SR R T
HEWLETT-PACKARD

Networking HP-71s to a
Supervisory Computer

There are two primary applications
for networking HP-71s to a super-
visory computer in a low-cost
manufacturing system:

B Statistical process monitoring,
where the HP-71 is an intelligent
terminal

® Distributed instrument control,
where the HP-71is an intelligent
low-cost controller

Networking HP-71s to a super-
visory computer provides several
advantages in a manufacturing
setting:

B Faster information flow. Net-
working provides fast, accurate
data transfer, eliminating the
information loss inherent in
verbal and paper communica-
tions. (For more information on
computerized production infor-
mation flow, see HP application
notes 5954-1316 “Using the
HP-71 for Production Process
Monitoring” and 5954-1317
“Low-Cost Production Testing
and Instrument Control.”)

® Network overview. Data from
several HP-71s can be combined
to give an overall picture of a
manufacturing line’s perfor-
mance. Trends can be identified
and historical data gathered.

® Information sharing. Up to 30
HP-71s can be networked to a
supervisory computer. An HP-
71/HP-IL system is a small local
network and is not intended to
be a factory-wide networking
system in itself. (The super-
visory computer can pass infor-
mation to the next level through
a factory-wide Local Area Net-
work.) The optimum number of
HP-71s connected to a super-
visory computer is determined
by the application. Ina network,
each HP-71 is linked as a slave
device on the HP-IL communica-

tions loop. The network is con-
trolled by a supervisory com-
puter and information is passed
in one of two ways:

1. The supervisory computer
polls the HP-71 for informa-
tion to be sent.

2. The HP-71 sends a request for
service to the supervisory
computer.

Two considerations are impor-
tant when networking to a super-
visory computer. First, the net-
work’s communications scheme
must not interfere with the HP-71’s
performance of its primary task.
Each HP-71 slave device has a
primary function and, when com-
municating with its supervisory
computer, the slave device is not
performing its primary function.
When a test station is waiting for
a new part to test, an assembly
worker is assembling the next
part, or there are no statistics to be
calculated at the process
monitoring station, the slave
devices are idle. The communica-
tions scheme should allow slave

devices to talk to their supervisory
computer during these idle times.
A second consideration is the
maximum number of slave devices
to be connected to the supervisory
computer. This number is deter-
mined by how much data must be
passed (that is, the time needed to
pass the data) and the amount of
idle time. If the data transfer time
is short and the idle time is long,
the supervisory computer can
handle many slave devices with
little delay. If the transfer time is
long and the idle time is short, a
network containing only a few
slaves will cause noticeable delays.

To reduce these delays, data
should be defined and moved in
short blocks. While an HP-71 can
work at up to 4K bytes per second,
valuable time is lost each time a
new transmission is started. For
example, if a data transmission
takes five seconds, an operator
will have to wait for five seconds
to start a new procedure. If, on the
other hand, the transmission
sequence takes only %2 second,
there will be little noticeable delay.

Equipment

The following equipment is

required to implement the example

detailed below in “Operation”:

® Four HP-71 Handheld Com-
puters

B Four HP 82401A HP-IL Modules

m HP-IL Cables

Operation

The following example of a
simple network illustrates how
HP-71 slave devices can be con-
nected to a supervisory computer
and what the supervisory system
needs to do to control an HP-IL
communications loop. Extensive
commentary accompanies the
complete code listings, so system
programmers can use this informa-
tion to implement networks for
their own specific applications.

While the HP-71 and HP-IL are
capable of functions beyond those
shown, these programs provide a
core of networking functions from
which specific application solu-
tions can evolve. The program-
ming techniques used here will
help you avoid pitfalls which
might result in unreliable systems
with hard-to-find bugs.

To avoid problems, follow the
examples closely, particularly in
the area of HP-IL network opera-
tions. Each specific application,
however, will require program
modifications to accomplish the
intended purpose.

The two programs are first
loaded into the supervisory con-
troller HP-71. The controller runs
the “CONTROL” program to load
the “PROG” program into each of
the HP-71 slave devices on its
network. During initialization, the
controller displays the address,
identification, and status of each
slave device on the loop. The
controller also provides an address
for each slave device and sets each
device’s time and date to match its
own.

In our example, up to nine slave
devices — normally, but not neces-
sarily, HP-71s — can be connected
to the controller on an HP-IL
network loop. An actual
implementation would not be
limited to nine devices. If slave
devices other than HP-71s are
included, the controller will ignore
them during system initialization.

After initialization, a digit key
on the controller may be pressed
to send a sequence-numbered
message to the slave device whose
address corresponds to the key.
Pressing any key on the slave
device will send a similar message
back to the controller. When the
controller or slave device receives
a message, it checks the sequence
number, and then beeps and
displays an error message if the
number is not correct. When the
program is completed, the zero
key on the controller is pressed to
turn off the entire network.

The CONTROL Program

The following listing should be placed in a file named CONTROL. It runs
in the controller HP-71 and manages the network.

L::e Program Statement

1000 ENDLINE CHR$(32)&CHR$(13)&CHR$(10) @ DELAY 1
1010 RESET HP-IL @ STANDBY 2 @ RESTORE IO @ REMOTE

1020 FOR A=1TO 9 @ T(A)= -1 @ SEND LISTEN A @ NEXT A @ A=1
@ SEND DDL 1

1030 1$=DEVID$(A) @ 1=DEVAID(A) @ IF I$="" AND I= -1 THEN LOCAL
@ GOTO 1100

1040 DISP A;"%";STR$(I);” ";1$; @ IF 1#3 THEN DISP @ A=A+1
@ GOTO 1030

1050 S=BINEOR(SPOLL(A),1) @ CLEAR :A @ OUTPUT :A ; “REQUEST";S
@ WAIT .5

1060 IF SPOLL(A)#S THEN CLEAR :A @ DISP “ NOT READY” @ A=A+1
@ GOTO 1030

1070 OUTPUT :A ;”“SETTIME”;TIME;” @ SETDATE”;DATE;” @ A=";A
1080 OUTPUT :A ;”PURGE PROG @ RUN PROG:LOOP” @ COPY PROG TO :A
1090 DISP ” RUNNING” @ T(A)=0 @ R(A)=0 @ A=A+1 @ GOTO 1030

1100 T(A)= -2 @ I=READINTR @ ENABLE INTR 8 @ ON INTR GOSUB 2000
1110 DISP “CONTROLLER READY”

1120 K$=KEY$ @ IF K$="0" THEN 3000

1130 SEND IDY @ IF K$<"1” OR K$>"9” THEN 1120

1140 A=VAL(K$) @ IF T(A)<0 THEN DISP "DEVICE NOT READY” @
GOTO 1110

1150 T(A)=T(A)+1 @ 0$="CONTROL#"&STR$(A)&” MESSAGE "&STR$(T(A))

1160 SEND UNL LISTEN A DDL 0 @ OUTPUT :A ;0$ @ DISP 0$ @ GOTO
1110

2000 [=READINTR @ 1=1
2010 IF T(I)<0 OR SPOLL(I)#226 THEN 2040

2020 ENTER :I ;I$ @ DISP I$

2030 R()=R()+1 @ IF R()#VAL(I$[LEN®S$)—2]) THEN 2060

2040 IF T(I)>-2 THEN I=I+1 @ GOTO 2010

2050 DISP “CONTROLLER READY” @ ENABLE INTR 8 @ RETURN
2060 BEEP @ DISP "MESSAGE ERROR” @ STOP

3000 REMOTE @ SEND UNL @ FOR A=1TO 9 @ IF T(A)>=0 THEN SEND
LISTEN A

3010 NEXT A @ SEND DDL 1 MTA DATA “BYE” EOL @ LOCAL @ BYE
@ STOP

CONTROL Program
Comments

Initialization:

Lines 1000-1020 perform several
initialization functions which are
necessary before the program can
take control of the network. The
ENDLINE sequence in line 1000
protects against a memory-lost
error which could occur when
HP-IL modules are used with
revision A firmware. This
sequence is not needed if the
module contains revision B code.
The display delay is set for one
second so you can see the mes-
sages briefly as they are trans-
mitted and received. In an actual
application, the delay would
always be set to 0,0 or 0,INF so that
the display doesn’t slow system
operation.

Line 1010 initializes the HP-IL
loop, assigns addresses to all slave
devices, and places the loop in
remote mode in preparation for
sending commands to those
devices. The standby (time-out)
parameter is set at two seconds to
speed the controller’s detection of
a broken or hung loop. Although
a 2-second time-out is sufficient for
an HP-71 with 16K bytes of RAM,
it might not be long enough if
there is additional RAM. If an
HP-71 slave device has a 96K-byte
plug-in, for example, the standby
parameter should be set higher,
perhaps to five seconds, to allow
for the memory-lost condition
without causing a time-out error.
In the case of an HP-71 slave device
which has been given the memory-
clearing command (INIT:3), a
significant amount of time will
elapse after the command is
received.

In line 1020, the variable A is used
as a device address and array T is
initialized to —1 to designate all
devices on the loop as either non-
existent or as non-slave HP-71s.
Each HP-71 slave is then redesig-
nated a listener, the address vari-
able is reset to 1, and the DDL 1
command is sent.

If an HP-71 slave device is in
remote idle mode, it may interpret
data received from the controller
as a command. If the slave is
running a program, waiting for
keyboard input, or an interrupt is
pending, the data will be held in
the slave device’s input buffer and
will not be executed until the slave
is idle. The slave device will
become idle when the program is
suspended or terminated, and
when any pending interrupt is
serviced or cancelled. The ending
line-feed character will not be
retransmitted but will be held in
the slave device buffer until the
device is idle and the command is
executed. This will cause a time-
out and may cause an error mes-
sage in the controller display.

Polling;:

Lines 1030-1090 poll the slave
devices on the HP-IL network to
find the HP-71 slaves to be loaded
with the DEVICE program.

Line 1030 checks to see if the end
of the HP-IL loop has been
reached. If a device does not
respond with either a slave or a
device ID, the CONTROL program
assumes that no device exists and
that the end of the loop has been
reached. Local mode is then set
and the code exits to the next
section (line 1100). Some HP-IL
devices lack one or the other of the
two IDs, so both must be checked
to determine that there are no
more devices on the loop.

Line 1040 displays the device
address, the device and slave IDs,
and checks to see if the device is
an HP-71 accessory (accessory

ID =3). If the device is not an
HP-71 accessory, the display is
terminated, the address variable is
incremented, and the program
returns to line 1030 to poll the next
device.

Lines 1050 and 1060 determine
whether an HP-71 slave device is
busy, or whetheritis idle and can
accept remote-mode commands.
This is done by reading the device
status with the SPOLL command
and then inverting the least signifi-
cant bit with an Exclusive OR
operation. The slave device buffer
is cleared in case any data was left
from a previously unexecuted
command, and the device is then
instructed to change its status to
the modified value (REQUEST
command). Assuming that the
HP-IL loop is intact, the OUTPUT

command will not cause an error,
even if the device holds the line-
feed character and the controller
times out. This behavior will be
discussed more fully in the section
on network error recovery

(page 8).

After a Y2 second pause to give
the slave device time to execute
the REQUEST command, the
status SPOLL (A) is read again
and, if it agrees with the modified
value S, the program proceeds.
Otherwise, the slave device has
not executed the command, is
busy, and so is unable to receive
remote-mode commands. In this
case, the slave device buffer is
cleared (the REQUEST command
is probably being held there); the
controller display informs you that
the device is not ready; the device
address is incremented; and the
CONTROL program returns to
line 1030 to poll the next device.

Lines 1070-1090 command the
slave device to set its time and date
to match those of the controller,
and give the device the controller’s
address by initializing variable A
to the value of variable A in the
controller. The program to be
loaded into the slave devices is
named “PROG.” An actual applica-
tion would probably use a different
file name. It might also want to
load multiple files into the slaves
and different sets of files into
different slave devices.

Line 1080 commands the slave
device to purge its program file to
avoid an error if that, or another
file of the same name, already
exists in the slave. If no file of that
name exists, the PURGE command
simply causes a warning message
which can be ignored. Then the
command RUN PROG:LOQOP is
sent to the slave device. This
command is equivalent to a
COPY:LOOP followed by a simple
RUN PROG command. The con-
troller then satisfies the slave
device command by executing its
own COPY to load the file into the
device. Note that this program
does not check to see if there is
enough memory in the slave
device to contain the program.

Line 1090 indicates via the display
that the HP-71 slave device is
running the program; initializes
the T and R array variables to zero;
increments the device address;
and returns to line 1030 to poll the
next slave device on the HP-IL
loop. The T and R arrays hold the
sequence number of the last trans-
mitted and received messages.
Application:

Lines 1100-1160 contain the main
application program. In a real
application, the system controller
might have several other duties in
addition to monitoring and con-
trolling network communications.
Supervisory displays and reports
will need to be generated, and
perhaps information will need to
be transmitted to a mainframe
computer for management pur-
poses.

To make this programming task
as modular as possible, all network
communications are interrupt-
driven so application routines
need not be concerned with
receiving messages from other
devices on the loop. (This function
is handled by the interrupt sub-
routine beginning at line 2000.)
When application routines need to
send a command or message to a
device, they simply do so
immediately. When slave devices
send data to their controller, they
generate service requests which
interrupt the CONTROL program.
The program then branches to the
interrupt subroutine in lines 2000-
2060 to receive the message. By so
doing, application routines do not
need to periodically poll devices to
see if they have data to send.

In the two demonstration pro-
grams, messages are simple string
variables. In real applications they
might also include numeric vari-
ables and even complete data files.
In the demonstration examples,
the controller and slave devices are
tightly coupled; each line of data
generates a network message.
This is not necessary and may not
be desirable in real situations. The
power and memory in an HP-71
allow it to operate independently
of the network for a relatively long
period of time before sending the
controller a large block of data.
This provides for reconfiguration
or additional flexibility, since the
slave devices can continue to
operate in this mode even when
the network is not functional due
to a device failure.

Line 1100 stores a special flag in
the T array variable to indicate the
last device on the loop (—2), and
initializes the interrupt system in
the controller. READINTR clears
any previous interrupts from the
interrupt-cause byte. ENABLE
INTR 8 sets the interrupt mask to
allow only service requests to
cause interrupts. The ON INTR
statement specifies the location of
the interrupt-service subroutine.
Not that the interrupt-cause byte
sets flags which indicate which of
the possible interrupt conditions
has occurred since the last time it
was read. After it is read, it is
cleared. The interrupt-enable
mask defines which of the condi-
tions in the interrupt-cause byte
will precipitate an interrupt
branch. The mask is cleared when
a program begins and ends and
when the interrupt branch is
taken, so it needs to be restored at
the end of the interrupt-service
routine. ON INTR is the “master
switch” that allows an interrupt
branch to occur and specifies the
action to be taken. (An OFF INTR
statement disallows any inter-
rupts). Interrupts are automatically
disallowed when a program ends
normally, but not if the program is
suspended. After the CON-
TROLLER READY message is
displayed, Line 1120 scans the
keyboard. If the zero key is
pressed, the program branches to
the section which terminates the
demonstration by turning off the
entire system.

Line 1130 sends an IDY after each
key scan so that service requests
from the slave devices can be
received. If the HP-IL loop were
allowed to be completely idle, the
devices could not indicate a need
for service. If the pressed key is
not a digit, it is ignored, and the
keyboard is scanned again. When
avalid key is received, the corres-
ponding transmit sequence
number for that slave device is
checked. If the sequence number
is negative, the device is not run-
ning the demonstration program,
so the key is ignored and the
program scans the keyboard again
after displaying the appropriate
message. When a key corres-
ponding to an active HP-71 device
is received, the transmit sequence
number is incremented and the
message is placed in the output
string variable (O$).

Device Addressing:

Line 1160 sends a listen address
and DDL 0 command to the slave
device and then sends the output
string on to the network. The
message is also displayed, and the
routine returns to scan the
keyboard again. The listener con-
dition is set in the slave device for

a number of reasons, most of
which do not result in any data
actually being sent to the device.
TRIGGER, CLEAR, and SEND
DDLn’ all cause the device listener
bit to be set. If the device-interrupt
routine then tries to execute an
ENTER statement to receive data,
the program will hang because no
datais in the buffer, noris any data

likely to come. Because of this, the
controller should give the slave
device some positive indication
that data other than the listen-
address command will be sent.
The easiest way to do this is to
have the slave device interpret a
device-dependent command as a
signal to receive data. This is the
purpose of the DDL 0 command
before the controller sends the
output string.

Interrupt Subroutines:

Line 2000 is the beginning of the
Interrupt Service subroutine. The
interrupt-cause byte should be
read (and hence, cleared) at the
beginning of the subroutine so
that any interrupts which come in
during subroutine execution will
not be lost. In this case, the bits in
the interrupt byte do not need
decoding since only one interrupt
condition is enabled (Service
Request). An address variable (I) is
initialized, and the loop beginning
in line 2010 reads the status of
each of the devices on the network
to determine which device
requested service.

Note that the variable names in
this subroutine should be different
from those in the main program to
avoid conflicts and unwanted
interactions (C9 instead of C, for
example).

Line 2020 reads and displays the
message(s). Line 2030 increments
the expected sequence number
and compares it with the received
sequence number. If they do not
agree, the program beeps, displays
an error message and stops.

Line 2040 checks to see if all the
devices on the loop have been
polled (—2is the end of the loop),
increments the address, and goes
back to line 2010 to check the next
device. When all the devices have
been polled, the subroutine places
the “ready” message in the display,
restores the interrupt mask, and
returns. An interrupt can occur at
the beginning of any line in the
CONTROL program. Therefore, a
RETURN statement needs to be
included in the same program line
asan ENABLE INTR statement so
that interrupts don’t overflow the
return stack if they occur during
subroutine execution.

Reset and Shutdown:

Line 2050 resets the controller after
an interrupt and places the “Con-
troller Ready” message in the
display. If an interrupt error
occurs, line 2060 gives an audible
“beep,” displays “Message Error,”
and halts the program.

The shutdown code segment
beginning in line 3000 sends the
listen address and DDL 1 com-
mands to all the HP-71s which
were running the DEVICE pro-
gram, and then turns them off by
sending the BYE command. The
controller then returns the loop to
local mode and turns itself off.

ot B T N A e L R T AT e) B A T L i OO U P T B 2 T ST L PP ST 5 G L S B S e e |
The DEVICE Program

DEVICE Program Comments

This program for the slave unit(s) is similar in many ways to the CONTROL
program and should be entered into the controller in a file named PROG.
The controller will copy this program into each device on the HP-IL loop.

L;‘e Program Statement

1000 ENDLINE CHR$(32)&CHR$(13)&CHR$(10) @ DELAY 1 @ T=0 @ R=0

1010 REQUEST 161 @ 1=READINTR @ ENABLE INTR 17 @ ON INTR
GOSUB 2000

1020 DISP “DEVICE”;A;"READY”

1030 IF KEY$="" OR O$#”” THEN 1030

1040 T=T+1 @ O$="DEVICE "$STR$(A)&” MESSAGE "&STR$(T) @
REQUEST 226 @ GOTO 1020

2000 I=READINTR

2010 IF BIT(I,4) THEN OUTPUT :LOOP ;0% @ REQUEST 161 @ DISP O$
@ 0$=""

2020 IF NOT BIT(I1,0) THEN 2050

2030 D=READDDC @ IF D=32 THEN 2040 ELSE IF D=33 THEN 2060
ELSE 2050

2040 ENTER :LOOP ;I$ @ DISP I$ @ R=R+1 @ IF R#VAL(I$[LEN(I$) - 2])
THEN 2070

2050 DISP “"DEVICE”;A;"READY” @ ENABLE INTR 17 @ RETURN

2060 REQUEST 163 @ DISP "DONE” @ STOP

2070 BEEP @ REQUEST 163 @ DISP "MESSAGE ERROR” @ STOP

Initialization:

Line 1000 performs the same
function as Line 1000 in the CON-
TROL program and also initializes
the transmit and receive sequence
numbers.

Line 1010 sets the device status
(161 indicates that the device is
ready to receive data) and enables
interrupts. The interrupt mask
is set to recognize the “talker”
and device-dependent command
interrupts.

Lines 1020-1040 contain the appli-
cation section of the program. The
ready message is displayed and
the keyboard is scanned. If no key
was pressed or if a message is
waiting to be sent, the keyboard is
scanned again. If a key is pressed
and the output string is empty, the
transmit sequence number is
incremented and the message is
placed in the output string. Service
is requested from the controller
(226 indicates the device is ready
to send data and causes the service
bit to be set), and the routine goes
back to scan the keyboard and wait
for the controller to take the data.

Interrupts:

Line 2000 is the beginning of the
interrupt subroutine. If an inter-
rupt occurs, the interrupt-cause
byte is read and cleared, and the
particular bit set in that byte indi-
cates the type of interrupt. Bit4 is
the “talker” bit and tells the device
the controller is ready to receive its
message. The device sends the
message, returns its status to
normal, displays the transmitted
message to the user, and clears the
output string so the application
routine can send another message.

Line 2020 checks to see if the
device-dependent command-
interrupt bit is set. If so, the sub-
routine reads the command
number into the variable D. This is
necessary to preserve the com-
mand number because READDDC
also clears the command number
byte to —1. If the command is
DDL 0, the controller is sending a
message and the device reads in
the data in line 2040, displays it,
increments the expected sequence
number, and compares it to the
received sequence number. If the
sequence numbers differ, the
device beeps, displays an error
message, and stops after setting its
status to 163 (not ready to send or
receive data). If the command is
DDL 1, the device program is
stopped after displaying a message
for the user and setting the device
status to 163. If a message is cor-
rectly received, orif the command
is not DDL 0 or DDL 1, line 2050
restores the device display and
interrupt mask and returns to the
application routine.

In a real application, it may be
necessary for the DEVICE program
to perform some time-critical tasks
to turn off interrupts. It is impor-
tant to re-enable interrupts as soon
as possible, because the controller
may send a message to a slave
device and be hung waiting for the
device to acceptit. A time-outand
a system error could occur if the
controller does not allow for this
possibility. Alternatively, the con-
troller might be required to check
the slave device status before
sending any message, and the
device could set a “not ready”
status when it becomes necessary
to disable the interrupts.

Please note that in both the
CONTROLLER and DEVICE pro-
grams, simple subroutines are
used for interrupt servicing. This
means that variables used in sub-
routines may be shared with vari-
ables of the same names in the
application sections of these pro-
grams. To prevent unexpected
interaction and difficult-to-find
bugs, use obscure names in the
interrupt subroutines so accidental
duplication of names is less likely.
For example, you might use 19
instead of I.

Network Error Recovery

In most practical situations
various system errors can and do
occur. An HP-71 network must be
capable of recognizing and recov-
ering from these errors. The impor-
tance and level of error recovery
depends upon the particular appli-
cation, so only rough guidelines
and procedures can be given here.

Two types of errors can occur on
an HP-IL network:

® The HP-IL loop may be broken
so that frames cannot return to
their sourcing device. This could
be a physical problem such as a
cable break or a loose connector,
or it may be something more
subtle such as no power on one
of the devices in the loop. The
system will not function at all
when this type of error occurs.

® The second type of error is a
device problem. The DEVICE
program may have been acci-
dentally suspended, or a “bug”
or operator error could cause the
program to stop accepting data
from the controller. In this case,
the controller can usually
recover control of the remainder
of the system and continue to
service the other devices in the
HP-IL loop.

When either of these errors occurs,
the controller should notify the
system operator to take corrective
action. After the action has been
taken, the controller should
resume control of the entire system
or of the offending slave device.

Data Loss:

Loss of data is unacceptable in
many applications. When an error
occurs, the message being trans-
mitted may be garbled or lost. To
prevent such loss, both the con-
troller and the device(s) on the
loop must be enabled to retransmit
the previous message. When
system operation has been
restored after an error, the con-
troller can determine if the pre-
vious message was lost and can
then retransmit or request retrans-
mission of the message.

To determine that a message has
been lost, the controller must have
some specific capabilities. Also, the
receiving unit must ignore partial
or garbled messages. Two ways to
satisfy these requirements are to
define fixed-length messages or to
use a special flag character as the
message terminator. In addition,
messages may require some kind
of alternating sequence flag similar
to the sequence numbers used in
our example. Then the controller
can determine whether or not a
message was completed prior to
an error, or whether it was lost
when the error occurred by
checking the received or trans-
mitted message flag in the device.

Errors:

When an error occurs, a device
HP-71 does not time-out. It also
ignores the STANDBY command
parameter and waits indefinitely
for an HP-IL operation to complete.
When the controller is satisfied
that the network is intact after an
error, its first order of business is
to make sure the DEVICE program
can proceed and that the program
is functioning normally.

If the device is executing an
OUTPUT statement when the
error occurs, the controller can
clear the DEVICE program by
reading the rest of the data from
the device and then discarding
that data. The controller might
receive nothing or a complete
message, depending on when the
error occurs. If the device is
executing an ENTER statement
when the error occurs, it will
usually wait for a line-feed
character to terminate the state-
ment before proceeding. The
controller can then send a line-feed
character to the device to get the
DEVICE program to continue.
This may leave the line-feed
character in the device buffer if the
device is not waiting atan ENTER
statement, so it is necessary to
follow the line-feed character with
a device clear command on HP-IL
to cover this possibility. When the
DEVICE program is again running
normally, the controller can check
the message sequence flag or
perform whatever higher-level
actions are required to recover
from a possible loss of data.

Program Suspension:

Although an HP-71 device is not
concerned with time-out errors, it
does respond to two other types of
errors that can occur on the HP-IL
loop. These errors can cause pro-
gram suspension if precautions
are not taken. For example, when
the HP-IL loop is broken in the
middle of a frame, a “talker”
device can receive a garbled frame
which appears to the device as a
protocol violation. In the device,
these types of errors should be
ignored so that the program will
continue to run (discarding the
message, of course) and allow the
controller to handle the situation
and recover. It is usually undesir-
able to ignore DEVICE program
errors but it can be done by using
ON ERROR GOSUB prior to
ENTER LOOP or OUTPUT LOOP.
The target error subroutine would
simply be a RETURN, so the
program will continue despite the
error. OFF ERROR should prob-
ably be executed immediately after
ENTER or OUTPUT. ON ERROR
could be left active during the
entire DEVICE program rather
than enabling and disabling it for
each input/output operation, but
as noted above, DEVICE program
errors should not be ignored.

The HP-71 as System Controller:
An HP-71 is not normally used
as the system controller, but there
are some situations where this
might be desirable. Two charac-
teristics of the OUTPUT and

ENTER statements in an HP-71
controller affect its ability to
recover the network from errors.
Under certain conditions, the
OUTPUT statement can time-out
without causing an error in the
program. The data which was to
have been sent to the device is sent
instead to the controller’s display.
When this happens, there will be
no indication that the transmission
has failed, so it becomes necessary
for the controller to verify in some
other way that the message was
received. This can be done by
checking the slave device’s
received-message sequence flag
after each transmission.

When an HP-71 controller exe-
cutes an ENTER statement and a
slave device fails to supply the
proper termination sequence (usu-
ally a line-feed character), the
controller may hang and not time
out. This also may happen when
the HP-IL loop is broken, pre-
venting the termination sequence
from reaching the controller. Once
a system is operating relatively
free from bugs in the DEVICE
program this seldom happens, but
you should be aware of such a
possibility. If it does happen, first
correct the network or slave device
problem and then press the con-
troller’s [ATTN] key twice to sus-
pend the CONTROL program.
Then resume the CONTROL
program at the point where it
recovers from a network error, as
described above.

In general, there is no way for
an HP-71 controller to determine if
an HP-71 slave device is busy other
than to attempt to execute a
remote-mode command and either
trap any error that occurs or verify
that the command has been exe-
cuted. Unless the controller ver-
ifies that the command was exe-
cuted, it might assume that the
slave device is idle and ready to
receive further commands. For
example, it is possible that an
ENTER statement might be exe-
cuted when an HP-71 slave device
is running a program. When the
controller then sends a remote-
mode command, the data will be
taken by the ENTER statement in
the DEVICE program but will not
be executed as a command. No
time-out or error will occur.

The controller also has no way
to cancel a busy condition in a
slave device so the device can be
prepared to receive commands. If
the controller determines that a
slave device is busy, manual inter-
vention at the device is necessary;
a running program must be sus-
pended and the STOP command
may be needed to cancel a pending
interrupt. Consequently, it may be
important to design the DEVICE
program so that the controller can
terminate it and, subsequently,
send commands to the slave
device.

10

In this example, the DEVICE
program is designed to terminate
when a DDL 1 command is
received. The CONTROL program
sends DDL 1 as part of the network
set-up to gain control, even if the
DEVICE program is running.
There are several ways to imple-
ment this function, but this
method is simple and illustrates
how other slave-dependent com-
mands can be used to execute
functions in the DEVICE program.

If the CONTROL or DEVICE
programs are inadvertently sus-
pended, network errors are likely
to occur, so program suspensions
should be prevented. Though not
used here as part of their initializa-
tion sequences, preventive pro-
grams can disable the ATTN key
and other key sequences that
could cause programs in the net-
work to malfunction.

To disable the ATTN key, execute
this statement:

POKE "2F441”,”F”

To reenable the ATTN key, execute
this statement:

POKE II25441 //, //0”

Disabling the ATTN key pre-
vents suspension of a running
program, provided the program
does not use the INPUT statement.
Since most programs include the
INPUT statement, inadvertent
suspension must be prevented by
redefining the ATTN key in addi-
tion to executing the POKE state-
ment above.

To define the ATTN key to a null
character, execute the following
statement:

DEF KEY ”43","";

Because user mode must be
active for the key definition to be
effective, the USER ON statement
is also executed. Since the USER
and 1USER keys are active while
waiting for keyboard response at
an INPUT statement, they should
also be redefined to prevent deacti-
vation of user mode. Appropriate
statements might be:

DEF KEY ”109”,””; and DEF KEY
/I1651l,l1/l;

While these procedures protect
against inadvertent suspension of
the program, there should be a
way for the system controller or
operator to terminate the program.
For example, a program allowing
correct termination might interpret
a particular sequence as a STOP
command. In the CONTROL
program in this example, the zero
key serves this function. Should a
program hang and refuse to
respond to the proper terminating
sequence, the HP-71 initialization
sequence can be used to recover.
The ON and / keys are pressed at
the same time and, when the
INIT:1 prompt appears in the
display, the ENDLINE key is
pressed. This initialization sequence
cannot be disabled, but it is unlikely
to be executed inadvertently.

TN L
e s T

SN 0y

For additional information about
Hewlett-Packard’s handheld com-
puters in manufacturing solutions, call
the HP office nearest you and ask for
your technical computer or instrument
representative. Local HP sales offices
are listed in the white pages of your
telephone book.

Hewlett-Packard
Handheld Computer and
Calculator Operation
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

ﬂﬁ HEWLETT

PACKARD

Printed in USA. 10/85
5954-1312 WCP 5.0

