
DATAFILE Vxx Nx Page 1 

Boldly Going ... Identifying Constants 
 

Valentín Albillo (HPCC #1075) 
 

Welcome to another installment of the new Boldly Going series. This time it 
features a relatively simple program which builds upon the extremely small general 
purpose routine DEC2FRC (featured/discussed elsewhere in this issue), to provide 
basic functionality for an advanced, very useful and most impressive feature which 
is nevertheless absent in our beloved machines’ built-in instruction sets, namely 
identifying numeric constants, i.e., the capability of, given some real, numeric 
value, to try and identify its exact symbolic form if possible, and that failing, to 
provide an approximate symbolic expression of user-specified relative accuracy.  

This will allow us to perform some pretty nifty feats, such as: 

• Give exact, symbolic results for definite integrals (even if they can’t be 
expressed in terms of elementary functions), finite or infinite summations, 
and specific values of transcendental functions. For instance, we’ll find that 
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• Simplifying certain complicated expressions by identifying the computed 
result as a much simpler symbolic expression. For instance, 
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• Perform exact arithmetic with expressions involving fractions. For instance: 
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• Find out simpler or alternate symbolic forms. For instance: 
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13 −
       equals   )( º15Sin  

• Identify the exact symbolic value of  some given limit. For instance: 

     )2())(1(0
xCotxSinLim x +→      equals   e  
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Program listing for the HP-71B 

This 31-line (1,562-byte) BASIC program listing consists of the base subprogram 
DEC2FRC and the main subprogram IDENTIFP,  but for convenience’s sake there’s 
also a 1-line subprogram IDENTIFY to allow for simpler calls using defaults, as 
well as a small front-end program to provide interactive input and labeled output. 

The front-end, “driver” main program 

10 DESTROY ALL @DIM S$[80] @STD @T$="identified as " @INPUT "Value=";X 
12 INPUT "#Cn,Pw,Rt,Fn,Err=","3,3,3,4,1E-9";C,P,R,F,K 
14 CALL IDENTIFP(X,S$,C,P,R,F,K,V) @ IF V<95 THEN T$="might be " 
16 DISP X;T$;S$;" (";STR$(V);"%)" 

The simpler call with default parameters 

18 SUB IDENTIFY(X,S$) @ CALL IDENTIFP(X,S$,3,3,3,4,.000000001,0) 

The full-fledged identifying subprogram 

20 SUB IDENTIFP(X,S$,B,L,A,F,K,V) @ OPTION BASE 1 @ DIM T$[80],G$[80] 
 
22 DATA 6,PI,EXP(1),LN(2),.577215664902,(1+SQR(5))/2,PI*LN(2) 
24 DATA "Pi","e","Ln(2)","EulerGamma","Phi","(Pi*Ln(2))" 
 
26 DATA 26,(),(),Sin(),Asin(),Cos(),Acos(),Tan(),Atan(),Exp(),Ln(),10^(),Lgt() 
28 DATA 2^(),Log2(),Sinh(),Asinh(),Cosh(),Acosh(),Tanh(),Atanh() 
30 DATA 1/Sin(),Asin(1/()),1/Cos(),Acos(1/()),1/Tan(),Atan(1/()) 
 
32 READ M @ DIM C(M),C$(M) @ READ C,C$,Z @ DIM F$(Z) @READ F$ @ W1=INF 
34 U=ABS(X) @Z=MAX(1,MIN(Z,2*F+2)) @M=MIN(M,B) @A=MAX(1,A) @L=MAX(1,L) 
36 ON ERROR GOTO 44 @ FOR J=2 TO Z @ G$=F$(J) @ P=POS(G$,"()") 
38 Y=VAL(G$[1,P]&"U"&G$[P+1]) @ IF J=2 THEN H=40 ELSE H=1 
40 FOR R=1 TO A @P=0@S=1 @W=4*H @GOSUB 46 @FOR I=1 TO M @FOR P=-L TO L 
42 P=P+(P=0) @ S=C(I)^P @ W=H @ GOSUB 46 @ NEXT P @ NEXT I @ NEXT R 
44 NEXT J @ OFF ERROR @ GOTO 52 
46 CALL DEC2FRC(Y^R*S,N,D,K) @ W=(N*N+D*D)/W 
48 IF W<W1 THEN V=W/W1 @ W1=W @ N1=N @ D1=D @ I1=I @ P1=P @R1=R @ J1=J 
50 IF ABS(N)+ABS(D)>1100 THEN RETURN 
 
52 S$="("[2-(R1#1)] @ T$=STR$(N1) @ IF D1#1 THEN T$=T$&"/"&STR$(D1) 
54 IF P1=0 THEN 58 ELSE T$=T$&"*/"[1+(P1>0),1+(P1>0)]@IF T$="1*" THEN T$="" 
56 T$=T$&C$(I1) @ IF ABS(P1)#1 THEN T$=T$&"^"&STR$(ABS(P1)) 
58 S$=S$&T$ @ Q=F$(J1)<>"()" @ IF R1#1 THEN S$=S$&")^(1/"&STR$(R1)&")" 
60 IF Q THEN G$=F$(J1+2*MOD(J1,2)-1) @ Q=POS(G$,"()")  
   @  S$=G$[1,Q]&S$&G$[Q+1] 
62 S$="-"[SGN(X)+2]&S$ @ V=100-INT(100*V) 

The base Decimal-to-Fraction subprogram 

64 SUB DEC2FRC(X,N,D,W) @V=1 @N=1 @D=0 @Y=INF @Z=ABS(X) @F=SGN(X) @X=Z 
66 C=INT(X)@IF FP(X) THEN X=1/FP(X)@S=N ELSE N=(N*C+U)*F @D=D*C+V @END 
68 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D  
   @ IF ABS(R/Z-1)<=W THEN N=N*F @ END 
70 IF R=Y OR MAX(N,D)>1E12 THEN N=U*F @ D=V ELSE Y=R @ GOTO 66  

Note: No ROMs required to enter/use the program, but the Math ROM gets heavily used in the examples. 
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Program description & syntax 
As stated above, the program listing includes four different sections of code, 
namely three subprograms and one main, front-end program to allow for a 
convenient, interactive experience. Let’s discuss them in turn, in reverse order: 

DEC2FRC: The  Convert-Real-To-Fraction subprogram 

The basic routine (lines 64-70) upon which the identifying subprogram depends. It 
converts a given real value to a fraction with the lowest possible terms, within  a 
user-specified maximum relative error. It is discussed elsewhere in this same issue 
of Datafile but, for the sake of completeness, its calling syntax is the following: 

CALL DEC2FRC(X,N,D,W) , where: 

 X input : real value to convert to fractional form 
 N output: integer numerator of the simplest fraction 
 D output: integer denominator of the simplest fraction 
 W input : maximum relative error (0 means maximum accuracy) 

Example:  Convert π  to a rational with max. error <= 1E-7; with minimum error.  

>CALL DEC2FRC(PI,N,D,1E-7) @ N;D,N/D;PI 
   355  113             3.14159292035  3.14159265359 

>CALL DEC2FRC(PI,N,D,0) @ N;D,N/D;PI 
   1146408  364913      3.14159265359  3.14159265359 

IDENTIFP: The  Main Identification subprogram 

This is the main subprogram (lines 20-62) which attempts to identify the user-given 
real value; it can be  fine-tuned  by specifying various parameters when issuing the 
call, according to the following syntax: 

CALL IDENTIFP(X,S$,B,L,A,F,K,V) , where: 

 X input : real value to identify 
 S$ output: symbolic expression which represents the value 
 B input : max. number of predefined constants to try 
 L input : max. positive/negative power to try 

A input : max. Nth-root to try 
 F input : max. number of predefined functions to try 

K input : max. relative error for rationalization 
 V output: identification’s confidence indicator (0-100%)      

Example:  Identify the value -2.34305547341 

     >CALL IDENTIFP(-2.34305547341,S$,3,3,3,12,1E-9,V) @ S$;V 
         -1/Sin((11/13/Pi^2)^(1/3))    100 

So  -2.34305547341 is identified as   3
213

11
π

Cosec−   with 100% confidence 
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IDENTIFY: The  Convenience Simpler Call with Default Parameters 

This one-line subprogram (line 18) directly calls IDENTIFP with default parameters 
which are appropriate for most cases. The simple calling syntax is as follows: 

CALL IDENTIFY(X,S$) , where: 

 X input : real value to identify 
 S$ output: symbolic expression which represents the value 
The following default parameters are assumed: 
 3 = max. number of predefined constants to try (Pi, e, Ln 2) 
 3 = max. pos/neg. power to try (up to cubes or 1/cubes)  

3 = max. Nth-root to try (up to cubic roots) 
 4 = max. number of predef. functions to try (Sin,Cos,Tan,Exp) 

1E-9 = max. relative error for rationalization 

Example: Compute and identify all roots of 0132283364 =−++− xxxx  

  >DESTROY ALL @ OPTION BASE 1 @ DIM C(5) @ COMPLEX R(4) @ MAT INPUT C 
      C(1)? 1,-6*SQR(3),8,2*SQR(3),-1  [ENTER] 
  >MAT R=PROOT(C)  
  >FOR I=1 TO 4 @ S=REPT(R(I)) @ CALL IDENTIFY(S,S$) @ S;”=“;S$ @NEXT I 
       .21255656167  =  Tan(1/15*Pi)  -.445228685309 = -Tan(2/15*Pi) 
      1.11061251483  =  Tan(4/15*Pi)  9.51436445421  =  Tan(7/15*Pi) 

The  Front-end, “driver” main program 

Again for convenience, a simple front-end program (lines 10-16) is included, 
which when RUN simply prompts the user for the value to identify (any numeric 
expression) and any desired parameters, for which defaults are offered, namely: 
 #Cn = max. number of predefined constants to try (default = 3) 
 ,Pw = max. pos/neg. power to try (default = 3 i.e: -3 to 3) 
 ,Rt = max. Nth-root to try (default = 3 = up to cubic roots) 
 ,Fn = max. number of predef. functions to try (default = 4) 
 ,Err= max. relative error for rationalization (default = 1E-9) 

It then calls IDENTIFP and outputs the resulting symbolic expression along with a 
confidence indicator (0-100%) which measures the identification’s reliability: 
values >= 95% are labeled as “identified as”, lesser values as “might be”. 

Example: Compute and identify the value of  I = ∫ +++

−−
1

0

.
611263

522
dx

xxx

xx   

   >RUN 
      Value=INTEGRAL(0,1,1E-10,(IVAR^2-2*IVAR-5)/(IVAR^3+6*IVAR^2+11*IVAR+6)) 
     #Cn,Pw,Rt,Fn,Err=3,4,3,4,1E-10  [ENTER] 
         -.471132142625 might be -Ln(6561/4096) (91%)    

 which, since 6561=94 and 4096=84 , readily simplifies to I = 
9
84 Ln  
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Notes and Limitations 

• The identification subprogram can initially recognize a symbolic expression 
of the generic form: 

    (+ or -) )( R P
ji

C
D
NF  

where: 

Fi: predefined function or its inverse, where 0 <= i <= F (#Fn).  The 
index i=0 corresponds to no function applied.  

§ The functions to try are predefined in DATA statements at lines 
26-30. The first value is the number of functions predefined 
(13+13 inverses), the remaining string values are the functions’ 
names, which must be the actual name the HP-71B recognizes, 
with the argument represented by the empty parentheses set, ().  

§ Any function can be specified in the DATA statements but if the 
name’s not recognized at run time or it causes any kind of run-
time error (for certain arguments, f.i.), it will be skipped. 

§ By default, F is taken as 4, i.e.: SIN, COS, TAN, EXP, and their 
inverses will be tried. Values of F in 6-9 include hyperbolic 
functions and require the Math ROM, else they will get 
skipped. Values of F in 10-12 define extra trigonometric 
functions:  Cosecant, Secant, Cotangent, and their inverses. 

§ You can extend the identification capabilities by adding your 
own functions, including user-defined functions. See Example 
3 below for details. Running time is linear.  

R: Rth-root to apply, where R goes from 1 to A. (#Rt) (1=no root) 

N: Integer numerator or the simplest fraction within max.err. K (Err) 

D: ditto, the denominator 

Cj: predefined constant, where 0 <=j <= B (#Cn). The index j=0 
corresponds to no predefined constant present. 

§ The constants to try are predefined in DATA statements at lines 
22-24. The first integer value is the number of constants 
predefined (6), the remaining string values are first the 
constants’ values (which can be arbitrary, evaluable numeric 
expressions), then the constants’ user-specified names.  

§ You can give the constants arbitrary names (“EulerGamma”, 
“Pi”) but you must include the name in parentheses if the 
name’s an expression (“(Ln(2)*Pi)”) for proper output syntax.  
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§ By default B is taken as 3, i.e.: )2(,, Lneπ  will be tried, but it 
can go up to 6 for extra constants )2(,, Lnπϕγ , and further, 
you can extend the identification capabilities by adding your 
own, see Example 4 below for details. Running time is linear.  

P: Pth-power to raise the constant to, where P goes from –L (i.e., 1/Pth-
power) to +L (#Pw), including 1, i.e.: the constant as is. 

• Symbolic expressions not of the generic form above won’t be recognized,  
though their value will be if it has another, compatible form. In any case, the 
returned expression will evaluate to the given value within the max. relative 
error specified. For example, attempting to recognize e+π  fails and gives: 

>CALL IDENTIFP(PI+EXP(1),S$,5,3,3,8,1E-9,0) @ S$ 
   Sinh((661/284*Phi^2)^(1/2)) 

   i.e.: we get ϕ
284

661
Sinh  , which agrees with e+π  to 9 decimal places. 

• Identification may fail if the specified value isn’t accurate enough. Further, 
specifying a smaller max. error and/or additional constants, powers, roots, or 
functions might help, at the expense of increased running time. 

• The routine which assembles the symbolic expression for output (lines 52-
62) is very simple and doesn’t try to further simplify it if possible. For 
instance 17.3205080757 will be identified as 300 , not the simpler 310 . 

• The identification process includes a quick-exit mechanism which helps to 
greatly reduce the running time but may occasionally return a less simple 
expression than is possible. For instance, .643501108793 will be identified 
as  Asin(3/5) instead of the equivalent but slightly simpler Atan(3/4). 

• If the (absolute) value to identify exceeds about 15 and Atanh is one of the 
functions to try, it’s possible that it gets incorrectly identified as Atanh(1), 
because Tanh equals 1 to 12 digits for arguments above 14.6+, so 1 is 
considered the exact value for Atanh in that case. You must avoid specifying 
Atanh as a function to try in such cases or else put it in the last place. 

• Values of some trigonometric functions of moderately sized arguments may 
fail to be recognized because the inverse function will only return  values in 
certain limited ranges due to the periodicity. Thus SIN(1) will be 
recognized because ASIN(SIN(1)) is computed as 1, but SIN(2) won’t be 
because ASIN(SIN(2)) isn’t returned as 2 by the HP-71B.   

• The identification process is very computation-intensive and subject to 
combinatorial explosion. Thus it runs best under Emu71, a fast emulator 
where the timing will be 15-30 seconds at most, instead of in a physical HP-
71B, where running times can exceed 1-2 hours in complex cases. 
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Examples galore 

1. Use the IDENTIFY subprogram to help compute the exact symbolic value of: 

a) S =∫ ++

+−1

0

1
.

22)12(

)22( dx
xx

xTan           ( = 2
96
5 π  ) 

First, we’ll set up some modes and variables to be used in these examples: 
   >DESTROY ALL @ DIM S$[80] @ RADIANS @ STD @ K=.00000001 

Now for the integral’s numerical computation and subsequent identification: 
   >INTEGRAL(0,1,K,ATN(SQR(IVAR^2+2))/SQR(IVAR^2+2)/(IVAR^2+1)) 

    .514041895882 
   >CALL IDENTIFY(RES,S$) @ S$   ->  5/96*Pi^2   

b) S =∫ +

π

0

.
)(21

)( xd
xCos

xSinx             ( = 
4

2π
 ) 

   >INTEGRAL(0,PI,K,IVAR*SIN(IVAR)/(1+COS(IVAR)^2)) 
    2.46740110022 

   >CALL IDENTIFY(RES,S$) @ S$ -> 1/4*Pi^2 

c) S = )
0

56
1

46
2

26
8

16
16

(
64

1∑
∞

=
+

−
+

−
+

+
+

k
kkkkk          ( =  

33

32π
 ) 

Compute and identify the sum by running this code in some temporary file: 

   10 DESTROY ALL @ S=0 @ FOR I=0 TO 10  
   20 S=S+(16/(6*I+1)+8/(6*I+2)-2/(6*I+4)-1/(6*I+5))/64^I 
   30 NEXT I @ CALL IDENTIFY(S,S$) @ S$ 

   (1024/27*Pi^2)^(1/2) , which simplifies to 32*Pi/(3*SQR(3)) 

d) 232)
0

2)66(

1
2)56(

4
2)46(

40
2)36(

56
2)26(

160
2)16(

64(
64

1 2Ln
k kkkkkkk =

= +
−

+
+

+
−

+
−

+
−

+
∑
∞

  

Compute and identify the sum by running this code in some temporary file: 
   10 DESTROY ALL @ S=0 @ FOR I=0 TO 10 
   20 T=64/(6*I+1)^2-160/(6*I+2)^2-56/(6*I+3)^2 
   30 T=T-40/(6*I+4)^2+4/(6*I+5)^2-1/(6*I+6)^2 @ S=S+T/64^I 
   40 NEXT I @ CALL IDENTIFY(S,S$) @ S$ 

   32*Ln(2)^2 
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2. Illustrate the difference between using  the simpler call to IDENTIFY vs the 
full-fledged call to  IDENTIFP while trying to identify these expressions: 

a) S = 
4

51+      ( =  
10
3πSin    =   

5
π

Cos    =   
2
ϕ   (half the golden ratio)  ) 

>CALL IDENTIFY((1+SQR(5))/4,S$) @ S$ 
        Sin(3/10*Pi)    

 >CALL IDENTIFP((1+SQR(5))/4,S$,5,3,3,4,1E-9,V) @ S$ 
        1/2*Phi    

The first call finds out the sine expression (instead of the slightly simpler 
cosine one because of the early termination feature), while the full-fledged 
call takes longer but does find the much simpler golden ratio relationship. 

b) S = ∑
∞

=1
4

1

k k
          ( = 

90

4π
  ) 

>S=0 @ FOR I=1000 TO 1 STEP -1 @ S=S+I^(-4) @ NEXT I 
>CALL IDENTIFY(S,S$) @ S$ 
     2143/1980    

   >CALL IDENTIFP(S,S$,3,4,3,4,1E-9,V) @ S$ 
        1/90*Pi^4 

This time the simpler call fails to correctly identify the sum, while the call to 
IDENTIFP succeeds when asked to search up to 4th powers. 

c) x = the root of   ∑
∞

=1 !k

k
k

x
k
k

 = 
2
1

   

Compute the root by running this code in some temporary file: 
   10 DESTROY ALL @ S=FNROOT(0,1/3,FNF(FVAR)-1/2) @ DISP S 
   20 DEF FNF(X) @ Y=0 @ K=1 
   30 T=(K*X)^K/FACT(K) @ IF Y+T#Y THEN Y=Y+T @ K=K+1 @ GOTO 30 
   40 FNF=Y  

>RUN 
    .238843770192 

>CALL IDENTIFY(S,S$) @ S$ 

     (1/27/e)^(1/3)  , which simplifies to  x = 33
1

e
     

There’s no need to issue the more complex call since the call to IDENTIFY 
succeeded in retrieving the correct symbolic expression for the root. 
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3. Show how to extend the functionality by adding new functions in order 
to recognize symbolic expressions of the form π+N  and π−N  

We just need to enter a new DATA statement containing the proper definitions 
for both the new function and its inverse, which in this case will be: 

31 DATA (Pi+()),(()-Pi) 

and we must also change line 26 DATA 26,(),(),... to 26 DATA 28,(),(),... 
since we’ve added 2 new functions. Notice that the definitions are enclosed 
in parentheses (which are necessary for correct output syntax if the value is 
<0) and that their argument is represented by the empty parentheses set, () . 

Let’s check the extended recognition capabilities by evaluating and 
identifying the following definite integral, this time using the front-end: 

     S =  ∫ +

−
1

0

.
21

4)1(4
dx

x

xx            ( =  π−
7
22

  ) 

        >RUN 
       Value=INTEGRAL(0,1,1E-12,(IVAR*(1-IVAR))^4/(1+IVAR^2)) 
       #Cn,Pw,Rt,Fn,Err=3,3,3,14,1E-9 

         1.26448926735E-3 identified as ((22/7)-Pi) (100%) 

and now we can also identify e+π , which earlier we couldn’t ! : 
       >CALL IDENTIFP(5.85987448205,S$,3,3,3,14,1E-9,0) @ S$ 

         (Pi+(e)) 

4. Show how to extend the functionality by adding new constants 

Let’s extend the functionality by predefining an additional constant, 
“Gamma(1/4)”, approximately 3.62560990822. We just need to add its 
value and name to the appropriate DATA statements. In this case, we’ll enter: 

23 DATA 3.62560990822 
25 DATA "Gamma(1/4)" 

and we must also change the statement 22 DATA 6,PI,... to 22 DATA 7,PI, 
... since we’ve added one new constant.  Let’s check it out by identifying:  

      S =  ∫ 2
.)(32

0

π

π dxxSin            ( =  )
4
1

(2
6
1 Γ     ) 

   >RUN 
       Value=INTEGRAL(0,PI/2,1E-10,SQR(2*PI*SIN(IVAR)^3)) 
       #Cn,Pw,Rt,Fn,Err=7,3,3,4,1E-9 
       2.19084120111 identified as 1/6*Gamma(1/4)^2 (100%) 
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5. Find exact symbolic values for the examples given in the introduction 

a) Compute S =∫ 2
.))(2(

0

22

π

dxxCosLnx       ( = 5
1440

11 π  ) 

A tough integral because of the singularity, we’ll use two subintervals: 

  >S=INTEGRAL(0,3*PI/8,1E-12,(IVAR*LN(2*COS(IVAR)))^2) 
  >S=S+INTEGRAL(3*PI/8,PI/2,1E-12,(IVAR*LN(2*COS(IVAR)))^2) 
  >RUN 

       Value=RES 
       #Cn,Pw,Rt,Fn,Err=3,5,3,4,1E-9 
          2.33765036938 identified as 11/1440*Pi^5 (100%) 

b) Simplify  

44

4

44

4
ππ

π

ππ

π

SinhCosh

Cosh

SinhCosh

Sinh

+
+

−
        ( =  

2
π

Cosh   ) 

    >RUN 
       Value=SINH(PI/4)/(COSH(PI/4)-SINH(PI/4))+COSH(PI/4)/(COSH(PI/4)+SINH(PI/4)) 

       #Cn,Pw,Rt,Fn,Err=3,3,3,9,1E-9 
          2.50917847867 identified as Cosh(1/2*Pi) (100%) 

c) Compute as an exact fraction 
23

1

19

3

13

2

7

1
+−+          ( =  

39767

7249
  ) 

    >RUN 
  Value=1/7+2/13-3/19+1/23 
  #Cn,Pw,Rt,Fn,Err=0,0,0,0,1E-9 

       .182286820731 identified as 7249/39767 (100%) 

d) Find an alternate symbolic form of 
22

13 −
            ( =   )( º15Sin    ) 

    >DEGREES @ RUN 
    Value=(-1+SQR(3))/2/SQR(2) 

  #Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-9 
       .258819045103 identified as Sin(15) (100%) 

e) Identify the limit )2())(1(0
xCotxSinLim x +→           ( =  e    ) 

    >RADIANS @ RUN 
 Value=(1+SIN(1E-7))^(1/TAN(2E-7)) 
 #Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-7 

      1.64872122948 identified as (e)^(1/2) (100%) 
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6. Test suite to demonstrate what’s possible and help check new versions 

Expression to symbolically evaluate 
Computed  value  

(Up. limit & rel. error 
for INTEGRAL ) 

Identification 
parameters 

Identified symbolic 
value 

∫ −
1

0

.4)1(4 dxxx  

 

1.5873015873E-3 

(K=1E-8) 

default 
630

1
 

∫
∞

−

0

.
2

dxxe  
.886226925453 

(U=10,K=1E-10) 
default 

2
π

 

∫
∞ −−−

0

. dxx

xexe π
 

1.14472988575 

(U=20,K=1E-10) 
default πLn  

∫
∞

+0

.41

1 dx
x

 
1.11072073421 

(U=1E3,K=1E-10) 
default 

22

π
 

∫
1

0

.)( dxxLn Γ  
.918938533029 

(K=1E-10, takes 
very long) 

default π2Ln  

∫ 2
.)()(

0

π

dxxSinLnxSin  
-.306852819438 

(K=1E-10) 
default 

eLn 2
 

∫ −
+

1

0

.
1
1 dx

x
xLn  

1.38629436094 

(K=1E-10) 
default 22 Ln  

∫ −
+

1

0

.
1
11 dx

x
xLnx

 
2.4674011001 

(K=1E-10, takes 
very long) 

default 

4

2π
 

∫ −2
.

)(
)(

0

π

dx
xTan

xCosLn  
.41123351671 

(K=1E-10) 
default 

24

2π
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Expression to symbolically evaluate 
Computed  value  

(Up. limit & rel. error 
for INTEGRAL ) 

Identification 
parameters 

Identified symbolic 
value 

∫
∞

++0

.3)124(

4
dx

xx

x  
3.77874867484E-2 

(U=30,K=1E-10) 
default 

348

π
 

∫
∞

++0

.2/5)1274(

3
dx

xx

x  
8.23045267136E-3 

(U=60,K=1E-10) 
default 

243
2

 

∫
∞

++0

.
)1776.1()12(

1
dx

xx
 

.785398163226 

(U=2000,K=1E-7) 
default 

4
π
 

∫ +

2
.

)007.2)(1(

1

0

π

dx
xTan

 
.785398163398 

(K=1E-10) 
default 

4
π
 

∑
∞

=

+

−
−

1
5

)1(

)12(
)1(

k

k

k
 

.996157828071 

(U=76) 

3,5,3,4, 

1E-9 1536

5
5 π

 

∫
∞

−0

.
1

dxxe

x
 

1.64493406686 

(U=30,K=1E-10) 
default 

6

2
π

 

∫
∞

−
−

0

.
1

)(2
dxxe

x
xe

xLn
 

.333177923808 

(subintervals) 

5,3,3,4, 

1E-9 
2γ  

∑
∞

=

−

1 10
1

k
kk

 
-.105360515657 

(U=10) 

3,3,3,4, 

1E-12 10
9Ln  

222222
2

1
++++−  

2.45412285246E-2 

(in DEGREES) 
default )

32
º45

(Sin  

∑
∞

= +0 4)12(
1

k
kk

 
1.09861228867 

(U=20) 
default 3Ln  
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Expression to symbolically evaluate 
Computed  value  

(Up. limit & rel. error 
for INTEGRAL ) 

Identification 
parameters 

Identified symbolic 
value 

∫ −

π2
.

)2(45
)3(2

0

xd
xCos

xCos  
1.1780972451 

(K=1E-10) 
default 

8
3π

 

∫
∞

0

.
)(

dx
xSinh

x
 

2.46740110027 

(U=30,K=1E-10) 
default 

4

2
π

 

∫ +

2
.

)(549
1

0

π

dx
xCos

 
.111341014342 

(K=1E-10) 
default )

9
1(1−Sin  

∫
∞ −−−

0

.

2

dx
x

xexe
 

.288607832453 

(U=30,K=1E-10) 

5,3,3,4, 

1E-9 2
γ

 

∫
∞

0

.
)

2
(

)(
dx

xSinh

xSin
π
π

 .996272076217 

(U=30,K=1E-10) 

3,3,3,9, 

1E-9 
πTanh  

∑
∞

=
−

−+

1
!)12(

12)51(

k
k

k
 

12.6971007574 

(U=11) 

5,3,3,9, 

1E-9 
)2( ϕSinh  

∑
∞

=
−

−

1
!)12(

12))5(25(

k
k

k
Cos π

 

13.1702053741 

(U=13) 

5,3,3,9, 

1E-9 
)2

4
5

( ϕSinh  

∫
∫
∞ −−−

2

2

0
.

.
)(2

1
π

dxx
xexe

dx
xSin

 

3.36816833521 

(U=30,K=1E-10 
para ambas 
integrales) 

5,3,3,12, 

1E-9 )
2

(

1
γ

Tan
 

Note: If you don’t have a Math ROM, simply identify the given numeric values 
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Exercise 4U 

Extend the functionality by adding a new function, )(2 xΓ  , and its inverse. Check 
your implementation by computing and identifying these expressions: 

a)    ∫ 2
.)(

2
0

π
π

dxxSin     b)     )
6
1(

3
23 Γπ  

Solution:      

 

“Further reading” 

As is, these simple routines can certainly identify a useful variety of numerical 
results, providing the simplest approximate expression when exact identification is 
not possible and, when running in a fast platform, their capabilities can be greatly 
expanded by adding extra predefined constants and functions. However, there’s a 
three-pronged  problem with this approach:  (1) the exponential explosion of cases 
to try, (2) the increasing need for more precision to discriminate the correct result 
among spurious fits, and (3) the limited variety of recognizable expressions. 

Problems (1) and (3) can be tamed with integer relation algorithms, such as LLL 
and PSLQ. However, any implementation which must deal with non-trivial cases  
absolutely requires multiprecision. For instance, recognizing 45 45 −  needs from  
50- to 100-digit precision, depending on the algorithm, and lots of CPU.  Tricky ! 


