
DATAFILE Vxx Nx Page 1

Boldly Going ... Identifying Constants

Valentín Albillo (HPCC #1075)

Welcome to another installment of the new Boldly Going series. This time it
features a relatively simple program which builds upon the extremely small general
purpose routine DEC2FRC (featured/discussed elsewhere in this issue), to provide
basic functionality for an advanced, very useful and most impressive feature which
is nevertheless absent in our beloved machines’ built-in instruction sets, namely
identifying numeric constants, i.e., the capability of, given some real, numeric
value, to try and identify its exact symbolic form if possible, and that failing, to
provide an approximate symbolic expression of user-specified relative accuracy.

This will allow us to perform some pretty nifty feats, such as:

• Give exact, symbolic results for definite integrals (even if they can’t be
expressed in terms of elementary functions), finite or infinite summations,
and specific values of transcendental functions. For instance, we’ll find that

∫ 2
.))(2(

0

22

π

dxxCosLnx equals 5
1440

11 π

• Simplifying certain complicated expressions by identifying the computed
result as a much simpler symbolic expression. For instance,

44

4

44

4
ππ

π

ππ

π

SinhCosh

Cosh

SinhCosh

Sinh

+
+

−
 equals

2
π

Cosh

• Perform exact arithmetic with expressions involving fractions. For instance:

23

1

19

3

13

2

7

1
+−+ equals

39767

7249

• Find out simpler or alternate symbolic forms. For instance:

22

13 −
 equals)(º15Sin

• Identify the exact symbolic value of some given limit. For instance:

)2())(1(0
xCotxSinLim x +→ equals e

Page 2 DATAFILE Vxx Nx

Program listing for the HP-71B

This 31-line (1,562-byte) BASIC program listing consists of the base subprogram
DEC2FRC and the main subprogram IDENTIFP, but for convenience’s sake there’s
also a 1-line subprogram IDENTIFY to allow for simpler calls using defaults, as
well as a small front-end program to provide interactive input and labeled output.

The front-end, “driver” main program

10 DESTROY ALL @DIM S$[80] @STD @T$="identified as " @INPUT "Value=";X
12 INPUT "#Cn,Pw,Rt,Fn,Err=","3,3,3,4,1E-9";C,P,R,F,K
14 CALL IDENTIFP(X,S$,C,P,R,F,K,V) @ IF V<95 THEN T$="might be "
16 DISP X;T$;S$;" (";STR$(V);"%)"

The simpler call with default parameters

18 SUB IDENTIFY(X,S$) @ CALL IDENTIFP(X,S$,3,3,3,4,.000000001,0)

The full-fledged identifying subprogram

20 SUB IDENTIFP(X,S$,B,L,A,F,K,V) @ OPTION BASE 1 @ DIM T$[80],G$[80]

22 DATA 6,PI,EXP(1),LN(2),.577215664902,(1+SQR(5))/2,PI*LN(2)
24 DATA "Pi","e","Ln(2)","EulerGamma","Phi","(Pi*Ln(2))"

26 DATA 26,(),(),Sin(),Asin(),Cos(),Acos(),Tan(),Atan(),Exp(),Ln(),10^(),Lgt()
28 DATA 2^(),Log2(),Sinh(),Asinh(),Cosh(),Acosh(),Tanh(),Atanh()
30 DATA 1/Sin(),Asin(1/()),1/Cos(),Acos(1/()),1/Tan(),Atan(1/())

32 READ M @ DIM C(M),C$(M) @ READ C,C$,Z @ DIM F$(Z) @READ F$ @ W1=INF
34 U=ABS(X) @Z=MAX(1,MIN(Z,2*F+2)) @M=MIN(M,B) @A=MAX(1,A) @L=MAX(1,L)
36 ON ERROR GOTO 44 @ FOR J=2 TO Z @ G$=F$(J) @ P=POS(G$,"()")
38 Y=VAL(G$[1,P]&"U"&G$[P+1]) @ IF J=2 THEN H=40 ELSE H=1
40 FOR R=1 TO A @P=0@S=1 @W=4*H @GOSUB 46 @FOR I=1 TO M @FOR P=-L TO L
42 P=P+(P=0) @ S=C(I)^P @ W=H @ GOSUB 46 @ NEXT P @ NEXT I @ NEXT R
44 NEXT J @ OFF ERROR @ GOTO 52
46 CALL DEC2FRC(Y^R*S,N,D,K) @ W=(N*N+D*D)/W
48 IF W<W1 THEN V=W/W1 @ W1=W @ N1=N @ D1=D @ I1=I @ P1=P @R1=R @ J1=J
50 IF ABS(N)+ABS(D)>1100 THEN RETURN

52 S$="("[2-(R1#1)] @ T$=STR$(N1) @ IF D1#1 THEN T$=T$&"/"&STR$(D1)
54 IF P1=0 THEN 58 ELSE T$=T$&"*/"[1+(P1>0),1+(P1>0)]@IF T$="1*" THEN T$=""
56 T$=T$&C$(I1) @ IF ABS(P1)#1 THEN T$=T$&"^"&STR$(ABS(P1))
58 S$=S$&T$ @ Q=F$(J1)<>"()" @ IF R1#1 THEN S$=S$&")^(1/"&STR$(R1)&")"
60 IF Q THEN G$=F$(J1+2*MOD(J1,2)-1) @ Q=POS(G$,"()")
 @ S$=G$[1,Q]&S$&G$[Q+1]
62 S$="-"[SGN(X)+2]&S$ @ V=100-INT(100*V)

The base Decimal-to-Fraction subprogram

64 SUB DEC2FRC(X,N,D,W) @V=1 @N=1 @D=0 @Y=INF @Z=ABS(X) @F=SGN(X) @X=Z
66 C=INT(X)@IF FP(X) THEN X=1/FP(X)@S=N ELSE N=(N*C+U)*F @D=D*C+V @END
68 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D
 @ IF ABS(R/Z-1)<=W THEN N=N*F @ END
70 IF R=Y OR MAX(N,D)>1E12 THEN N=U*F @ D=V ELSE Y=R @ GOTO 66

Note: No ROMs required to enter/use the program, but the Math ROM gets heavily used in the examples.

DATAFILE Vxx Nx Page 3

Program description & syntax
As stated above, the program listing includes four different sections of code,
namely three subprograms and one main, front-end program to allow for a
convenient, interactive experience. Let’s discuss them in turn, in reverse order:

DEC2FRC: The Convert-Real-To-Fraction subprogram

The basic routine (lines 64-70) upon which the identifying subprogram depends. It
converts a given real value to a fraction with the lowest possible terms, within a
user-specified maximum relative error. It is discussed elsewhere in this same issue
of Datafile but, for the sake of completeness, its calling syntax is the following:

CALL DEC2FRC(X,N,D,W) , where:

 X input : real value to convert to fractional form
 N output: integer numerator of the simplest fraction
 D output: integer denominator of the simplest fraction
 W input : maximum relative error (0 means maximum accuracy)

Example: Convert π to a rational with max. error <= 1E-7; with minimum error.

>CALL DEC2FRC(PI,N,D,1E-7) @ N;D,N/D;PI
 355 113 3.14159292035 3.14159265359

>CALL DEC2FRC(PI,N,D,0) @ N;D,N/D;PI
 1146408 364913 3.14159265359 3.14159265359

IDENTIFP: The Main Identification subprogram

This is the main subprogram (lines 20-62) which attempts to identify the user-given
real value; it can be fine-tuned by specifying various parameters when issuing the
call, according to the following syntax:

CALL IDENTIFP(X,S$,B,L,A,F,K,V) , where:

 X input : real value to identify
 S$ output: symbolic expression which represents the value
 B input : max. number of predefined constants to try
 L input : max. positive/negative power to try

A input : max. Nth-root to try
 F input : max. number of predefined functions to try

K input : max. relative error for rationalization
 V output: identification’s confidence indicator (0-100%)

Example: Identify the value -2.34305547341

 >CALL IDENTIFP(-2.34305547341,S$,3,3,3,12,1E-9,V) @ S$;V
 -1/Sin((11/13/Pi^2)^(1/3)) 100

So -2.34305547341 is identified as 3
213

11
π

Cosec− with 100% confidence

Page 4 DATAFILE Vxx Nx

IDENTIFY: The Convenience Simpler Call with Default Parameters

This one-line subprogram (line 18) directly calls IDENTIFP with default parameters
which are appropriate for most cases. The simple calling syntax is as follows:

CALL IDENTIFY(X,S$) , where:

 X input : real value to identify
 S$ output: symbolic expression which represents the value
The following default parameters are assumed:
 3 = max. number of predefined constants to try (Pi, e, Ln 2)
 3 = max. pos/neg. power to try (up to cubes or 1/cubes)

3 = max. Nth-root to try (up to cubic roots)
 4 = max. number of predef. functions to try (Sin,Cos,Tan,Exp)

1E-9 = max. relative error for rationalization

Example: Compute and identify all roots of 0132283364 =−++− xxxx

 >DESTROY ALL @ OPTION BASE 1 @ DIM C(5) @ COMPLEX R(4) @ MAT INPUT C
 C(1)? 1,-6*SQR(3),8,2*SQR(3),-1 [ENTER]
 >MAT R=PROOT(C)
 >FOR I=1 TO 4 @ S=REPT(R(I)) @ CALL IDENTIFY(S,S$) @ S;”=“;S$ @NEXT I
 .21255656167 = Tan(1/15*Pi) -.445228685309 = -Tan(2/15*Pi)
 1.11061251483 = Tan(4/15*Pi) 9.51436445421 = Tan(7/15*Pi)

The Front-end, “driver” main program

Again for convenience, a simple front-end program (lines 10-16) is included,
which when RUN simply prompts the user for the value to identify (any numeric
expression) and any desired parameters, for which defaults are offered, namely:
 #Cn = max. number of predefined constants to try (default = 3)
 ,Pw = max. pos/neg. power to try (default = 3 i.e: -3 to 3)
 ,Rt = max. Nth-root to try (default = 3 = up to cubic roots)
 ,Fn = max. number of predef. functions to try (default = 4)
 ,Err= max. relative error for rationalization (default = 1E-9)

It then calls IDENTIFP and outputs the resulting symbolic expression along with a
confidence indicator (0-100%) which measures the identification’s reliability:
values >= 95% are labeled as “identified as”, lesser values as “might be”.

Example: Compute and identify the value of I = ∫ +++

−−
1

0

.
611263

522
dx

xxx

xx

 >RUN
 Value=INTEGRAL(0,1,1E-10,(IVAR^2-2*IVAR-5)/(IVAR^3+6*IVAR^2+11*IVAR+6))
 #Cn,Pw,Rt,Fn,Err=3,4,3,4,1E-10 [ENTER]
 -.471132142625 might be -Ln(6561/4096) (91%)

 which, since 6561=94 and 4096=84 , readily simplifies to I =
9
84 Ln

DATAFILE Vxx Nx Page 5

Notes and Limitations

• The identification subprogram can initially recognize a symbolic expression
of the generic form:

 (+ or -))(R P
ji

C
D
NF

where:

Fi: predefined function or its inverse, where 0 <= i <= F (#Fn). The
index i=0 corresponds to no function applied.

§ The functions to try are predefined in DATA statements at lines
26-30. The first value is the number of functions predefined
(13+13 inverses), the remaining string values are the functions’
names, which must be the actual name the HP-71B recognizes,
with the argument represented by the empty parentheses set, ().

§ Any function can be specified in the DATA statements but if the
name’s not recognized at run time or it causes any kind of run-
time error (for certain arguments, f.i.), it will be skipped.

§ By default, F is taken as 4, i.e.: SIN, COS, TAN, EXP, and their
inverses will be tried. Values of F in 6-9 include hyperbolic
functions and require the Math ROM, else they will get
skipped. Values of F in 10-12 define extra trigonometric
functions: Cosecant, Secant, Cotangent, and their inverses.

§ You can extend the identification capabilities by adding your
own functions, including user-defined functions. See Example
3 below for details. Running time is linear.

R: Rth-root to apply, where R goes from 1 to A. (#Rt) (1=no root)

N: Integer numerator or the simplest fraction within max.err. K (Err)

D: ditto, the denominator

Cj: predefined constant, where 0 <=j <= B (#Cn). The index j=0
corresponds to no predefined constant present.

§ The constants to try are predefined in DATA statements at lines
22-24. The first integer value is the number of constants
predefined (6), the remaining string values are first the
constants’ values (which can be arbitrary, evaluable numeric
expressions), then the constants’ user-specified names.

§ You can give the constants arbitrary names (“EulerGamma”,
“Pi”) but you must include the name in parentheses if the
name’s an expression (“(Ln(2)*Pi)”) for proper output syntax.

Page 6 DATAFILE Vxx Nx

§ By default B is taken as 3, i.e.:)2(,, Lneπ will be tried, but it
can go up to 6 for extra constants)2(,, Lnπϕγ , and further,
you can extend the identification capabilities by adding your
own, see Example 4 below for details. Running time is linear.

P: Pth-power to raise the constant to, where P goes from –L (i.e., 1/Pth-
power) to +L (#Pw), including 1, i.e.: the constant as is.

• Symbolic expressions not of the generic form above won’t be recognized,
though their value will be if it has another, compatible form. In any case, the
returned expression will evaluate to the given value within the max. relative
error specified. For example, attempting to recognize e+π fails and gives:

>CALL IDENTIFP(PI+EXP(1),S$,5,3,3,8,1E-9,0) @ S$
 Sinh((661/284*Phi^2)^(1/2))

 i.e.: we get ϕ
284

661
Sinh , which agrees with e+π to 9 decimal places.

• Identification may fail if the specified value isn’t accurate enough. Further,
specifying a smaller max. error and/or additional constants, powers, roots, or
functions might help, at the expense of increased running time.

• The routine which assembles the symbolic expression for output (lines 52-
62) is very simple and doesn’t try to further simplify it if possible. For
instance 17.3205080757 will be identified as 300 , not the simpler 310 .

• The identification process includes a quick-exit mechanism which helps to
greatly reduce the running time but may occasionally return a less simple
expression than is possible. For instance, .643501108793 will be identified
as Asin(3/5) instead of the equivalent but slightly simpler Atan(3/4).

• If the (absolute) value to identify exceeds about 15 and Atanh is one of the
functions to try, it’s possible that it gets incorrectly identified as Atanh(1),
because Tanh equals 1 to 12 digits for arguments above 14.6+, so 1 is
considered the exact value for Atanh in that case. You must avoid specifying
Atanh as a function to try in such cases or else put it in the last place.

• Values of some trigonometric functions of moderately sized arguments may
fail to be recognized because the inverse function will only return values in
certain limited ranges due to the periodicity. Thus SIN(1) will be
recognized because ASIN(SIN(1)) is computed as 1, but SIN(2) won’t be
because ASIN(SIN(2)) isn’t returned as 2 by the HP-71B.

• The identification process is very computation-intensive and subject to
combinatorial explosion. Thus it runs best under Emu71, a fast emulator
where the timing will be 15-30 seconds at most, instead of in a physical HP-
71B, where running times can exceed 1-2 hours in complex cases.

DATAFILE Vxx Nx Page 7

Examples galore

1. Use the IDENTIFY subprogram to help compute the exact symbolic value of:

a) S =∫ ++

+−1

0

1
.

22)12(

)22(dx
xx

xTan (= 2
96
5 π)

First, we’ll set up some modes and variables to be used in these examples:
 >DESTROY ALL @ DIM S$[80] @ RADIANS @ STD @ K=.00000001

Now for the integral’s numerical computation and subsequent identification:
 >INTEGRAL(0,1,K,ATN(SQR(IVAR^2+2))/SQR(IVAR^2+2)/(IVAR^2+1))

 .514041895882
 >CALL IDENTIFY(RES,S$) @ S$ -> 5/96*Pi^2

b) S =∫ +

π

0

.
)(21

)(xd
xCos

xSinx (=
4

2π
)

 >INTEGRAL(0,PI,K,IVAR*SIN(IVAR)/(1+COS(IVAR)^2))
 2.46740110022

 >CALL IDENTIFY(RES,S$) @ S$ -> 1/4*Pi^2

c) S =)
0

56
1

46
2

26
8

16
16

(
64

1∑
∞

=
+

−
+

−
+

+
+

k
kkkkk (=

33

32π
)

Compute and identify the sum by running this code in some temporary file:

 10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
 20 S=S+(16/(6*I+1)+8/(6*I+2)-2/(6*I+4)-1/(6*I+5))/64^I
 30 NEXT I @ CALL IDENTIFY(S,S$) @ S$

 (1024/27*Pi^2)^(1/2) , which simplifies to 32*Pi/(3*SQR(3))

d) 232)
0

2)66(

1
2)56(

4
2)46(

40
2)36(

56
2)26(

160
2)16(

64(
64

1 2Ln
k kkkkkkk =

= +
−

+
+

+
−

+
−

+
−

+
∑
∞

Compute and identify the sum by running this code in some temporary file:
 10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
 20 T=64/(6*I+1)^2-160/(6*I+2)^2-56/(6*I+3)^2
 30 T=T-40/(6*I+4)^2+4/(6*I+5)^2-1/(6*I+6)^2 @ S=S+T/64^I
 40 NEXT I @ CALL IDENTIFY(S,S$) @ S$

 32*Ln(2)^2

Page 8 DATAFILE Vxx Nx

2. Illustrate the difference between using the simpler call to IDENTIFY vs the
full-fledged call to IDENTIFP while trying to identify these expressions:

a) S =
4

51+ (=
10
3πSin =

5
π

Cos =
2
ϕ (half the golden ratio))

>CALL IDENTIFY((1+SQR(5))/4,S$) @ S$
 Sin(3/10*Pi)

 >CALL IDENTIFP((1+SQR(5))/4,S$,5,3,3,4,1E-9,V) @ S$
 1/2*Phi

The first call finds out the sine expression (instead of the slightly simpler
cosine one because of the early termination feature), while the full-fledged
call takes longer but does find the much simpler golden ratio relationship.

b) S = ∑
∞

=1
4

1

k k
 (=

90

4π
)

>S=0 @ FOR I=1000 TO 1 STEP -1 @ S=S+I^(-4) @ NEXT I
>CALL IDENTIFY(S,S$) @ S$
 2143/1980

 >CALL IDENTIFP(S,S$,3,4,3,4,1E-9,V) @ S$
 1/90*Pi^4

This time the simpler call fails to correctly identify the sum, while the call to
IDENTIFP succeeds when asked to search up to 4th powers.

c) x = the root of ∑
∞

=1 !k

k
k

x
k
k

 =
2
1

Compute the root by running this code in some temporary file:
 10 DESTROY ALL @ S=FNROOT(0,1/3,FNF(FVAR)-1/2) @ DISP S
 20 DEF FNF(X) @ Y=0 @ K=1
 30 T=(K*X)^K/FACT(K) @ IF Y+T#Y THEN Y=Y+T @ K=K+1 @ GOTO 30
 40 FNF=Y

>RUN
 .238843770192

>CALL IDENTIFY(S,S$) @ S$

 (1/27/e)^(1/3) , which simplifies to x = 33
1

e

There’s no need to issue the more complex call since the call to IDENTIFY
succeeded in retrieving the correct symbolic expression for the root.

DATAFILE Vxx Nx Page 9

3. Show how to extend the functionality by adding new functions in order
to recognize symbolic expressions of the form π+N and π−N

We just need to enter a new DATA statement containing the proper definitions
for both the new function and its inverse, which in this case will be:

31 DATA (Pi+()),(()-Pi)

and we must also change line 26 DATA 26,(),(),... to 26 DATA 28,(),(),...
since we’ve added 2 new functions. Notice that the definitions are enclosed
in parentheses (which are necessary for correct output syntax if the value is
<0) and that their argument is represented by the empty parentheses set, () .

Let’s check the extended recognition capabilities by evaluating and
identifying the following definite integral, this time using the front-end:

 S = ∫ +

−
1

0

.
21

4)1(4
dx

x

xx (= π−
7
22

)

 >RUN
 Value=INTEGRAL(0,1,1E-12,(IVAR*(1-IVAR))^4/(1+IVAR^2))
 #Cn,Pw,Rt,Fn,Err=3,3,3,14,1E-9

 1.26448926735E-3 identified as ((22/7)-Pi) (100%)

and now we can also identify e+π , which earlier we couldn’t ! :
 >CALL IDENTIFP(5.85987448205,S$,3,3,3,14,1E-9,0) @ S$

 (Pi+(e))

4. Show how to extend the functionality by adding new constants

Let’s extend the functionality by predefining an additional constant,
“Gamma(1/4)”, approximately 3.62560990822. We just need to add its
value and name to the appropriate DATA statements. In this case, we’ll enter:

23 DATA 3.62560990822
25 DATA "Gamma(1/4)"

and we must also change the statement 22 DATA 6,PI,... to 22 DATA 7,PI,
... since we’ve added one new constant. Let’s check it out by identifying:

 S = ∫ 2
.)(32

0

π

π dxxSin (=)
4
1

(2
6
1 Γ)

 >RUN
 Value=INTEGRAL(0,PI/2,1E-10,SQR(2*PI*SIN(IVAR)^3))
 #Cn,Pw,Rt,Fn,Err=7,3,3,4,1E-9
 2.19084120111 identified as 1/6*Gamma(1/4)^2 (100%)

Page 10 DATAFILE Vxx Nx

5. Find exact symbolic values for the examples given in the introduction

a) Compute S =∫ 2
.))(2(

0

22

π

dxxCosLnx (= 5
1440

11 π)

A tough integral because of the singularity, we’ll use two subintervals:

 >S=INTEGRAL(0,3*PI/8,1E-12,(IVAR*LN(2*COS(IVAR)))^2)
 >S=S+INTEGRAL(3*PI/8,PI/2,1E-12,(IVAR*LN(2*COS(IVAR)))^2)
 >RUN

 Value=RES
 #Cn,Pw,Rt,Fn,Err=3,5,3,4,1E-9
 2.33765036938 identified as 11/1440*Pi^5 (100%)

b) Simplify

44

4

44

4
ππ

π

ππ

π

SinhCosh

Cosh

SinhCosh

Sinh

+
+

−
 (=

2
π

Cosh)

 >RUN
 Value=SINH(PI/4)/(COSH(PI/4)-SINH(PI/4))+COSH(PI/4)/(COSH(PI/4)+SINH(PI/4))

 #Cn,Pw,Rt,Fn,Err=3,3,3,9,1E-9
 2.50917847867 identified as Cosh(1/2*Pi) (100%)

c) Compute as an exact fraction
23

1

19

3

13

2

7

1
+−+ (=

39767

7249
)

 >RUN
 Value=1/7+2/13-3/19+1/23
 #Cn,Pw,Rt,Fn,Err=0,0,0,0,1E-9

 .182286820731 identified as 7249/39767 (100%)

d) Find an alternate symbolic form of
22

13 −
 (=)(º15Sin)

 >DEGREES @ RUN
 Value=(-1+SQR(3))/2/SQR(2)

 #Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-9
 .258819045103 identified as Sin(15) (100%)

e) Identify the limit)2())(1(0
xCotxSinLim x +→ (= e)

 >RADIANS @ RUN
 Value=(1+SIN(1E-7))^(1/TAN(2E-7))
 #Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-7

 1.64872122948 identified as (e)^(1/2) (100%)

DATAFILE Vxx Nx Page 11

6. Test suite to demonstrate what’s possible and help check new versions

Expression to symbolically evaluate
Computed value

(Up. limit & rel. error
for INTEGRAL)

Identification
parameters

Identified symbolic
value

∫ −
1

0

.4)1(4 dxxx

1.5873015873E-3

(K=1E-8)

default
630

1

∫
∞

−

0

.
2

dxxe
.886226925453

(U=10,K=1E-10)
default

2
π

∫
∞ −−−

0

. dxx

xexe π

1.14472988575

(U=20,K=1E-10)
default πLn

∫
∞

+0

.41

1 dx
x

1.11072073421

(U=1E3,K=1E-10)
default

22

π

∫
1

0

.)(dxxLn Γ
.918938533029

(K=1E-10, takes
very long)

default π2Ln

∫ 2
.)()(

0

π

dxxSinLnxSin
-.306852819438

(K=1E-10)
default

eLn 2

∫ −
+

1

0

.
1
1 dx

x
xLn

1.38629436094

(K=1E-10)
default 22 Ln

∫ −
+

1

0

.
1
11 dx

x
xLnx

2.4674011001

(K=1E-10, takes
very long)

default

4

2π

∫ −2
.

)(
)(

0

π

dx
xTan

xCosLn
.41123351671

(K=1E-10)
default

24

2π

Page 12 DATAFILE Vxx Nx

Expression to symbolically evaluate
Computed value

(Up. limit & rel. error
for INTEGRAL)

Identification
parameters

Identified symbolic
value

∫
∞

++0

.3)124(

4
dx

xx

x
3.77874867484E-2

(U=30,K=1E-10)
default

348

π

∫
∞

++0

.2/5)1274(

3
dx

xx

x
8.23045267136E-3

(U=60,K=1E-10)
default

243
2

∫
∞

++0

.
)1776.1()12(

1
dx

xx

.785398163226

(U=2000,K=1E-7)
default

4
π

∫ +

2
.

)007.2)(1(

1

0

π

dx
xTan

.785398163398

(K=1E-10)
default

4
π

∑
∞

=

+

−
−

1
5

)1(

)12(
)1(

k

k

k

.996157828071

(U=76)

3,5,3,4,

1E-9 1536

5
5 π

∫
∞

−0

.
1

dxxe

x

1.64493406686

(U=30,K=1E-10)
default

6

2
π

∫
∞

−
−

0

.
1

)(2
dxxe

x
xe

xLn

.333177923808

(subintervals)

5,3,3,4,

1E-9
2γ

∑
∞

=

−

1 10
1

k
kk

-.105360515657

(U=10)

3,3,3,4,

1E-12 10
9Ln

222222
2

1
++++−

2.45412285246E-2

(in DEGREES)
default)

32
º45

(Sin

∑
∞

= +0 4)12(
1

k
kk

1.09861228867

(U=20)
default 3Ln

DATAFILE Vxx Nx Page 13

Expression to symbolically evaluate
Computed value

(Up. limit & rel. error
for INTEGRAL)

Identification
parameters

Identified symbolic
value

∫ −

π2
.

)2(45
)3(2

0

xd
xCos

xCos
1.1780972451

(K=1E-10)
default

8
3π

∫
∞

0

.
)(

dx
xSinh

x

2.46740110027

(U=30,K=1E-10)
default

4

2
π

∫ +

2
.

)(549
1

0

π

dx
xCos

.111341014342

(K=1E-10)
default)

9
1(1−Sin

∫
∞ −−−

0

.

2

dx
x

xexe

.288607832453

(U=30,K=1E-10)

5,3,3,4,

1E-9 2
γ

∫
∞

0

.
)

2
(

)(
dx

xSinh

xSin
π
π

 .996272076217

(U=30,K=1E-10)

3,3,3,9,

1E-9
πTanh

∑
∞

=
−

−+

1
!)12(

12)51(

k
k

k

12.6971007574

(U=11)

5,3,3,9,

1E-9
)2(ϕSinh

∑
∞

=
−

−

1
!)12(

12))5(25(

k
k

k
Cos π

13.1702053741

(U=13)

5,3,3,9,

1E-9
)2

4
5

(ϕSinh

∫
∫
∞ −−−

2

2

0
.

.
)(2

1
π

dxx
xexe

dx
xSin

3.36816833521

(U=30,K=1E-10
para ambas
integrales)

5,3,3,12,

1E-9)
2

(

1
γ

Tan

Note: If you don’t have a Math ROM, simply identify the given numeric values

Page 14 DATAFILE Vxx Nx

Exercise 4U

Extend the functionality by adding a new function,)(2 xΓ , and its inverse. Check
your implementation by computing and identifying these expressions:

a) ∫ 2
.)(

2
0

π
π

dxxSin b))
6
1(

3
23 Γπ

Solution:

“Further reading”

As is, these simple routines can certainly identify a useful variety of numerical
results, providing the simplest approximate expression when exact identification is
not possible and, when running in a fast platform, their capabilities can be greatly
expanded by adding extra predefined constants and functions. However, there’s a
three-pronged problem with this approach: (1) the exponential explosion of cases
to try, (2) the increasing need for more precision to discriminate the correct result
among spurious fits, and (3) the limited variety of recognizable expressions.

Problems (1) and (3) can be tamed with integer relation algorithms, such as LLL
and PSLQ. However, any implementation which must deal with non-trivial cases
absolutely requires multiprecision. For instance, recognizing 45 45 − needs from
50- to 100-digit precision, depending on the algorithm, and lots of CPU. Tricky !

