminated

message
INTERRUPTED The device was interrupted by a new message while

sending a response

These states tell the device how to react when an exception condition occurs. It's
not difficult to know what to do when reading or sending a single byte on the bus.
However, decisions become much more complex when the device Is interrupted
or doesn’t receive a terminated command. The IEEE 488.2 standard defines what
the device will do in these situations.

IEEE 488.2 also defines how devices exchange data. It describes the order in which
data bytes are sent. The standard also states that a device cannot send data until
commanded to do so. When a device receives a new command It clears its output
queue and begins work on that command. IEEE 488.2 defines the data format for
~ the response to each query.

43

3.5 Common Command Set

Every 488.1 device performs a common set of functions in order to communicate
on the bus and report its status. In the past, each device used a different set of
commands to enable these functions. IEEE 488.2 details a list of common com-
mands that provide uniform communication with devices. These commands are
grouped by the function they perform. These groups are:

e System Data

¢ [nternal Operations

e Status & Event

¢ Synchronization

e Parallel Poll

¢ Device Trigger

¢ Controller

¢ Auto Configure

e Macros

e Stored Settings

The standard requires all devices to implement certain commands. This permits
test system programmers to write code modules that will work with all devices.

Common Command Groups

System Data These commands store or retrieve information about devices in the
--gystem. -This information includes device descriptions;-and-options. -

Internal Operations These commands relate to the internal operation of a device.
They include operations such as reseting, testing, or calibrating the device.

44

Status & Event These commands control the status structures of the device.

Synchronization These commands synchronize the operations of the devices within
a system.

Parallel Poll These commands control how a device responds to a 488.1 Parallel
Poll. They also permit you to obtain the same information without performing
an actual Parallel Poll.

Device Trigger These commands perform a Device Trigger, and control how a device
responds to a Trigger command.

Controller This command defines the means of passing control between devices.

Auto Configure This command set provides a means to set device addresses within
a system.

Macros This group of commands gives the user the ability to define new commands
using the commands defined by the device and 488.2.

Stored Settings These commands save and restore the state of the device.

Chapter 7, Common Commands, gives greater detail on the operation and syntax
of these commands.

3.6 Status Reporting Model

IEEE 488.2 describes a standard status reporting model so that controllers know
how to ask a device for its status. Figure 3.2 shows the block diagram for the IEEE
488.2 Status Model. The status model uses the |IEEE 488.1 status byte. This byte
contains seven single-bit summary messages from Status Data Structures. IEEE
488.2 defines two of these bits, Event Status Bit (ESB) and Message Available (MAV).
IEEE 488.1 defines the RQS bit. The status data structures are registers or queues.
The user can enable a device to request service depending on the state of these
summary bits: Chapter 6 , Status-Reporting; gives greater detail-on-how these-struc--
tures operate.

45

O |Command Ervor
H |Execution Error
G |Devioe Dependent Error

~! jPower On
= IRequest Control

Standard Event
Status Register
#ESR?

Q |Operation Complete

Logical OR
ETTITNY

1le Standard Event
Status Register
WESE (NRP>

Queue
Not-Empty,

....................

put Queue

read by Serlal Poll

Status B8it Register

read by #STB?

Service Request

] __Enable_Register

HSRE CNRP>
HSRE?

HW-18 F.3.2

" Figure 3.2 Standard Status Model

46

Chapter 4
Data Coding and Formats

4.1 Overview

The original IEEE 488 interface provided instrument designers and users with an
interface that solved many problems. However, it did not define a data format, or
coding protocol. It simply stated that any standard alphanumeric, binary, or BCD
code may be used.

The IEEE 488.2 standard defines a set of data codes and formats for everything from
decimal numbers to arbitrary strings of characters.

4.2 Message Data Coding

IEEE 488 used the ISO 7-bit code (ASCII) to document the Interface commands. Many
488 devices use ASCII for information coding. But since any “standard” code was
acceptable, many devices used many different forms of binary coding.

IEEE 488.2 specifies three sets of codes, ASCII 7-bit (for alphanumerics), Binary
8-bit Integer and a Binary Floating Point Code. Then, using these codes, it defines
data formats for decimal, octal, and hexadecimal integers, decimal floating point
numbers, strings, character strings, and arbitrary strings. Most of these formats
use the ASCII code to represent the data.

4.2.1 ASCII 7-Bit Code

IEEE 488.2 specifies the ANSI X3.4-1977 ASCII 7-bit code as the common data code
for device dependent messages. The seven bits, B1 through B7 correspond to the
data lines DIO1 - DIO7 with DIO8 ignored. Table 4.1 contains the ASCII 7-bit Code
Chart.

'4.2.2 8-Bit Binary Integer

In some cases it is more.efficient to.pass data'between:devices in some internal
format. This eliminates the need to convert the data to ASCII before sending it. It
also eliminates the need to convert the data back to this internal format when the
device receives it.

When using binary data, be careful to insure that the internal formats of the two
devices are /dentical. When in doubt, use an ASCII coded format. |[EEE 488.2 recom-
mends formats and codings to use for internal data. But remember, these are only
recommendations.

47

B,) | 0) | @ 1 1 1 1
BB [0/ a 1 2 1
Bs| 2 o] 1] Yog| 1] %0 1 o] !
BITS .
CONTROL NUMBERS | ,npER CASE | LOWER CASE
B4 B3 B2 B] _ SYMBOLS —
7] 20 40 60 100 120 140 160
poeo) NULomm'Elszo SP 3230 0 48|40 64l50 Pao 60 ' esm__p_u_g
1 GIL21 __LLOl41 61 101 121 141|161
200 1| SOH 1 |
1 111 17]21 3331 49la1 6551 sils1 87171 "113
2 22 42 62 102 122 142 162
201 0| STX DC2 L 2 B R r
2 2l12 18|22 34/32 50]42 66152 82|62 88|72 114
3 23 43 63 103 [123 143 163
201 13 ETx:sstcaszs * 35|33 3 51143 ¢ 67|53 § 83_._6§_c_9§73 s
| 143 3 73 115
4 SDC|24 _ DCL|44 64 104|124 144 164
2109 EOT DC4 $ 4 D T t
4 al14 24 36(34 52|44 eslsa 84|64 100|74
5 PPCI25 __ PPU|45 65 105 125 145 165
210 1] ENQG NAK % 5 E 1) e u
S SIS 21125 37135 3|45 69|55 85165 101175 _ 117
3 26 46 |66 106 126 146 166
611 fas Acxswstgzzs & 38|36 6 5446 70/56 vasss 1027 v
7 27 47 67 107 127 147 167
o 11 1'r BEL717E782327 ' 37 7 55|47 71l57 " g7ls7 9 77 w
39| 4
10 GET|30 SPL|50 70 110 130 150 170
1000 BS CAN 8 H X h X
8 8|18 24|28 40|38 56|48 7258 8sles 10478 129
1T ___TCI31 _ SPD|51 71 111 131 151 171
100 1| HT EM) 9 1 4 Y 1 Yy
9 g 25|29 413 57149 7359 8glss gsl79
12 32 52 72 112 132 152 172
1ol QA LF1 1ASUB252 * 2l3a_° ssl J 74!5A z IsA gel7A 122
A 42|34 4A 5 gplsa 7 1
13 33 53 73, 113 133 153 173
191 1] VT ESC + ’ K
B 11118 27]28 43|38 sglaB 75/58 o1leB g7178
14 34 54 74 114 134 154 174,
1100 FF FS ’ < L ! ;
c 121 28l2c 44/3C solac 76/5C g2lsc__ 1gsl7c 124
15 _ 35 Iss. 75 [115__ [135 _ 155 175
1101 CR a3 - = M]] }
D 131D 23|2D 45/3D g1lap . 77lsD 93lsD gol7zp ~ 128
16 36 |56 76 116 136 156 176
1110 _SO RS . > N n
1E 14116~ 3|2k - "46|3E° " 62|4E " 78|SE_ -~ ~94lsE - 1IPl7E 126
17 37 57 77 117 137 157 T oot
1111 SI - o R
F 15l1F 31or 47|3F 63l4ar o|sF gsler 1117 127
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS

KEY:

hex

octal

25 P
NAK l
15

PU| Message Mnemonic

ASCII/1SO character
decimal

Table 4.1 ASCII 7-bit Code Chart

48

The standard recommends the following format for Binary Integers. The data may
contain as many 8-bit bytes as desired. The most significant byte is sent first. The
order of the bits corresponds to the order of the bus data lines. For example the
most significant bit corresponds to DIO8 and the least significant corresponds to
DIO1. The data is assumed to be right justified, and in 2's complement notation.

For example, the number 7 (decimal) would be coded as

oloo
ol|wO
olo
o|m
ola
- |
- N
b | b

4.2.3 Binary Floating Point

The IEEE 488.2 standard recommends using the IEEE Std 754-1985 for representing
floating point numbers. Appendix B contains the definition for IEEE floating point
binary numbers. Refer to it if you want to know how they are built. Fortunately, most
devices take care of that function for you. However, it is important to know that
this data is received as an <Arbitrary Block Program Data>. It is sent as a
< Definite Length Arbitrary Block Response Data>. These data formats are explained
in the following section.

Table 4.2 Talker and Listener Formats

Listener Formats Status
<Decimal Numeric Program Data> Required
<Character Program Data> Optional
<Suffix Program Data> Optional
<Non-Decimal Numeric Program Data> Optional
<String Program Data> Optional
<Arbitrary Block Program Data> Optional
<Expression Program Data> Optional

Talker Formats

<NR1 Numeric Response Data> Required
_<Arbitrary ASCIl Response Data> | Required
‘<Character Response Data> | Optional
<NR2 Numeric Response Data> Optional
<NR3 Numeric Response Data> Optional
<Hexadecimal Numeric Response Data> Optional
<Octal Numeric Response Data> Optional

< Binary Numeric Response Data> Optional
< String Response Data> Optional

<Definite Length Arbitrary Block Response Data> Optional
<Indefinite Length Arbitrary Block Response Data> Optional

49

4.3 Data Formats

The standard aiiows you to use any of the above codes for data transmission bet-
ween devices. It also provides other protocols to aliow coding of almost any type
of data. The Sections 4.3.1 and 4.3.2 on listener and talker protocols define the for-

mats. Table 4.2 lists the formats defined b by 486.2.

4.3.1 Device Listening Formats

The Listening Device must be very forgiving in what it receives from the talker. This
is where the idea of forgiving listening and precise talking really shows up. The
format of numbers received is very flexible. However, when we define the format
for sending data it will be very rigid. This allows new devices to work with old devices
and formats while ensuring uniformity in future devices.

An example of this forgiving listening is uppercase lowercase equivalence. The
listener must accept either uppercase or lowercase letters as equivalent.

Decimal Numeric Program Data

The first data format we’ll examine is the <Decimal Numeric Program Data>, also
indicated by <NRf> for flexible Numeric Representation. So what is the accep-
table format for decimal data? Lets take a look. The following syntax diagrams show
the valid format. Essentially, it accepts almost any format known to man. Okay, not
quite all.

The <NRf> element is defined as

—-trmnt issa> |-—wah ite space

<mantissa> is defined as

<optional
digits>

<optional
digits>

50

Where <digit> is defined as a single ASCII byte in the range of 48-57 decimal (ASCII
0 through 9).

<optional digits> are defined as

",'

<exponent> is defined as

<white space> is defined as

! ol White space] .

character>

And <white space character> is defined as a single ASCII character in the range
0 through 9 or 11 through 32 decimal. This includes the ASCII control characters
null through space, but excludes the New Line or Line Feed character (10 decimal).

Here are some examples of valid formats.

A28
123
+123
"JRE -45
+1230+45
JRE +1
+1230 -1
0.123

As you can see, this format is very forgiving.
What rules apply to this format? The <mantissa> cannot have more than 255

characters excluding leading zeroes. The exponent must be in the range of — 32000
to 32000.

51

If a device receives a <NRf> of a precision greater than it can handle the device
must round the number rather than truncating it. When rounding, the device ignores
the sign of the number and rounds up on values greater than or equal to one half.
It rounds down on values less than one half. For exampla,

Input Value Rounds To

1.3499 - 13
135 14
-2458 =25
-2447 -24

Suffixes are also allowed within this format. The suffix expresses the units and
multipliers (optionally) that may be used to interpret the data sent.

Syntax for the suffixes is defined as:

<suffix <suffix

mJit> 1 unit>
| <white |) >

Y space?

— | u:fvf)_y«t: T

See Appendix A for a list of suffixes and multipliers.

>

Non-Decimal Numeric Program Data
The standard also defines a format for non-decimal data. It defines a format for hex-

-adecimal, octal and binary numbers, using ASCII characters. The following syntax
diagram shows the standard for these three data structures.

52

®

For example:

fHA2F
#hale
Ay
1
#q54
#B01101
#b10010

P

63

String Program Data

This format aiiows any 7-bit ASCIi character, including control codes and non-printing
characters to be transmitted between devices. This is useful when transmitting
display data, such as to a printer or CRT.

<non-single
quote char>

<inserted ">

<non-double
quote char>

The <inserted ’> and <inserted "> provide the means of including the quote
character (), or double quote () in the data.

Examples:

"this Is & string’

"this is also a string”
’this isn™t wrong’
"neither is ** this”

Arbitrary Block Program Data

This data element allows any 8-bit byte, including extended ASCII codes to be
transmitted between devices. The first byte following the ** #” contains a number.
if this number is ‘0" (ASCII 48 decimal), then this is an arbitrary length block and
is terminated with an END MESSAGE (See Chapter 5 for the definition of the END
MESSAGE). If the number is something other than zero, then that number indicates
the number of length digits that follow These length digits are the number of data
bytes that follow in the block.

<{non-zero <8-bit
digit> | 'i 1' | data byte> !"

0 dufba;iiytto > @ END

®

54

For example four data bytes (DAB's) could be sent using:
1. #14<DAB> <DAB> <DAB> <DAB> _
2. #3004<DAB> <DAB> <DAB> <DAB>

3. #0<DAB> <DAB> <DAB> <DAB>NLAEND
Expression Program Data

This data element evaluates to a scalar, vector, matrix, or string value. It allows the
device to evaluate and manipulate the parameters sent to it.

The syntax for expressions is defined as:

(O—Lcexpression }—())

where <expression> Is a sequence of ASCII characters in the range 32 to 126
decimal except the ", #,°, (,), and ; characters. An expression may also be a device
defined set of program data elements except arbitrary block.

For example:
(a+b=-c¢)
Summary

So you can see that this new standard provides a variety of formats for coding data
received by listening devices. As stated before, the listening device must be very
forgiving of the format of data received.

4.3.2 Device Talking Formats |

Contlnulng on with the concept of forglvlng Ilstenlng, preclse talking, let's now look
at device talking formats. You will note that the definitions for data sent from a
device Is much more restricted. This makes it easier for Iistenlng devices to decode
the data. rom e SO T

Data Separators
Data elements in the same message are separated by commas (“,” ASCII 44 decimal).

Data can be further separated into message units by using the semicolon (*;” ASCI
59 decimal).

55

Numeric Formats

The 488.2 talking formats include characters, integers, floating point, hexadecimal,
ctal, and binary numbers, strings, and arbitrary blocks.

O

Let’s look at the number formats.
NR1 Numeric Response Data — Integers

This first data format consists of integer numbers with an implied decimal point.
The syntax diagram follows.

.'

Examples include

123
+123
-12345

NR2 Numeric Response Data — Fixed point

This number format shows how to represent a floating point number with an ex-
plicit decimal point. This format does not have an exponent.

Examples
123

+1.234
-0.12345

56

NR3 Numeric Response Data — Floating Point

These numbers are floating point numbers with an explicit decimal point and an
exponent.

.'

.I

Examples
1.23E+5

123.4E - 56
- 12345.678E + 80

Hexadecimal Numeric Response Data

The standard includes a data format for hexadecimal data. It uses the following
format.

O—®

Joeepss

"

Examples include:
#HADOE

#HO1F2
#HF3B

This is the same format as the listening format except that lowercase characters
are not allowed.

57

Octal Response Data

Examples:

#Q7035
#Q30572
#Q765432

This is the same format as the iistener format except that lowercase is not allowed.
Binary Response Data

IEEE 488.2 defines the format for binary data as:

Examples:

#8011101
#810101010
#81011

This is the same format as the listener format except that lowercase is not allowed.’

Now that you've seen the data formats for numeric data let’s look at the formats
for characters and strings.

58

Character Response Data

When a numeric response is not suitable, the device may send a character response.
This response is used to send mnemonics between devices. For example, the device
may send characters to describe how to set it to its present state.

The format is defined as

<upper-case

alpha>
<upper-case e
<digit>

HP-1B R.16

Where <uppercase alpha> is a single ASCIl character in the range 65-90 decimal,
or in other words, the standard uppercase alphabet. Note that this diagram shows
that the response must start with an alpha character. It also shows that the response
may include the underscore character (ASCIl 95 decimal).

Examples:

START
R2_D2

String Response Data

In the case where a device responds with a string of characters it will use the follow-
ing format.

<non-double
quote char>

HP-18 r. 1T

Examples:
*This IS A valid string”

"SO IS "" THIS *
*SHE SAID ""HELLO"".”

What if you need to send an arbitrary number of 8 bit data bytes? The 488.2 stan-
dard even provides a format for that.

59

Definite Length Arbitrary Block Response Data

This format allows a device to send any arbitrary device dependent data over the
bus as 8-bit data bytes. The coding for this data should follow the recommenda-
“tions for encoding binary data that we encountered earlier in this chapter.

The format follows.
<non-zero | <8-bit
() digit> data byte> %"

Where <non-zero digit> is a digit (not equal to 0) which indicates how many
<digit>’s follow. The <digit>’s, taken as an integer indicate how many <8-bit
data byte>’s follow.

Examples:

#12<DAB> <DAB>
#3001<DAB>

indefinite Length Arbitrary Block Response

This format allows the device to send data in blocks of indefinite lengths. This is
useful where the length of the transmission is unknown, or where transmission
speed or other conditions prevent dividing the output into known length blocks.
The format follows.

d,:S‘::;:,,

N— J

Note that the NLAEND Message Terminator is required to end the block of data.
This message also serves as the Message Terminator for the entire message and
must not be sent again.

Examples:

#0<DAB> <DAB>NLAEND
#0<DAB>NLAEND

60

Arbitrary ASCIl Response Data

This format allows the device to respond with undelimited ASCII text. This is useful
to send display text between devices.

The format follows.

F <ASCI1
data byte> | @ AEND

The <ASCII data byte> is any ASCIll encoded data byte except the NL character
(10 decimal). The data is terminated by the Response Message Terminator, NLAEND.

Examples:

<ASCIl Byte > <ASCII Byte>NLAEND
NLAEND

61

Chapter 5
Syntax

5.1 Overview

This chapter digs further into the nuts and bolts of the operation of a 488.2 device.
Here we discover how all the data formats and commands learned about earlier
get plugged together. As with the data formats, the principle of forgiving listening

and precise talking applies.

5.2 Listening Syntax

As you s;aw in the chapter on Data Coding and Formats, there are differences bet-
ween what a device must send as data and what it will accept as data. The same

is true for the syntax of listening and talking.

The first thing that we need to know is how to end a message.

5.2.1 Terminators

There are several ways to terminate a meséage to a Listening device. Basically, this
allows older controllers and devices to continue to work with devices that use this
newer standard. The <PROGRAM MESSAGE TERMINATOR> s defined as

Q

whit

aces QD)—(AEND
AEND

Where <white space> is defined as:

L <white space]

character>

63

And <white space character> is defined as a single ASCII character in the range
0 through 9 or 11 through 32 decimal. This includes the ASCII control characters
null through space, but excludes the New Line or Line Feed character (10 decimal).
In general, devices ignore white space. It is used to make the commands more
numaniy readabie.

The AEND indicates that EOI is asserted with the last byte sent.

5.2.2 Separators

The sepafators include the Program Message Separator, the Program Header
Separator, and the Program Data Separator. As their names imply, each has a dif-
ferent function.

Program Message Separator

The Program Message Separator is defined as:
<white
i space> f (:)

This separator is placed between commands in a single message to create a com-
plex command.

Program Header Separator

The Program Header Separator is defined as:

[<white .

———
space>

The header separator is placed between commands and their parameters. Also, this
Is the only place where <white space> is significant. It indicates the end of the ,
command or Program Header, and the beginning of the data.

64

Program Data Separator

The Program Data Separator is defined as:

<white | <white |
space> space>

This definition shows that a comma will separate data. There may also be some
white space sprinkled in.

Well, now that you know how to end messages, and separate them, let's see how
to start one.

5.2.3 Commands

The <COMMAND PROGRAM HEADER > Is what really starts getting the work done
in controlling a device. In its simplest form, it is the device command. It is defined as

<white <simple command

] space> r program header>

<compound command
program header>

<common command
program header>

Where <simple program header> is a <program mnemonic> or in other words,
a device command mnemonic.

+
A <compound command program header> is defined as

<program | <progrem | _ Lo
-{memonic? mnemonicy| - o

65

A <common command program header> is defined as

() <program
i mnemonic> [

HP-18 R.28

These are the IEEE 488.2 commands discussed in Chaptef 7, Common Commands.

Program Mnemonic

So what can a <program mnemonic> contain? it is defined as

<upper/lower

[case alpha>]
» <upper/lower >

case alpha> %
L]

HP-1D R. 28

Where <upper/lower case alpha> is a single ASCII byte in the rangé 65-90 or 97-122
decimal. These are the uppercase and lowercase characters of the alphabet.

As before, a <digit> is defined as an ASCII byte in the range 48 - 57 decimal. These
are the ASCIl numbers 0 through 9.

The “_" represents the “underscore”, ASCII byte 95 decimal.

These mnemonics can have a maximum of 12 characters. But for brevity, a length
of 4 is preferred.

The Queries tell the device to respond with information. You will note that the Query
syntax is identical to the command syntax with a “?”” appended. ‘

66

A <QUERY PROGRAM HEADER> is defined as

<white <simple query

i space> r program header>

<compound query
program header>

<common query
program header>

A <simple query program header> is defined as

o <program
memonic> i

As you can see, a query is simply a program mnemonic that ends in a “?".

As with the <COMMAND PROGRAM HEADER >, queries can be separated with
a “:"” to create a <compound query program header>.

<program |} . <program
memonic) mnemonic>

The <common query program header> is preceeded by an “*”.

<program
memonic>

67

5.3 Talking Syntax

You wili find that the Taiking Syntax is very similar to the Listening Syntax of the
previous section. However, as with the Data Formats, it is much more precise.

5.3.1 Terminators

A <RESPON$E MESSAGE TERMINATOR> is defined as

ONGED

This means that the EOl line is asserted while the New Line or Line Feed character
(10 decimal) is being sent on the bus.

Now you may ask, “What is a response message?” This is the message that a device
sends in response to a query. Since some devices accept compound (multiple)
queries in one message, the response may also contain several pleces of data.
Another important thing to remember is that the device wili not send any more data
after the <RESPONSE MESSAGE TERMINATOR > until it receives another query.

5.3.2 Separators

As with the listening syntax, there are several separators used in the talking syntax.
Message Separator

The <RESPONSE MESSAGE UNIT SEPARATOR > separates response messages
that are sent as a single response. It is defined as the *;” character. As mentioned
before, responses may contain several messages in response to multiple queries.
The device must use a *;” to separate these messages units.

Data Separator

The <RESPONSE DATA SEPARATOR> separates sequential data elements from
each other, since a device can send multiple pieces of data in the same message

unit. It is defined as the *,” character. In some cases, the response to a query con- .

tains several pieces of data. The device sends a comma between each of these items.
Header Separator

The <RESPONSE HEADER SEPARATOR> separates the response header from
the response data. It is defined as the “ " (space) character.

68

5.3.3 Response Data versus Learn String

There is one last thing to discuss before leaving syntax. Devices can respond with
two different types of data, Response Data ora “Leam String”. The Response Data
will contain only the data required to respond to a query. For example, the response
to a status query would be an integer containing the status byte. The second type
of response, the Learn String, contains a command header as well as the the data.
The command header will contain the command necessary to set the device
parameters to the it's present state. For example if you queried a voltmeter for its
range setting, it would send back a string that contained the command necessary
to set the voltmeter to the range that it is presently set to.

69

Chapter 6
Status Reporting

6.1 Overview

This chapter describes the Device Status Reporting model defined by the IEEE 488.2
standard. This model builds upon and extends the specifications of the original
IEEE 488 standard. It provides a method to transfer the status byte to the controller
using either the IEEE 488.1 Serial Poll or an |IEEE 488.2-defined common query. In
addition it defines more common commands and queries to obtain additional in-
formation. Figure 6.1 shows an overview of the status reporting structure.

The sections of this chapter expand on the information shown in the figure. They
explain the operation of the Status Byte, request enabling, standard status data
structures and parallel polling.

Status Data Structure
.7

ture

=l

7:

)

M |
___—_} Sum-n;sunu-

+ Service Request Enablimg

|
MSS Enabled Summary Status

Service Request Generation

Service Request Indication (rav)

488.1
Service Request Function

Figure 6.1 IEEE 488.2 Status Reporting Structure Overview

71

6.2 Status Byte Register

IEEE 488 originally defined the Status Bvte and provided the Serial Poll to allow
controllers to read it. However, other than the RQS bit, it doesn’t define how the
bits are set or cleared. It also left the definition of the bits contained in the Status
Byte compietely up to the device designer.

IEEE 488.2 further defines the Status Byte. Figure 6.2 shows that this standard
defines meanings for bits 4, and 5. IEEE 488.1 defined bit 6. In addition, 488.2 defines
more commands that allow the user to access the Status Byte and associated data
structures. It’s important to note that the Serial Poll DOES NOT clear the Status
Byte, even though it does clear the RQS bit. The byte is cleared by clearing the
related status structures. IEEE 488.2 provides a clear command (*CLS) which clears
all of the Status Data Structures, that is all of the Event Registers and Queues. This
causes the bits in the Status Byte to be cleared. The sections that follow give greater
detail on these other structures and how they work.

- = -Status Summary Messages - — -

RQS “---read by Serial Poll
D107
71 g 191413 ! 21110 Status Byte Register
pros! DI10SDIOSDI04DI0ND102D101
MSS <-read by ¥STB?

Figure 6.2 Status Byte Register
Let’s look at the bits defined in the Status Byte.

6.2.1 Event Status Bit

{EEE 488.2 defines the Event Status Bit (ESB) to be bit 5 of the Status byte. Its state
indicates whether or not an' enabled standard event has occurred Section 6.6 details

what events can be monitored.
6.2.2 Message Available Bit .
- |EEE 488.2 defines bit 4 of the Status Byte to be the Message Available'Bit (MAV).'

This bit indicates whether or not the Output Queue is empty. Whenever the device
has data available to output this bit will be TRUE.

72

6.2.3 Master Summary Status Bit

The Master Summary Status Bit (MSS) indicates whether or not the device has at
least one reason to request service. Even though the device sends the MSS bit in
bit 6 of the status query response, it is NOT sent in response to the serial poll. It
is not considered part of the IEEE 488.1 Status Byte.

The IEEE 488.1 Serial Poll tells the device to send the Status Byte. Bit 6 will con-
tain the Request Service (RQS) bit. The device will then clear the RQS bit if it was set.

6.3 Enabling Service Request

The service request enabling operation is shown in Figure 6.3. The user can set
bits in the Service Request Enable Register (SRER). These bits correspond to bits
in the Status Byte. When a bit Is set in the SRER it enables that bit in the Status
Byte to request service. For example, setting bit 4 in the SRER will cause the device
to request service whenever the device has data in the Output Queue.

- — - Status Summary Meesages- — - '

‘ l yj l l 1 1 + + -veeenes read by Serial Poll
Service f RQS
Request 7|6 feseav] 3| 2| 1 [0] >status Bit Register
Generation \ 1SS
A f | R read by ®#STB?
|
&
2 :
0 |
s %D ,
m ——
S |- A ¢
R
f , Service Request
7 S14]3|2|1}9 Enable Register
\ #SRE <NRf> :
#SRE?

Figure 6.3 Service Request Enabling

73

6.4 Event Registers

Event Registers capture changes that occur within a device. Each bit in an event
register corresponds to some device condition. These bits become TRUE when some
pre-defined device condition change occurs. These changes are sometimes called
transitions. The event registers guarantee that the user can’t miss this change
because these bits are “sticky”. That is, once they become TRUE they cannot be
cleared except by the user. There are two means of clearing an event register.
Reading the register will clear it. Also, the Clear Command (*CLS) will clear all event
reqisters.

IEEE 488.2 defines three transition criteria for setting these event bits TRUE.

1. Positive Transition. The event becomes TRUE when its condition makes a
FALSE to TRUE transition.

2. Negative Transition. The event becomes TRUE when its condition makes a
TRUE to FALSE transition.

3. Positive or Negative Transition. The event becomes TRUE when its condition
makes either a FALSE to TRUE or a TRUE to FALSE transition.

Devices may have more than one Event Status Register. IEEE 488.2 only defines
a command to read the Standard Event Status Register. So if a device has more
event registers the device will provide other device dependent commands to read
them. See Section 6.6 for more information on the Standard Event Status Register.

A device may also provide Event Enable Registers. These registers work in the same
way as the Service Request Enable Register described in Section 6.2. Briefly, set-
ting bits in the enable register allows bits in the event register to be summarized
in the Status Byte. _

k4

6.5 Queues

Queues permit the device to report status or other information in a sequential man-
ner. For example, the device could report error messages in the order that they oc-
curred. Each queue will have a summary message bit that indicates that the queue
contains some information. This bit will be TRUE when the queue contains any in-
formation. Otherwise, it will be FALSE.

One example of the queue data structure is the Output Queue. Its status is sum-
marized in the MAV bit. See Section 6.7 for further details on its operation.

74

Each device must define some device dependent command to read from any queue
other than the Output Queue. Reading the queue will remove that piece of informa-
ticn from the queue. The queue is considered empty when it no longer contains
any information. :

You can clear a queue by reading all of the information in the queue. You can also
clear all of the status queues (except the Output Queue) using the Clear Command
(*CLS). A device may also have a unique device dependent command to clear its
queues.

6.6 Standard Event Status Register

This section begins a description of status structures that must exist in all devices.
So far, we have only discussed generalized models of how status reporting works.
Here we begin digging into the details of operation again.

Figure 6.4 represents the operation of the Standard Event Status Register (SESR).
This is a specific application of the event registers discussed previously. |IEEE 488.2
specifies the meaning of each bit in the SESR. Lets look at these definitions.

5
o
£ s
5 £ 035 3
©
'] % ut: .g 5 '% 5
pU g & E S g
s ¢ T e ¥ 3 3
g . E? s &3¢
© 2
s 8 5 £33k
Standard Event
716151413 |2]tlo Statuc Register
#ESR?
&
& |e &
% I
O la—
-
- —
- Standard E ént
716|5]|4 Status Regvister‘
#ESE ¢NRP
wESE?

Summary Message

Event Sumary Bit (ESB)
(Bit 5 of Status Byte Register)

Figure 6.4 IEEE 488.2 Standard Event Status Register

75

6.6.1 SESR Bit Definitions
Bit 7 — Powsr On (PON)

This bit indicates that the device’s power supply has been turned off and then on
since the last time this register was read.

Bit 6 — User Request (URQ)

This bit indicates that the user has activated some device defined control. This bit
will be set regardiess of the Remote Local state of the device. This provides the
user with a means of getting the controller's attention.

Bit 5 — Command Error (CME)

This bit indicates that the device has detected acommand error. The following events
cause a command error.

1. An IEEE 488.2 syntax error. This means that the device received a message
that did not follow the syntax defined by the 488.2 standard. For example, it
received data that violated the device listening format.

2. A semantic error occurred. For example, the device received an incorrectly
spelled command. Another example would be that the device received an op-
tional 488.2 command that it does not implement.

3. The device received a Group Execute Trigger (GET) inside a program message.

Bit 4 — Execution Error (EXE)

/

This bit indicates that the device detected an error while trying to execute a com-
mand. This bit indicates that:"

1. a <PROGRAM DATA > element received in acommand was outside the legel :
range for the device, or inconsistent with the operation of the device.

2. the devuce could not execute avahd command due to some devuce condition
Bit 3 - Device dependent Error (DDE)
A device-dependent error is any device operation that did not execute properly due

to some internal condition such as overrange. This bit inducates that the error was
not a command, query, or an execution error.

76

Bit 2 — Query Error (QYE)

This bit indicates:
1. an attempt to read data from the Output Queue when no data was present.

2. that data in the Output Queue was lost. An example of this would be queue
overflow.

Bit 1 — Request Control (RQC)

This bit indicates to the controller that the device wants to become the active
controller-in-charge.

Bit 0 — Operation Complete (OPC)

This bit indicates that the device has completed any pending operations and is ready
to accept new commands. This bit is generated only in response to the Operation
Complete (*OPC) command.

6.6.2 Standard Event Status Register Operation

The Standard Event Status Register (SESR) operates in the same manner as the
Event Registers described in Section 6.4. All 488.2 devices have the SESR register.
Other event registers are optional.

The Standard Event Status Enable Register is written with the Enable Status (*ESE)
command and read with the Enable Status (*ESE?) query.

The SESR can only be cleared by:
1. a Clear Command (*CLS).
2. reading the Standard Event Status Register (*ESR?).

3..a power-on transition (at the discretion of the device designer). Note that in

this case, the device will clear the register and then record any transitions that

occur, including setting_ the Power On (PON)bit..
6.7 Output Queue

The Output Queue Is a “first-in, first-out” (FIFO) queue. It stores output messages
until they are read from the device. The availability of data is summarized in the
MAV bit of the Status Byte. You read the Output Queue by addressing the device
to talk and then handshaking the bytes.

77

The Clear Command does not clear the Output Queue. It can only be cleared by
the Reset Command, the Device Clear Command (488.1) or by power on. That way,
you have less chance of losing data.

6.8 Parallel Poll

IEEE 488.1 defined Parallel Polling as a fast means of obtaining status from a device
or multiple devices on the bus. This section briefly describes the means provided
optionally in 488.2 of generating and controlling a device response to a Parallel Poll.
Figure 6.5 shows the Parallel Poll Data Structure. You can see that this structure
is the same as the Event Register discussed above. However, instead of being sum-
marized in a bit in the Status Byte, the summary bit is sent in response to a Parallel
Poll. This summary bit is the ist or individual status local message.

As with the Event Registers there is an Enable Register to determine which events
are summarized in the jst. IEEE 488.2 defines an optional command to write the

enable register and a query to read it. It also defines the query to read the ist without
doing a paraliel poll.

Device Defined Conditions - - -Summary Message----

L

Device Defined Conditions [15]14[13[12]11]10] o] 8| |7 |wsslesspu] 32T 1] 0 | Status Byte Register

— ,\J)
et (&
e — Q)
il 2) ¥
) S— y
TR : \?e‘c}éé 1
- | PO

[is[14fs312]ui[ie] o [e] [7]eTsT«]32]1 o] Eamtiion elln
' WORE CNRTY
Individual Status
#IST?

w18 F.6.8

Figure 6.5 Parallel Poll Response Handling Data Structure

78

Chapter 7
Common Commands

Overview

The IEEE 488.2 Standard designates a set of commands that each device must have.
Note that these commands are sent in the DATA Mode (ATN False). These are not
new bus commands, but are new device commands, common to all devices. Table
7.1 lists commands by command group.

The requirement of some common commands guarantees that all devices will have
aminimum set of capabilities. This permits test system programmers to write code
modules that will work with all devices.

The following section contains a more complete description of each of the com-
mon commands defined by IEEE 488.2

7.2 Command Descriptions
This section gives a description of each command group and the indivdual com-

mands within each group. This is by no means an exhaustive description but should
still give you a good idea how each command functions.

79

Table 7.1 ‘Common Command Groups

Mnemonic Description Compliance
AUTC CONFiIGURE COMMANDS
*AAD Assign Address _ Opt.
*DLF Disable Listener Function Opt.
; SYSTEM DATA COMMANDS
*IDN? Identification Query Reqd.
*OPT? Option Identification Query Opt.
*PUD Protected User Data Opt.
*PUD? Protected User Data Query Opt.
*RDT Resource Description Transfer Opt.
*RDT? Resource Description Transfer Query Opt.
INTERNAL OPERATION COMMANDS
*CAL Calibration Query Opt.
*LAN Learn Device Setup Query Opt.
*RST Reset Reqd.
*TST? Self-Test Query Reqd.
SYNCHRONIZATION COMMANDS :
*OPC Operation Complete Reqd.
*OPC Operation Complete Query Reqd.
*WAI Wait to Complete Reqd.
MACRO COMMANDS)
*DMC Define Macro Opt.
*EMC Enable Macro . opt
*EMC? Enable Macro Query Opt.
*GMC? Get Macro Contents Query , Opt.
*LMC? Learn Macro Query Opt.
*PMC Purge Macros Opt.
PARALLEL POLL COMMANDS
*1ST? Individual Status Query Reqd. if PP1
*PRE Parallel Poll Enable Régister Enable Reqd. if PP1
*PRE? Parallel Poll Enable Reg Enable Query Reqd. if PP1

80 -

Table 7.1 Common Command Groups (Cont'd)

Mnemonic Description Compliance
STATUS & EVENT COMMANDS
*CLS Clear Status Reqd.
*ESE Event Status Enable Reqd.
*ESE? Event Status Enable Query Reqd.
*ESR? Event Status Register Query Reqd.
*PSC Power on Status Clear Opt.
*PSC? Power on Status Clear Query Opt.
*SRE Service Request Enable Reqd.
*SRE? Service Request Enable Query Reqd.
*STB? Read Status Byte Query Reqd.
DEVICE TRIGGER COMMANDS
*DDT Define Device Trigger Opt. if DT1
*DDT? Define Device Trigger Query Opt. if DT1
*TRG Trigger Reqd. if DT1
CONTROLLER COMMANDS _
*PCB Pass Control Back Reqd. if Controller
STORED SETTINGS COMMANDS
*RCL Recall Instrument State Opt.
*SAV Save Instrument State - Opt.

7.2.1 Auto-Configure Commands

IEEE 488.2 defines an algorithm to automat‘ically assign device addresses to devices.
This simplifies the job of the person who physically puts the system together. The
different devices need only be connected together. the software can then query
the devices to find out what they are and then make address assignments accor-
dingly. A complete description of this algorithm is beyond the scope of this book.
Remember, however, that this capabillty is optional and may not be implemented

in all devices.

*AAD

Accept Address Command

This command, used with the Address Set protocol mentioned above, permits the
controller to detect all address configurable devices, and assign them a 488.1 bus

address. Using this command, the controller searches the device identifiers. Us-

ing this information it then assigns 488.1 bus addresses to these devices using the

*AAD Command.

81

*DLF

Disable Listener Function Command

This commands tells a device to stop iistening on the bus. The device can no longer
receive any data until it receives a Device Clear (DCL) command. This command
is used with the *AAD command to perform the Automatic System Configuration.

7.2.2 Controller Commands

There is only one command in the Controller command group. This command pro-
- vides an orderly means to pass control within a system.

*PCB

Pass Control Back

The Pass Control Back Command tells a potential controller what address to pass

control back to. Using this command, a controller can tell other devices which can

be controllers where to send the 488.1 Take Control (TCT) command when they are

ready to give up control of the bus. The command is followed by a number, which

when rounded, contains the bus address of the device that should become the next

controller. The number must round to an integer value in the range 0 to 30 decimal. .
The command may be followed by two numbers. The first will be used as the primary

address, the second as the secondary address of the new controliler.

7.2.3 Device Trigger Commands

The Device Trigger Commands give the user the option of controlling exactly how
a device responds to a bus trigger command (GET). It also permits the “forgetful”

user to read what the devicg is going to do when it receives the GET. These com-
mands are optional ’

Q9 alc ST s .

*DDT

Define Device Trigger Command

This command stores a sequence of device commands which the device will ex-
ecute when it receives a Group Execute Trigger (GET) IEEE 488.1 interface message
ora *TRG common command. The command sequence sent to the device may con-
tain an arbitrary block of program elements or a zero length data block. If it con-
tains a zero length data block the device will do nothing when it receives a GET
or *TRG command.

82

*DDT?

Define Device Trigger Query

This command allows the user to examine the command sequence that the device
will execute when it receives the Group Execute Trigger (GET) or * TRG command.
The device will respond with a <Definite Length Arbitrary Block Response Data>
containing the commands it will exectute when it receives a trigger command.

*TRG

Trigger Command

The Trigger Command performs the same function as the Group Exectute Trigger
command defined by IEEE 488.1.

7.2.4 Internal Operat'ion Commands

These commands control the internal operation of the device. This group provides
commands to calibrate, test and reset the device. It also provides an optional com-
mand to read the internal settings of the device.

*CAL?

Calibration Query

This command tells the device to perform an internal self-calibration. The device
responds to indicate whether or not it was succesful in performing this calibration.
The response may also contain information about any calibration errors that oc-
curred.
.’

This operation of self calibration can not require any local user interaction to func-
tion properly. It must all be carried out completely by the device. It may not cause
any conditions that will violate the 488.1 or 488.2 standards.

When the device completes the calibration sequence it will return to the state it
was in previously or to a state designated-in the device documentation. -

The device response to this query will be an <NR1> (integer) in the range -~ 32767
to 32767. A value of 0 indicates that the calibration executed successfully.

83

*LRN?

Learn Device Setup Query

The Learn Device Setup Query tells the device to send a response that contains
all the necessary commands to set the device to its present state. The response
may later be sent back to the device to place it in this state. This provides the user
with a means of setting up a device manually and then reading the device setting
and storing that information for later use.

The response may not be in a “human-readable” form. It may be in ASCli or in binary.
However, sending this string back to the device will set it back to that state.

*RST

Reset
This command resets the device.
The Reset command:

1. Sets the device-dependent functions to a known state, independent of its cur-
rent state.

2. Sets the Device Defined Trigger (see *DDT command) to a device-defined state.
3. Disables macros
4. Aborts all pending operations
5. Forces the device to forget about any previously recieved *OPC commands
6. Forces the device to forrget about any previ:)usly received *OPC? queries
The Reset command does NOT affect:
1. The state of the IEEE 488.1 interface
The IEEE 488.1 address
The Output Queue
The Service Request Enable Register

The Standard Event Status Enable Register

o o0~ 0 N

The power-on flag

84

7. Macros (except to disable them)
8. Calibration data
9. The Protected User Data

10. The Resource Description Transfer Query Response
*TST?

Self-Test Query

This command causes the device to execute an internal self-test and report whether
or not it detected any errors. The device may also (optionally) indicate why it failed
the self-test. The device document will describe what the self-test checks.

The response sent by the device will be in <NR1> format in the range — 32767
to 32767. A zero response indicates that the test completed without detecting any
errors. Values other than zero will be described in the device documentation.

7.2.5 Macro Commands

IEEE 488.2 defines a set of optional commands to implement macros in a device.
Macros provide real power to the experienced system designer. Macros can be used
to:

1. provide shorthand for complex commands.
2. cut down bus traffic.

3. emulate other instruments.

*DMC

Define Macro Command

This command allows the user to assign a sequence of commands to a macro label.
The device executes the macro when it receives the macro label as a command.
The user defines a macro by sending the *DMC command, followed by a string
designating the label. Following the label, the user sends an <Arbitrary Block Pro-
gram Data > element defining the macro.

85

For example
*DMC “HOME” #18MOVE 0,0

defines a command that sends a pen piotter to its home position.

Macro definitions aiso allow the user to pass pa;ramete'rs with the macro.
Placeholders for parameters appear as a dollar sign (ASClI $, 36 decimal) foliowed
by a single digit in the range 1 to 9 (49-57 decimal). For example

*DMC “TEST_A" #221BEGFREQ $1;ENDFREQ $2

defines a macro with two parameters. Sending

TEST_A 1000,2000

would be equivalent to sending

BEGFREQ 1000; ENDFREQ 2000

to the device. Parameters may also be re-used within a macro. For example
*DMC “SWEEP__SET”,#234START $1;MARK1 $1;STOP $2;MARK2 $2
defines a macro which reuses two parameters. Sending
SWEE#_SET 1E6,5E6

would be equivalent to sending

START 1E6;MARK1 1E6;STOP 5E6;MARK2 5E6

The macro label may be either acommand or a query. The label cannot be the same
as a common command or common query. It may be the same as a device depen-
dent command. When a macro label is the same as a device dependent command,
the device wiii execute the macro rather than the device command if macros are
enabled. '

*EMC

Enable Macro Command

This command enables and disables the expansion of macros by a device. However,
it does not affect the macro definitions. An example of the use of this command
is to turn off macros in order to use a device dependent command which has the
same name as a macro. Sending this command followed by an <NRf> of 0 will
disable ali macros. Sending it with a number other than 0 in the range — 32767 to
32767 will enable macros. Of course the standard rounding rules for <NRf> apply
to the numbers sent as parameters.

86

For example, sending

*EMC 0.4

will disable macros. Sending
*EMC -12.4_

will enable macros.

*EMC?

Enable Macro Query

The Enable Macro Query allows the user to determine whether or not macros are
enabled on the device. The device will return a value of 1 (ASCII 49 decimal) when
macros are enabled. It will return a value of 0 (ASCII 48 decimal) when macros are
disabled.

*GMC?

Get Macro Contents Query

The Get Macro Contents Query allows the user to obtain the current definition of
amacro from a device. The user sends the *GMC? query followed by the label string
of the macro. The device responds with a <Definite Length Arbitrary Block Response
Data> element which contains the macro definition.

For example, sending
*GMC? “SWEEP_SET”

to a device will tell it to send the macro definition for the macro “SWEEP_;SET";,

*LMC?

Learn Macro Query

The Learn Macro Query instructs the device to respond with the labels of all the
currently defined macros. The device will respond with strings separated by com-
mas. If no macros are defined the device will return a null string of two consecutive
double quote (") marks. The response is the same whether or not macros are enabled
or disabled.

87

*PMC

Purge Macros Command

The Purge Macros Command causes a device to delete all macros in memory that
were defined by the *DMC command. All macro sequences and labels ars removed

from memory.

7.2.6 Parallel Poll Commands

IEEE 488.2 defines an optional set of comfnands to implement the Paralle! Poll func-
tions in a device. These commands write and read the Enable Registers, and read
the ist (Individual Status bit).

*IST?

Individual Status Query

The Individual Status Query permits the user to read the current state of the /st
local message of a device. The device’s /st is the individual status that a device
sends when it is Parallel Polled. The state of this bit is determined by the Parallel
Poll Enable Register and corresponding status information. The device will return
an <NR1>. it will be either a 0 (48 decimal) if FALSE or a 1 {49 decimal) if TRUE.
In otherwords, this command allows the user to read what a individual device will
send on a Parallel Poll, without performing the Parallel Poll.

*PRE

Parallel Poll Enable Register Enable Command

The Parallel Poll Enable Register Enable Command sets the bits in the Parallel Poll
Enable Register. These are thé bits which determine what device conditions are
summarized in the /st. The command is followed by a <Decimal Numeric Program
Data> element. The value of this number must round to the range 0 to 65535. This
number, when converted to binary format represents the bits set in the Register.

*PRE?

Parallel Poll Enable Register Enable Query

The Parallel Poll Enable Register Enable Query reads the contents of the Parallel
Poll Enable Register. The device responds with an integer in the range 0 to 65535.

88

7.2.7 Status & Event Commands

The Status & Event Commands provide a means to read and enable events within
the device. These commands include reading and writing to status structures within
the device, power-on events and reading the status byte.

*CLS

Clear Status Command

The Clear Status Command clears the status register and associated status data
structures summarized in the Status Byte, such as the Event Status Register. It also
clears all status related queues except the Output Queue.

*ESE

Standard Event Status Enable Command

The Standard Event Status Enable Command sets the Standard Event Status Enable
Register bits. The data is defined as <Decimal Numeric Program Data>. The device
will round this number to an integer as described in the Device Listening Formats
section of this chapter. Expressing this number in base 2 (binary) would then repre-
sent the values of the individual bits of the Standard Event Status Enable Register.

For example to set bit 5 (Command Error) and bit 2 (Query Error) the command
*ESE 36

would be sent to the device. The number sent to the device must be in the range
0 to 255 or an Execution Error occurs. :

*ESE?
Event Status Enable Query

This command reads the contents of the Standard Event Status Enable Registéf _
(SESER). In response to this query the device sends the contents of the SESER -
in Integer format. It will be in the range 0 to 255, - '

89

*ESR?

Event Status Register Query

This command reads the contents of the Standard Event Status Register. Reading
this register clears it. It returns an integer, which when converted to a binary number
represents the contents of the individual bits of the register. This number will be
in the range 0 to 255 decimal.

*PSC

Power-on Status Clear Command

This command controls the automatic power-on clearing of the Service Request
Enable Register, the Standard Event Status Enable Register, and the Parallel Poll
Enable Register. Setting the Power-on-clear Flag TRUE causes the registers to be
cleared at power-on, thus preventing the device from requesting service. Sending
a <Decimal Numeric Program Data> element that rounds to the integer value 0
makes the flag FALSE and thereby potentially allows the device to request service
at power-on. Sending any value other than 0, in the range — 32767 to 32767 sets
the flag TRUE.

For example the sequence
*PSC 0;*SRE 32;*ESE 128

allows a device to request service at power-on.
*PSC?

Power-on Status Clear Query

.~ —

1 L
The Power-on Status Ciear Query reads the status of the power-on-ciear fiag. A value
of 0 indicates that the flag is FALSE. A value of 1 indicates that the flag is TRUE.

*SRE

Service Request Enable

This command sets the Service Request Enable Register. This register determines
what bits in the Status Byte will cause a service request from the device. The data
sent with the command is a <Decimal Numeric Program Data>. The device rounds
this number to an integer. Expressing this number in base 2 (binary) would then
represent the values of the individual bits of the Service Request Enable Register.

SO

For example, to set bit 4 (Message Available) the command
*SRE 16

would be sent. The device would then cause a service request when data is ready.
*SRE?

Service Request Enable Query

This command reads the contents of the Service Request Enable Register. The
device returns the data as an <NR1> (integer), in the range 0 to 63 or 128 to 191,
since bit 6 (the RQS bit) cannot be set.

*STB?

Status Byte Query

This command reads the status byte with the Master Summary Status (MSS) bit.
The device responds with an integer in the range 0 to 255. These bits represent
the contents of the status byte. Bit 6 represents MSS rather than RQS (Request
Service).

7.2.8 Stored Settings Commands

The Stored Settings Commands permit the user to read and write the internal set-
tings of the device.

*RCL

Recall Command b

The Recall Command restores the state of a device from a copy previously stored
in local (to the device) memory. The device may have multiple storage registers,
so the command includes a numeric parameter to indicate which storage register
to use. These numbers will begin at zero and end at an upperbound determined

by the device. The state restored by the *RCL command are the same functions -

affected by *RST command.

91

*SAV
Save Command

The Save Command stores the present state of the device in local memory. This

adado ta tdambiani da din nd £& * H
state is identical to the state affected by the *RST command. The device may have

more than one location in which to store this data. Therefore, the command is follow-
ed by a numeric parameter designating the storage register to use. These numbers
will begin at zero and end at an upperbound determined by the device.

7.2.9 Synchronization Commands

The synchronization commands enable the user to insure that commands are ex-
ecuted in unison on all devices. It does this by instructing the devices to wait to
execute further commands until it has completed executing all commands that it
is presently working on.

*OPC

Operation Complete

This command tells the device to set bit 0 in the Standard Event Status Register
when it completes all pending operations.

*OPC?

Operation Complete Query:

This query tells the device to place an ASCII ‘1’ (decimal 49) in the device’s output
queue when it completes all pending operations.

/?

*WAI

Wait to Continue

This command makes the device wait until all the previous commands or queries
complete. The device then continues executing commands that follow the *WAI .
command. '

92

7.2.10 System Data Commands

The System Data Commands give the user the abiltiy to gain further information
about devices within a system. They include a means to query each device for its
identity, read protected data and determine what device options are installed.

*IDN?

Identification Query

This command causes a device to send its “identity” over the bus. It sends it as
an <Arbitrary ASCIl Response Data> element. The data Is organized as four fields
separated by commas. The four fields are defined as follows:

Field 1 Manufacturer required
Field 2 Model required
Field 3 Serial Number ASCII “0” if not available
Field 4 Firmware Level or equiv. ASCII “0” if not available

Note that the ASCII character 0 mentioned above is the character “0”, decimal value
48 and NOT the “null” character, decimal value 0. An example might be

HEWLETT-PACKARD,347A,2221A01113,A1

This entire length of the response must be less than or equal to 72 characters. The
fields may not contain commas, semicolons, control characters (decimal 0-31), or
DEL (127 decimal). Otherwise, the fields may contain any ASCIl encoded character.

*OPT?

Option Identification Query -

The Option Identification Query tells the device to identify any reportable device

options. The device responds with an <Abritrary ASCIl Response Data> element. -

The response may contain any number of fields separated by commas. The precise.

format of the fields is up to the device designer Missing options respond withan
ASCIl 0 (48 decimal). If a device contains no reportable options it also responds

with an ASCII 0 (48 decimal). Fields describing the options may contain any ASClI -
character except commas (44 decimal), semicolons (59 decimal), control characters
(0-31 decimal) and DEL (127 decimal).

The overall length of the response must be less than or equal to 255 characters.

93

Protected User Data Command

The Protected User Data Command stores up to 63 bytes of data unique to adevice.
For example, this data may be calibration date, usage time, environmentai condi-
tions, inventory control numbers, etc. This data is protected by some means, such
as arecessed switch. The data can only be written when the protection mechanism
is disabled. This data only affects the *PUD? query. It has no effect on the opera-
tion of the device.

*PUD?

Protected User Data Query

The Protected User Data Query reads the data from the *PUD storage area. This
command thereby permits the user to retrieve the data previously stored.

*RDT

Resource Description Transfer Command

The Resource Description Transfer Command permits the user to store a Resource
Descriptor, or a capability description of the device in a memory location of the
device. This memory location is protected by some means such as a recessed switch
so that it can only be written when the protection is disabled. This memory does
not affect the operation of the device.

*RDT?

Resource Description Transfer Query

The Resource Description Transfer Query permits the user to read the Resource
Description stored by the *RDT command. The device will respond with a <Definite
Length Arbitrary Block Response Data> element.

94

Chapter 8
System Initialization

~ 8.1 Overview

IEEE 488 devices can be very complex. As a result of this, initializing these devices
can also be very complex. The IEEE 488.1 and 488.2 Standards define several levels
of reset. The device can reset the 488 interface, the command interpreter interface,
or its own internal functions.

This chapter will talk about:
* power-on reset
e the IEEE 488.2 Reset *RST command
¢ the IEEE 488.1 bus Device Clear Commands (DCL and SDC)
¢ the IEEE 488.1 Interface Clear Command (IFC)

8.2 Reset Protocol
The reset protocol initializes the entire system using three levels.
Bus Initialization The first level of reset puts the bus in the idle state.

Message Exchange Initialization The second level of reset insures the device can
receive a new program message.

Device Initialization The third level of reset initializes device-dependent functions
within a device.

95

8.3 Reset Commands

The following commands cause the three reset levels to occurn

IFC The 488.1 Interface Clear Message sets the system bus to an idle condition
(bus initialization). Aii devices are unaddressed. The system controiier becomes
the controller-in-charge. This is level one reset.

DCL or SDC These 488.1 messages clear the input buffer and output queue, clear any
commands in process and prepare the device to receive new commands
(message exchange initialization). DCL, Device Clear clears all devices. SDC,
Selected Device Clear clears devices addressed to listen. This is level two reset.

*RST The 488.2 Reset Command initializes the device-dependent functions within
a device (device initialization). This is level three reset.

8.4 Power-on Reset

At power-on, device settings may be returned to their settings when power was
turned off. Some devices may power up to one known state. IEEE 488.2 also per-
mits devices to power up to a state defined by the user. The Power-On Status Clear
*PSC command is an example of this.

Power-on clears the Service Request Enable Register, the Standard Event Status
Register, and the Parallel Poll Enable Register IF the power-on-status-clear flag is
TRUE or if the *PSC command is not implemented.

Power-on may not affect the following:
¢ the device’s bus address
e calibration data v
e Resource Description
e Option Identification

¢ Protected User Data

96

Appendix A

Multipliers & Suffixes

Table A.1 Multiplier Mnemonics

Definition | Mnemonic Name
1E18 EX EXA
1E15 PE PETA
1E12 T TERA
1E9 G GIGA
1E6 MA (Note) MEGA
1E3 K KILO
1E-3 M (Note) MILLI
1E-6 U MICRO
1E-9 N NANO
1E-12 P PICO
1E-15 F FEMTO
1E-18 A ATTO

NOTE: The suffix units, MHZ and MOHM are special cases which should not be

confused with <suffix mult.>HZ and <suffix mult.>OHM.

87

Table A.2 Suffix Elements

Preferred Allowed
Suffix Suffix Refarenced
Class (primary unit) | (secondary unit) Unit
Current A Ampsrs
Pressure ATM Atmosphere
Charge C Coulomb
Illumination CcD Candela
Ratio DB Decibel
Power DBM Decibel milliwatt
Capacitance F Farad
Mass G Gram
Inductance H Henry
Frequency HZ Hertz
Pressure INHG Inches of mercury
Energy J Joule
Temperature K Degree Kelvin
CEL Degree Celsius
FAR Degree Fahrenheit
Volume L Liter
llumination LM Lumen
lllumination LX Lux
Length M Meter
FT Feet
IN inch
Frequency MHZ Megahertz
Resistance MOHM Megaohm
Force N Newton
Resistance OHM Ohm
Pressure PAL Pascal
Ratio PCT Percent
Angle RAD Radian
) DEG Degree
t MNT Minute (of arc)
SEC Second
Time S Second
Conductance SIE Siemens
Mag Density T Tesla
Pressure TORR Torr
Amplitude \) Volt
Power w Watt
Mag Flux WB Weber
Luminous Flux LM Lumen

98

Appendix B
IEEE 754 Floating Point Format

The IEEE 488.2 standard recommends using the IEEE Std. 754-1985 for represent-
ing floating point numbers. This format specifies that each number be represented
by three fields. These fields are:

1. The Sign Field
2. The Exponent Field
3. The Fraction Field

The size of these fields depends on the precision of the number. For single preci-
sion numbers:

Sign field width 1 bit

Exponent field width 8 bits
Fraction field width 23 Dbits
Total width 32 bits

With the exponent ranging from —126 to + 127 with a bias of +127.
For Double precision numbers:

Sign field width 1 bit

Exponent field width 11 Dbits
Fraction field width 52 bits
Total width 64 Dbits

With the exponent ranging from —1022 to + 1023 with a bias of + 1023.
Let e represent the exponent,’s the sign bit, and f the fraction represented above.

For a 32-bit single precision format number the IEEE 754 definition provides the '
following formulas to determine the value of the number x represented in floating
point format:

ife=255andf+0 then x is Not a Number (NaN)
Ife=255andf =0 then x = —15()

If0 < e < 255 then x = —15(2¢-127)(1 4+ f)
lfe=0andf+0 then x = —15(2-126)0 + f)
fe=0andf =0 then x = - 15(0) (zero)

99

For a 64-bit double precision format number the IEEE 754 definition provides the
following formulas to determine the value of the number x represented in floating
point format:

fe=2047andf# 0 then x is Not a Number {(NaN)
ife =2047andf =0 then x = - 15(o) :
If0 < e < 2047 then x = —15(26-1023}(1 4+ f)
lfe=0andf%0 then x = —15(2-1022)0 + f)
fe=0andf=0 then x = —15(0) (zero)

Now that you know how to format the data and convert it back and forth, how do

you send the bytes? The following figure shows the relationship of the bits for a
single precision number.

DIO 4

8 7 6 5 4 3 2 1

S Epsp E E E E E E First byte sent
Eisp Fmsp F F F F F F Second byte sent
F F F F F F F F Third byte sent

F F F F F F F Fisp Fourth byte sent

Where: E,, is the most significant bit of the exponent.
E,;p is the least significant bit of the exponent.
Fmsp is the most significant bit of the fraction.
Fisp is the least significant bit of the fraction.

S is the sign bit.
E is an exponent bit.

F ‘ is a fraction bit.

»

100

The following figure shows the relationship of the bits for a double precision number.

DIO
8 7 6 5 4 3 2 1
S Ensp E E E E E E First byte sent
E E . E Eisp Fmsp F F F Second byte sent
F F F F F F F F Third through seventh
byte sent
F F F F F F F Fisp Last byte sent
Where: Eg, is the most significant bit of the exponent.

Eisp is the least significant bit of the exponent.

Fmsp Is the most significant bit of the fraction.

Fisp is the least significant bit of the fraction.

is the sign bit.
E is an exponent bit.
F is a fraction bit.

This data would be received as an <Arbitrary Block Program Data>. It would be
sent as an <Definite Length Arbitrary Block Response Data>.

101

Appendix C
IEEE 488.1 Capability Subset Codes

The ANSI/IEEE-488 recommends that all devices be marked near its connector with
the interface function codes it supports.

IEEE STD 488 PORT

=

SH1, AH1, T6,L3, SR1,RL2, PP2, DC1, DT®, CO, E1

Figure C.1 HP-IB Connector and Codes

For example, a device with the basic talker function, the ability to send status bytes,
the basic listener function, a listen only mode switch, service request capability
without local lockout, manual configuration of the parallel poll capability, complete
device clear capability, no capability for device trigger, and no controller capability
would be identified with the codes.

Understanding these symbols is especially useful to the system’s engineer as they

completely describe the products’ interface capability. IEEE 488.1 describes these
functions in detail.

Interface Functions Code
- SOURCE HANDSHAKE SH
ACCEPTOR HANDSHAKE AH
TALKER (EXTENDED TALKER) T(TE)
LISTENER (EXTENDED LISTENER) | L(LE)
SERVICE REQUEST SR
REMOTE LOCAL ' RL
PARALLEL POLL PP
DEVICE CLEAR DC
DEVICE TRIGGER DoT
CONTROLLER C
DRIVER ELECTRONICS E

103

Source Handshake (SH)

SHO NO CAPABILITY

SH1 FULL CAPABILITY

Acceptor Har!dshake (AH)

AHO NO CAPABILITY

AH1 FULL CAPABILITY

TALKER

Talker (T) Extended Talker (TE)

Basic | Serial | Talk Only | Unaddress

Talker | Poll Mode if MLA
T(TE)O NO NO NO NO
T(TEN YES YES YES NO
TTE)X2 | YES YES NO NO
T(TE)3 | YES NO YES NO
T(TE) | YES NO NO NO
T(TE)S | YES YES YES YES
T(TE6 { YES YES NO YES
TTE)? | YES NO YES YES
T(TE)8 | YES NO NO YES

LISTENER
%
Listener (L) Extended Listener (LE)
Basic Listen Only | Unaddressed

Listener Mode if MTA
L(LE)O NO NO NO
L(LE)1 YES YES NO
L(LE)2 YES NO NO
L(LE)3 YES YES YES
L(LE)4 YES NO YES

104 .

Service Request (SR)

SRO NO CAPABILITY
SR1 FULL CAPABILITY

Remote Local (RL)

RLO NO CAPABILITY

- RL1 COMPLETE CAPABILITY

RL2 NO LOCAL LOCKOUT
Parallel Poll (PP)

PPO NO CAPABILITY
PP1 REMOTE CONFIGURATION
PP2 LOCAL CONFIGURATION

Device Clear (DC)

DCO NO CAPABILITY
DC1 FULL CAPABILITY
DC2 OMIT SELECTIVE DEVICE CLEAR

Device Trigger (DT)

DTO NO CAPABILITY
DT1 FULL CAPABILITY

Driver Electronics (E)

E1 OPEN COLLECTOR (250KB/SEC MAX)
E2 TRI STATE (1IMB/SEC MAX)

105

CONTROLLER (C)

There are 29 controller levels. The more significant are:

CO NO CAPABILITY

C2 SEND IFC AND TAKE CHARGE
C3 SEND REN
C4 RESPOND TO SRQ

CS5 SEND INTERFACE MESSAGES, RECEIVE CONTROL, PASS CONTROL, PASS
CONTROL TO SELF, PARALLEL POLL, TAKE CONTROL SYNCHRONOUSLY

106

Appendix D
Glossary of HP-IB related terms

To help you interpret the Standards and other Information Sources:

ACCEPTOR - A device receiving information on the Bus in either the Command or
Data Mode.

ADDRESS - A 7-bit code applied to the HP-IB in “Command Mode" which enables
instruments capable of responding to listen and/or talk on the Bus.

ADDRESSED COMMANDS - These commands allow the Bus controller to initiate
actions from addressed instruments which are capable of responding.

ASCII - Acronym for American Standard Code for Information Interchange.

ATN - Control line (Attention) establishes between the “Command Mode” and “Data
Mode" of operation on the HP-IB.

BIDIRECTIONAL BUS - A bus used by any individual device for two-way transmis-
sion of messages, that is, both input and output.

BIT - The smallest part of a binary character which contains intelligible informa-
tion. A Binary Digit.

BIT-PARALLEL - Refers to a set of concurrent data bits present on a like number
of signal lines used to carry information. Bit-parallel data bits may be acted upon
concurrently as a group (byte) or independently as individual data bits.

BUS - A set of signal lines used by an interface system to which a number of devices
are connected and over which messages are carried.

BUS COMMANDS - A group of ASCII Codes which initiate certain types of opera-
tion in devices capable of responding to these codes. Each instrument on the HP-
IB is designed to respond to those codes that have useful meaning to the device
and ignore all others.

BYTE - The binary character sent over the data bus. Although a byte usually refers
to 8 bits, frequently the eighth bit is a don’t care in an HP-IB system due to ASCII
encoding.

BYTE-SERIAL - A sequence of bit-parallel data bytes used to carry information over
a common bus.

107

COMMAND MODE - In this mode (ATN True) devices on the HP-IB can be address-

ed or unaddressed as talkers or iisteners. Bus commands are aiso issued in this
mode.

COMPATIBILITY - The degree to which devices may be interconnected and used,
without modification.

CONTROLLER - Any device on the HP-IB which is capable of setting the ATN line

and addressing instruments on the Bus as talkers and listeners. (Also see System
Controller.)

DEVICE CLEAR (DCL) - ASCII character “DC4" (Decimal 20) which, when sent on
the HP-IB will return all devices capable of responding to predefined states.

DATA MODE - The HP-IB is in this mode when the control line “ATN" is false (high).
In this mode data or instructions are transferred between instruments on the HP-IB.

DAV - Mnemonic referring to the control line “Data Valid” on the HP-IB. This line
is used in the HP-IB “Handshake” sequence.

DIO - Mnemonic referring to the eight “Data lnputhutput"'lines of the HP-IB.

EOI - Mnemonic referring to the control line “End or Identify” on the HP-IB. This
line is used to indicate the end of a multiple byte message on the Bus. It is also
used for Parallel Poll.

EXTENDED LISTENER - An instrument which can use two HP-IB bytes to address
it as a listener. (Also see Listener.)

EXTENDED TALKER - An instrument which can use two HP-IB bytes to address
it as a talker. (Also see Talker.)

GO TO LOCAL (GTL) - ASCII character “SOH” (Decimal 01) which, when sent on
the HP-IB in Command Mode, Will return devices addressed to listen and capable .
of responding back to local control.

GROUP EXECUTE TRIGGER (GET) - ASCII character “BS" (Decimal 08) which, when
sent on the HP-IB in Command Mode, initiates simultaneous actions by devices °
addressed to listen and capable of responding to this command.

108

HANDSHAKE - Refers to the sequence of events on the HP-IB during which each
data byte is transferred between addressed devices The conditions of the HP-IB
handshake sequence are as follows:

* NRFD, when false, indicates that a device is ready to receive data.

* DAV, when true, indicates that data on the DIO lines is stable and available
to be accepted by the receiving device.

* NDAC, when false indicates to the transmitting device that data has been ac-
cepted by the receiver.

HIGH STATE - The relatively more positive signal level used to assert a specific
message content associated with one or two binary logic states.

HP-IB - An abbreviation that refers to the “Hewlett-Packard Interface Bus.”
IEEE - Acronym for Institute For Electrical and Electronic Engineers.

IFC - General Interface Management Line “Interface Clear” used by the system con-
troller to halt all current operations on the bus, unaddress all other devices, and
disable Serial Poll.

INTERFACE - A common boundary between a considered system and another
system, or between parts of a system, through which mformatlon is conveyed

INTERFACE SYSTEM - The device-independent mechanical, electrical and func-.
tional elements of an interface necessary to effect communication among a set
of devices. Cables, connector, driver and receiver circuits, signal line descriptions,
timing and control conventions, and functional logic circuits are typical interface
system elements.

LISTENER - A device which has been addressed to receive data or instructions from
other instruments on the HP-IB. (Also see Extended Listener.)

LOCAL CONTROL - A method whereby a device is programmable by means of its
local (front or rear panel) controls in order to enable the device to perform dlfferent
‘tasks. (Also referred to as manual control.) S

LOCAL LOCKOUT (LLO) - An HP-1B multiline universal command (ASCHl “DCI"
decimal 17) which disables the return-to-local control on a device (prevents user
from leaving remote control other than cycling power). Clearing the REN line of the
HP-IB restores local control and re-enables the return-to-local pushbutton on every
HP-IB device.

109

LOW STATE - The relatively less positive signal level used to assert a specific
message content associated with one of two binary logic states.

LU - Logical Unit.

MLA - Mnemonic, My Listen Address, meaning the address at which an HP-I
will be enabled to “Listen” for data.

0
Q.
)

wi
v

O
o

MTA - Mnemonic, My Talk Address, meaning the address at which an HP-IB device
will be enabled to “Talk” or send data on the bus.

NDAC - Mnemonic referring to the control line “Not Data Accepted” on the HP-IB.
This line is used in the HP-IB “Handshake” sequence.

NRFD - Mnemonic referring to the control line “Not Ready for Data” on the HP-IB.
This line is used in the HP-IB “Handshake” sequence.

PARALLEL POLL - A method of simultaneously checking status of instruments on
the HP-IB. Each instrument is assigned a DIO line with which to indicate whether
it requested service or not More than one instrument can be connected to one data
line.

PRIMARY COMMANDS - The group of multiline messages consisting of universal
commands, addressed commands, and device addresses sent by a CONTROLLER
in the COMMAND MODE (ATN true).

- PROGRAMMABLE - The characteristic of a device that makes it capable of accep-
ting data to alter the state of its internal circuitry to perform a specific task(s).

PROGRAMMABLE MEASURING APPARATUS - A measuring apparatus that performs
specified operations on command from the system and, may transmit the results
of the measurements(s) to the system.

REMOTE CONTROL - A method whereby a device is programmabile via its electrical
interface connection in order to enable the device to perform different tasks.

REN - Mnemonic referring to the control line “Remote Enable” on the HP-IB. This
line is used to enable Bus compatible instrur_nents to respond to commands from
the controller or another talker. It can be issued only by the system controller.

110

SECONDARY COMMANDS - The group of multiline messages used to increase the
command address length of extended talkers and listeners to two bytes. Also in-
cludes Paralle! Poll Enable and Disable.

SELECTIVE DEVICE CLEAR - ASCIl character “EOT" (Decimal 04) which returns
devices addressed to listen, to a predetermined state. '

SERIAL POLL - The method of sequentially determining which device connected
to the HP-IB has requested service. Only one instrument is checked at a time.

SERIAL POLL DISABLE (SPD) - ASCI! character “EM” (Decimal 25) which, when sent
on the HP-IB in Command Mode, will cause the Bus to go out of serial poll mode.

‘SOURCE - A device transmitting information on the Bus in either the Command
or Data Mode.

SIGNAL - The physical representation of information.

SIGNAL LEVEL - The magnitude of signal compared to an arbitrary reference
magnitude (voltage in the case of this standard).

SIGNAL LINE - One of a set of signal conductors in an interface system used to
transfer messages among interconnected devices.

SYSTEM - A set of interconnecte'd elements constituted to achieve a given objec-
tive by performing a specified function.

SRQ - Mnemonic referring to the control line “Service Request.” This control line
is used to enable Bus compatible instruments to tell the controlier that they re-
quire service.

UNIDIRECTIONAL BUS - A bus uséd by an individual device for one-way transmis-
sion of messages only, that is, either input only or output only.

WORD - A group of bytes treated as a unit and given a single location in memory
(organization defines the length of a computer “word"). HP computers typically use
a word oriented memory with 16-bit (2 byte) words.

UNIVERSAL COMMAND - These commands allow the controller to send specific
messages to all devices, whether or not the devices are addressed.

111 -

Appendix E
General HP-IB Bibliography

. “American National Standard for the representation of numeric values in
character strings for information interchange,” ANSI X3.42-1975, American
National Standards Institute, 1430 Broadway, New York, NY 10018.

. |IEEE Standard 488.1-1987, “Digital interface for programmable instrumenta-
tion,” The IEEE, Inc., 345 East 47th St., New York, NY, Jun. 1987.

. |EEE Standard 488.2-1987, “Codes, Formats, Protocols, and Common Com-
mands For use with ANSI/IEEE Std 488.1-1987,"” The |IEEE, Inc., 345 East 47th
St., New York, NY, Jun. 1987.

. USA Standard Code for Information Interchange, ANSI X3.4-1977, American
National Standards Institute, 1430 Broadway, New York, NY 10018.

113

A
Accept Address ("AAD) Command 81
Adapter, HP-IB connectorc.couvunnn., 30
Address capability of HP-IB 7
Address charactersc....... 18, 118
Address switch settings 18, 19
Addressed Commands 17, 22, 118
AdAresSeS ...c...ivirtiineiinenrenannnannnns 7, 17
ANSIMC 1.1 Standardc00unnn.. 2,35
Arbitrary ASCIl Response Data 61
Arbitrary Block Program Data 54
ASCH BUS ...t 3
ASClicodescovvviinnnnnnnnnn 18, 48, 118
ASCIINISO & IEEE Code Chart 48, 118
Attention (ATN) signal line 15, 16
Auto-Configure Commandscoevvunnn.. 81
B
Bus Functionsccoeiivvninnnnn, 8, 9, 103
BS. 6146 standardc.iieiiiiiiiiean., 3
Cc
Cable length restrictions 29, 32, 34
Calibration Query (*CAL?)cooiiiiiritinnnnnnns 83
Capability 1.D. codesccccuinneinen. 8, 103
Capacitive loading (by devices) 26, 34
Character Response Datacccvvunnn.. 59
Clear Status (*CLS) Commandc........ 89
Command EMOr (CME)ccvvievverinnnnennnn.. 76
Command Modeccoivviinnenennnnann. 16
Command Program Headercccv.ou... 7
Commands, common 44-45, 65, 79-81
Connector adaptercccevvevennennnn. 30
Connector mounting hardware 28
Connector pin assignments 27
Connector typesccciviiiiirnnnnnnnn. 28
Controller Commandscceveeninen.. 82
Controller function 8, 9, 103, 106
D
Datacodingcocovviiiiinireniiinnnnnnn..
Data formatseiviniiiiiieennnnnnnnn.
Data lines e
Data mode
Data rate, maximum
Data separatorscveniinnennnnnnnn. 55
DAV L e erieereeaeaaea 12
Decimal Numeric Program Data" .50
Decimal value of device addresses 18
Define Device Trigger (*DDT) Command 82
Define Device Trigger (*DDT?) Query 83
Define Macro (*DMC) Command 85
Definite Length Arbitrary Block Data 60
Design and service aidsccoenenvnnn... 3
Device Clear (DCL)commandcccuuun.... 20
Device Clear (DC) functioncoveeenunnn. 9, 105
Device Dependent Error (DDE) «...ovveevnennnnn.. 76
Device Dependent Messagesc..... 40
Device load requirementsccuuu.... 26
Device Trigger Commandscccuevuvnnnnn. 82
Device Trigger (DT) functionc...... 9, 105
Disable Listener Function (*DLF)}cceuvu... 82
Driver functioncccvivrernrncnnnn. 8, 105
Driver specificationscccveenvennnn. 26
Drivertypesccviveeeeeenannnn. 8, 25, 105

INDEX

1156

E
EIA RS-232-C specification5
Electrical aspects of HP-IB24
Enable Macro (*EMC) Command 86
Enable Macro ("EMC?) Querycevvueun.... 87
End or Identify (EOI) signal line 15, 24, 68
Event Status Bit (ESB) .v.vuveviirinrrnnnnnnnnns 72
Event Status Register ("ESR?) Query 90
Event Registersc.ccvieienvenenenennnnnns 74
Evolution of HP-IBciiiiiiiinnnnnnnn... 2
Execution Error (EXE)covveverenenannnn. 76
Expression Program Data 55
Extended addressingcocveeiniiinnnnn.. 19
Extended Listener/Talkercocvvuu... 8, 104
Extended length of the HP-IB 33
F 1
Forgiving Listening 42, 50, 55
Functional aspects of HP-{B0vuen.... 8
Functional Layerscccevvevvennnnnnn 39-40
G
General Interface Management Lines 15
Get Macro Contents (*GMC?) Query 87
Glossary of HP-IB related terms 107
Go To Local (GTL)commandcccoueuu.n. 22
GPIB P 3
Group Execute Trigger (GET) command 22
H
Handshake functionccouiuaa... 9, 104
Handshake linesccoevinnn... 12, 13
Handshake patentccciviiiiiinnnnnn.. 15 -
Handshake timing & sequence 13, 14
Hardware, connector mounting 28
Hexadecimal Numeric Response Data 57
History of HP-IBciiiiiiiiiiiiiiiennnnn, 2
!
Identification (*IDN?) Querycovvvuuenn... 93
Identify (IDY) commandccvveinnnnn.. 21
IEC 625-1connectorcovvvevnrennnnnnn. 5, 28
IEC625-1standardcvvvviinnnnnnn. 2,35
IEEE 488 revisions summaryccoienuen... 30
IEEE 488-1978 standardcooeeeneennnnnen 2
|EEE 728-1982 standardcccevunnnnn. 2,39
IEEE 754viiiriiiiiiiitiieinnnrencnenns 49, 99
Indefinite Length Arbitrary Block 60
Individual Status (*IST?) Querycccvunn... 88
Interconnection rulescoeinvvinnnnn.. 29
Interface capabilities, required 488.2 41-42
Interface capability codes 8, 103
Interface chips for HP-IBcc0vvuevnnnn. 31
Interface circuitsc.ccvviviiinnnnn. 7
Interface Clear (IFC) command 15, 16, 21, 96
Interface functions 8, 9, 103
Internal Operation Commandsc....... 83
Inter/intrafacility HP-IB extensions 33
K
Key specificationsoovviiiriereennnnnn. 7

L

Learn Device Setup (*LRN?) Query 84
Learn Macro (*LMC? Queryooevvnennnnn... 87
Line Feedcoviivnrinniinininnnnnnnnnnn. 84
Linear cablingcccvvviiinniinnrnnnnnnn. 28
Listen addressesccceiivuennnnnnn.. 18, 118
Listener function8, 9, 104
Local Lockout (LLO) command 21
LOW-true 10QIC . .ouvvnenneneenrenernnennnnnn... 12
LS! interface chips for HP-IB 31
M
Macro Commandsc.ovviuennnnnnnn.. 85
Master Summary Status Bit (MSS) 73
Maximum data transfer rate 7,33
Mechanical aspects of HP4B 28
Message Available Bit (MAV) 72
Message, Device Dependent 40
Metric hardwarecovvnuieiunnn.... 28
Muitiline commandsccoevnunnn.... 20
Multiple addresses (per device) 19
N
NDAC ..ttt e i2
New Line (NL)ooviiiiiininennnnnnnnn, 84, 68
Non-Decimal Numeric Data 52
NRFD it i 12
Number of devices perbus 7, 32
Numeric Response Data, NR1 integer 56
Numeric Response Data, NR2 fixed 56
Numeric Response Data, NR3 floating 57
o]
Octal Response Datac.covuevnnn.n... 58
Octal value of device address 18
Open-collector driversc.oeuuvnun.. 24, 25
Operation Complete Bit (OPC)cu.... 7
Operation Complete (*OPC) Command 92
Operation Complete (*OPC?) Queryccovun.... 92
Optimizing system performance 32
Option Identification (*OPT?) Query 83
Output Queuecocienemernennnnnnnnn.. 7
P
Parallelpollcovvuuunnn.... 9, 24, 78, 105
Parallel Poll Common Commands
Parallel Poll Configure (PPC) command oo 22
Parallel Poll Disable (PPD) command23
Parallel Poll Enable (PPE) command 23
Parallel Poll Enable Register Enabie
(*PRE) Commandcoovevvevnnnnnnnn. 88
Parallel Poll Enable Register Enable
CPRE)QUery ...ovveeenineenennnnnnnn, 88
Parallel Poll Unconfigure (PPU) command 21
Pass controlcciiineininnnnnnnn, 7, 22
Pass Control Back (*PCB)ccvevvnennnnns 82
Patent on 3-wire handshake 15
PLUS BUSottt i e eeennnnnss 3
Polling «..oient i i, 23
Power On Bit (PON)oovvunrnnnnnnnnnnn.. 76
Power On Status Clear (*PSC) Command 90
Power On Status Clear (*PSC?) Query 90
Power on/off requirements for bus
operation ..., i, 34
Precise Talking 42, 50, 55
Program Data Separatorc.0uunns 65
Program Header Separator 64
Program Message Separator 64
Program Mnemoniccc0vvnvnnnnn.. 66

118

Protected User Data (*PUD) Command 94
Protected User Data (“PUD7) Query 94
Protocol, Device Message t.....43
Purge Macros (*PMC) Command 88
Q
QUBMBS «ovivvvenneinenarocenecenncnonannnennn. 66
Query Error BIt (QYE)oiia..... 77
Query Program Headercccvuuu..... 67
QUBUESiiiiiiiii ittt 74
R
Recall (*RCL) Commandcccuun...... 91
Receiver specificationsc......... 25
Remote Enable (REN) signal line 18, 21
Remoteflocalcoovvverenncneannnn.. 9, 105
Request Control Bit (RQC)oovveevnnnn.... 77
Reset Command ("RST) v.ceveverrnnnnnnnn... 84, 96
Reset Protocolcoovviiininnnernnnnnnnnnn. 95
Resource Descriptor Transfer (*RDT)

Commandooouiiiiinriiinireiaanaa, 94
Resource Descriptor Transfer (*RDT?)

QUBIY .ot 94
Revisions, summary, IEEE 488 30
RS-232-C specificationccveeeneennnnnnnn.. 5

S

Save (*SAV) Commandceeecvnnnnnn... g2
Secondary addresses/commands 18, 19, 23, 104
Selected Device Clear (SDC) command 22, 96
Self-Test Query (*TST?) ..vvreiereenevnnnnnnnn. 85
Separatorsccivunn.. erteeeann 55, 64, 68
Serial Pollcccoivviiviiiiiiieiinnnnnnnnn, 23
Serial Poll Disable (SPD) command 21,23
Serial Poll Enable (SPE) command 21, 22
Service Request Enable (*SRE)

Commandcviinniiiinneinannenennnnnnn. 20
Service Request Enable (*SRE?)

QUBIY oottt ittt eea e, a1
Service Request (SRQ) signal line15
Service Request (SR) function 9, 105
Software performance, improving 34, 35
Speed of the HP-IBcoviinnennnnnnnnn.. 33
Standard Event Status Enable (*ESE)

Commandcovvninniin i, 89
Standard Event Status Enable (*ESE?)

L 1L 2 89
Status byteccooivvviininnnnnnnnnnn. 23, 45, 72
Status Byte (*STB?) Queryc.ccevununnn. 91
Status Reporting Model 45,71
Status & Event Commands 89
Stored Settings Commands 91
String Program Datacovuennunnn. 54
String Response Datac.cc.u.... 59
Synchronization Commands 92
System Controller (master}ccovuenn... 8
System Data Commands 93
T
T1 settling time (for talkers) 34
Take Control (TCT) command 22
Talk addresses 18, 118
TalKer ettt 9, 104
Test, Self (*TST?) ..ottt 85
Terminatorsccceeunnnnnnnnnnn.. €3, €68
Three-wire handshake 12, 13
Timing Analysis of HP-IB 32
Tristate drivers 24, 25

Uniline commands
Universal commands
Unlisten (UNL) command
Untalk (UNT) command
User Request bit (URQ)

.............................
....................
seevsserscseanne e
...................

.........................

w —

Wait to Continue (*WA!) Commeand92
White 8paCecciveveeccnncecrnnnnnns. 51, 63
Wire-OR 10giCcovniiiiinineninnnaannnnn. .12
Worksheet, Bus Impiementation 35-37

B7

1

1

1

]] 1 i)] %] i i
BOgs| @ “ ‘g Y 0 1 2 1
BITS NUMBERS .
1 CONTROL RS | UPPER CASE | LOKER CASE
SYMBOLS
B4 B3 B2 B! - — —
? 20 20 60 100 120 140 160
2 ¢ @ | NUL DLE SP 0 P \ :
) 2/10 16|20 3230 4840 64|50 8@lse g6l78 112
1 GTL|21 __LLOI41 61 101 121 141 161
2 00 1| SOH 1 I 1 A Q a
1 111 17121 33131 4g8la1 65|51 8161 g7i71 113
2 22 42 62 102 122 142 162
2 21 0 STX DC2 w 2 B R r
2 2l12 18]22 34|32 5@l42 66|52 82|62 g8l 114
3 23 43 63 103 123 143 163
2011 ETX DC3 # 3 C S c s
3 3113 19123 35/33 51143 67153 83|63 99|73 115
) SDC[24 DCLl44 64 104 - 124 144 164
210 0| EOT 4 $ 4 D T t
4 4/14 20|24 36[34 52|44 68l54 84l64 100l74 118
5 PPC|25 __ PPU|45 65 105 125 145 165
210 1| ENQ NAK % 5 E U e u
5 s)15 21l25 37135 53]45 69(55 85|65 18175 117
6 26 46 66 106 126 146 166
211 0| ACK SYN & 6 F ') f v :
8 6l16 22|26 38|36 s4l46 70|56 geles 1¢2]78 118
7 27 47 67 107 127 147 167
@111 BEL ETB r 7 G N g L]
7 7117 2327 zal37 55{47 7157 87|67 " 103|77 119
— |1@ _ GET|30 SPEIS@ 70 110 130 150 170
1 20 @1 BS CAN { | 8 H X h X
8 8|18 24|28 4p|38 56/48 7258 seles 1p4alrs T 128
11 TCT|31 SPD|51 71 111 131 151 171
120 1] HT EM 9 I Y i y
9 9|19 25(29 41139 5749 7359 89lss _ 1@s|79 " 121
12 32 52 2 112 132 152 172
19210 LF SUB * a J Z 2
A 1814 26|24 42[3A s8|4A 74]5A oplea " 1g8l7A 122
13 33 53 73, 113 133 153 173
1911 vr | ESC + ; K [{
B 11018 27128 43(38 59)48 75!58 g1leB 197178 123
14 34 54 74 114 134 154 74
110 0| FF FS ’ < L \ 1 i
c 12/1¢ 28l>c 443c 6@l4ac 76|5¢C g2lsc __ig8lzc 124
|15 __ 35 5 75 115 135 155 175
11061 CR GS - = M n
D 13{1D 29|20 453D 61l4D 77!5D o3l6D _ 1@9|7D 129
16 36 56 76 116 136 156 176
1110 SO RS . > N n
E 1411E 30l2E 486[3E 62|4E 78|SE 946 110l7E 126
17 37 57 77 117 137 157 A
1111 SI / ? - o (DEL)
F 15[1F 31loF 4713F 63|ar 8lsF osleF _ 1117F 127
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS
KEY . octal |25 PPU| Message Mnemonic
* NAK |[asci1/150 character
hex |15 21| decimal

ASCIl 7-bit Cods Chart

118

For additional information about
Hewlett-Packard products, call
your local HP sales office listed
in your telephone directory or an
HP regional office listed below
for the location of your nearest
sales office.

United States:
Hewlett-Packard Company
4 Choke Cherry Road
Rockville, MD 20850

(301) 670-4300

Hewlett-Packard Company
5201 Tollview Dr.

Rolling Meadows, IL 60008
(312) 255-9800

Hewlett-Packard Company
5161 Lankershim Blvd.
No. Hollywood, CA 91601
(818) 505-5600

Hewlett-Packard Company
2015 South Park Place
Atlanta, GA 30339

(404) 9551500

Canada:

Hewlett-Packard Ltd.

6877 Goreway Drive
Mississauga, Ontario L4VIM8
(416) 678-9430

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Melbourne, Australia

(03) 895-2895

Europe/Africa/Middle East:
Hewlett-Packard S.A.
Central Mailing Department
PO. Box 529

1180 AM Amstelveen

The Netherlands

(31) 20/547-9999

Far East:

Hewlett-Packard Asia Ltd.

47/F China Resources Building
26 Harbour Road, Hong Kong
(5) 833-0833

Japan:
Yokogawa-Hewlett-Packard Ltd.
29-21, Takaido-Higashi 3-chome
Suginami-ku, Tokyo 168

(03) 331-6111

Latin America:
Hewlett-Packard de Mexico
Sp.A de CV.

Monte Pelvux No. 111
Lomas de Chapultapec
11000 Mexico D.F.,, Mexico
(905) 596-7933

/A cackars

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118

