# Boldly Going ... Identifying Constants 

## Valentín Albillo (HPCC \#1075)

Welcome to another installment of the new Boldly Going series. This time it features a relatively simple program which builds upon the extremely small general purpose routine DEC2FRC (featured/discussed elsewhere in this issue), to provide basic functionality for an advanced, very useful and most impressive feature which is nevertheless absent in our beloved machines' built-in instruction sets, namely identifying numeric constants, i.e., the capability of, given some real, numeric value, to try and identify its exact symbolic form if possible, and that failing, to provide an approximate symbolic expression of user-specified relative accuracy.
This will allow us to perform some pretty nifty feats, such as:

- Give exact, symbolic results for definite integrals (even if they can't be expressed in terms of elementary functions), finite or infinite summations, and specific values of transcendental functions. For instance, we'll find that

$$
\int_{0}^{\frac{\pi}{2}} x^{2} \operatorname{Ln}^{2}(2 \operatorname{Cos}(x)) \cdot d x \quad \text { equals } \quad \frac{11}{1440} \pi^{5}
$$

- Simplifying certain complicated expressions by identifying the computed result as a much simpler symbolic expression. For instance,

$$
\frac{\operatorname{Sinh} \frac{\pi}{4}}{\operatorname{Cosh} \frac{\pi}{4}-\operatorname{Sinh} \frac{\pi}{4}}+\frac{\operatorname{Cosh} \frac{\pi}{4}}{\operatorname{Cosh} \frac{\pi}{4}+\operatorname{Sinh} \frac{\pi}{4}} \quad \text { equals } \operatorname{Cosh} \frac{\pi}{2}
$$

- Perform exact arithmetic with expressions involving fractions. For instance:

$$
\frac{1}{7}+\frac{\mathbf{2}}{\mathbf{1 3}}-\frac{\mathbf{3}}{19}+\frac{\mathbf{1}}{\mathbf{2 3}} \quad \text { equals } \quad \frac{\mathbf{7 2 4 9}}{\mathbf{3 9 7 6 7}}
$$

- Find out simpler or alternate symbolic forms. For instance:

$$
\frac{\sqrt{3}-1}{2 \sqrt{2}} \text { equals } \operatorname{Sin}\left(\mathbf{1 5}^{\circ}\right)
$$

- Identify the exact symbolic value of some given limit. For instance:

$$
\operatorname{Lim}_{x \rightarrow 0}(1+\operatorname{Sin}(x))^{\operatorname{Cot}(2 x)} \quad \text { equals } \sqrt{e}
$$

## Program listing for the HP-71B

This 31-line (1,562-byte) BASIC program listing consists of the base subprogram DEC2FRC and the main subprogram IDENTIFP, but for convenience's sake there's also a 1 -line subprogram identify to allow for simpler calls using defaults, as well as a small front-end program to provide interactive input and labeled output.

The front-end, "driver" main program

```
DESTROY ALL @DIM S$[80] @STD @T$="identified as " @INPUT "Value=";X
INPUT "#Cn,Pw,Rt,Fn,Err=","3,3,3,4,1E-9";C,P,R,F,K
CALL IDENTIFP (X,S$,C,P,R,F,K,V) @ IF V<95 THEN T$="might be "
DISP X;T$;S$;" (";STR$(V);"%)"
```

The simpler call with default parameters

```
18 SUB IDENTIFY(X,S$) @ CALL IDENTIFP(X,S$,3,3,3,4,.000000001,0)
```

The full-fledged identifying subprogram

```
20 SUB IDENTIFP(X,S$,B,L,A,F,K,V) @ OPTION BASE 1 @ DIM T$[80],G$[80]
DATA 6,PI,EXP(1),LN(2),.577215664902,(1+SQR(5))/2,PI*LN(2)
24 DATA "Pi","e","Ln(2)","EulerGamma","Phi","(Pi*Ln(2))"
DATA 26,(),(),Sin(),Asin(),Cos(),Acos(),Tan(),Atan(),Exp(),Ln(),10^(),Lgt()
DATA 2^(),Log2(),Sinh(),Asinh(),Cosh(),Acosh(),Tanh(),Atanh()
DATA 1/Sin(),Asin(1/()),1/Cos(),Acos(1/()),1/Tan(),Atan(1/())
READ M @ DIM C(M),C$(M) @ READ C,C$,Z @ DIM F$(Z) @READ F$ @ W1=INF
U=ABS (X) @Z=MAX (1,MIN (Z,2*F+2)) @M=MIN (M,B) @A=MAX (1,A) @L=MAX (1,L)
ON ERROR GOTO 44 @ FOR J=2 TO Z @ G$=F$(J) @ P=POS(G$,"()")
Y=VAL (G$[1,P]&"U"&G$[P+1]) @ IF J=2 THEN H=40 ELSE H=1
FOR R=1 TO A @P=0@S=1 @W=4*H @GOSUB 46 @FOR I=1 TO M @FOR P=-L TO L
P=P+(P=O) @ S=C(I)^P @ W=H @ GOSUB 46 @ NEXT P @ NEXT I @ NEXT R
NEXT J @ OFF ERROR @ GOTO 52
CALL DEC2FRC(Y^R*S,N,D,K) @ W=(N*N+D*D)/W
IF W<W1 THEN V=W/W1 @ W1=W @ N1=N @ D1=D @ I1=I @ P1=P @R1=R @ J1=J
    IF ABS (N) +ABS (D)>1100 THEN RETURN
    S$="("[2-(R1#1)] @ T$=STR$(N1) @ IF D1#1 THEN T$=T$&"/"&STR$(D1)
    IF P1=0 THEN 58 ELSE T$=T$&"*/"[1+(P1>0),1+(P1>0)]@IF T$="1*" THEN T$=""
    T$=T$&C$(I1) @ IF ABS(P1)#1 THEN T$=T$&"^"&STR$(ABS(P1))
    S$=S$&T$ @ Q=F$(J1)<>"()" @ IF R1#1 THEN S$=S$&")^(1/"&STR$(R1)&")"
    IF Q THEN G$=F$(J1+2*MOD (J1,2)-1) @ Q=POS (G$,"()")
    @ S$=G$[1,Q]&S$&G$[Q+1]
62 S$="-"[SGN(X)+2]&S$ @ V=100-INT (100*V)
```

The base Decimal-to-Fraction subprogram

```
64 SUB DEC2FRC (X,N,D,W) @V=1 @N=1 @D=0 @Y=INF @Z=ABS (X) @F=SGN(X) @X=Z
66 C=INT (X)@IF FP (X) THEN X=1/FP(X)@S=N ELSE N=(N*C+U)*F @D=D*C+V @END
68 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D
    @ IF ABS (R/Z-1)<=W THEN N=N*F @ END
70 IF R=Y OR MAX (N,D)>1E12 THEN N=U*F @ D=V ELSE Y=R @ GOTO 66
```

Note: No ROMs required to enter/use the program, but the Math ROM gets heavily used in the examples.

## Program description \& syntax

As stated above, the program listing includes four different sections of code, namely three subprograms and one main, front-end program to allow for a convenient, interactive experience. Let's discuss them in turn, in reverse order:

## DEC2FRC: The Convert-Real-To-Fraction subprogram

The basic routine (lines 64-70) upon which the identifying subprogram depends. It converts a given real value to a fraction with the lowest possible terms, within a user-specified maximum relative error. It is discussed elsewhere in this same issue of Datafile but, for the sake of completeness, its calling syntax is the following:

```
CALL DEC2FRC(X,N,D,W) , where:
X input : real value to convert to fractional form
N output: integer numerator of the simplest fraction
D output: integer denominator of the simplest fraction
W input : maximum relative error (0 means maximum accuracy)
```

Example: Convert $\pi$ to a rational with max. error $<=1 \mathrm{E}-7$; with minimum error.

```
>CALL DEC2FRC(PI,N,D,1E-7) @ N;D,N/D;PI
    355 113 3.14159292035 3.14159265359
>CALL DEC2FRC(PI,N,D,O) @ N;D,N/D;PI
    1146408 364913 3.14159265359 3.14159265359
```


## IDENTIFP: The Main Identification subprogram

This is the main subprogram (lines 20-62) which attempts to identify the user-given real value; it can be fine-tuned by specifying various parameters when issuing the call, according to the following syntax:

```
CALI IDENTIFP(X,S$, B, L, A, F,K,V) , where:
```

    \(\mathbf{x}\) input : real value to identify
    \(\mathbf{S \$}\) output: symbolic expression which represents the value
    B input : max. number of predefined constants to try
    I input : max. positive/negative power to try
    A input : max. \(\mathrm{N}^{\text {th }}\)-root to try
    \(\mathbf{F}\) input : max. number of predefined functions to try
    K input : max. relative error for rationalization
    V output: identification's confidence indicator (0-100\%)
    Example: Identify the value -2.34305547341

```
>CALL IDENTIFP(-2.34305547341,S$,3,3,3,12,1E-9,V) @ S$;V
    -1/Sin((11/13/Pi^2)^(1/3)) 100
```

So $-\mathbf{2 . 3 4 3 0 5 5 4 7 3 4 1}$ is identified as $-\boldsymbol{C o s e c} \sqrt[3]{\frac{\mathbf{1 1}}{\mathbf{1 3} \boldsymbol{\pi}^{\mathbf{2}}}}$ with $100 \%$ confidence

## IDENTIFY: The Convenience Simpler Call with Default Parameters

This one-line subprogram (line 18) directly calls identifr with default parameters which are appropriate for most cases. The simple calling syntax is as follows:

CALL IDENTIFY(X,S\$), where:
$\mathbf{x} \quad$ input : real value to identify
$\mathbf{S} \boldsymbol{\$}$ output: symbolic expression which represents the value
The following default parameters are assumed:

```
3 = max. number of predefined constants to try (Pi, e, Ln 2)
3 = max. pos/neg. power to try (up to cubes or 1/cubes)
3 = max. N N
4 = max. number of predef. functions to try (Sin,Cos,Tan, Exp)
1E-9 = max. relative error for rationalization
```

Example: Compute and identify all roots of $x^{4}-6 \sqrt{3} x^{3}+8 x^{2}+2 \sqrt{3} x-1=0$

```
\DESTROY ALL @ OPTION BASE 1 @ DIM C(5) @ COMPLEX R(4) @ MAT INPUT C
C(1)? 1, -6*SQR(3),8,2*SQR(3),-1 [ENTER]
>MAT R=PROOT (C)
>FOR I=1 TO 4 @ S=REPT(R(I)) @ CALL IDENTIFY(S,S$) @ S;"=";S$ @NEXT I
    .21255656167 = Tan(1/15*Pi) -.445228685309 = -Tan(2/15*Pi)
    1.11061251483 = Tan(4/15*Pi) 9.51436445421 = Tan(7/15*Pi)
```


## The Front-end, "driver" main program

Again for convenience, a simple front-end program (lines 10-16) is included, which when RUN simply prompts the user for the value to identify (any numeric expression) and any desired parameters, for which defaults are offered, namely:

```
#Cn = max. number of predefined constants to try (default = 3)
,Pw = max. pos/neg. power to try (default = 3 i.e: -3 to 3)
,Rt = max. N N
,Fn = max. number of predef. functions to try (default = 4)
,Err= max. relative error for rationalization (default = 1E-9)
```

It then calls IDENTIFP and outputs the resulting symbolic expression along with a confidence indicator ( $0-100 \%$ ) which measures the identification's reliability: values $>=95 \%$ are labeled as "identified as", lesser values as "might be".
Example: Compute and identify the value of $\mathrm{I}=\int_{0}^{1} \frac{x^{2}-2 x-5}{x^{3}+6 x^{2}+11 x+6} \cdot d x$

```
>RUN
    Value=INTEGRAL (0,1,1E-10,(IVAR^2-2*IVAR-5)/(IVAR^3+6*IVAR^2+11*IVAR+6))
    #Cn,Pw,Rt,Fn, Err=3, 4, 3, 4,1E-10 [ENTER]
        -.471132142625 might be -Ln(6561/4096) (91%)
```

which, since $\mathbf{6 5 6 1}=\mathbf{9}^{4}$ and $\mathbf{4 0 9 6}=\mathbf{8}^{4}$, readily simplifies to $I=4 \operatorname{Ln} \frac{8}{9}$

## Notes and Limitations

- The identification subprogram can initially recognize a symbolic expression of the generic form:

$$
\text { (+ or -) } F_{i}\left(\sqrt[R]{\frac{N}{D} C_{j}^{P}}\right)
$$

where:
$\mathbf{F}_{\mathbf{i}}$ : predefined function or its inverse, where $0<=\mathbf{i}<=\mathbf{F} \quad(\# \mathbf{F n})$. The index $\mathrm{i}=0$ corresponds to no function applied.

- The functions to try are predefined in data statements at lines 26-30. The first value is the number of functions predefined ( $13+13$ inverses), the remaining string values are the functions' names, which must be the actual name the HP-71B recognizes, with the argument represented by the empty parentheses set, ().
- Any function can be specified in the data statements but if the name's not recognized at run time or it causes any kind of runtime error (for certain arguments, f.i.), it will be skipped.
- By default, $\mathbf{F}$ is taken as $\mathbf{4}$, i.e.: sin, cos, tan, exp, and their inverses will be tried. Values of $\mathbf{F}$ in $6-9$ include hyperbolic functions and require the Math ROM, else they will get skipped. Values of $\mathbf{F}$ in 10-12 define extra trigonometric functions: Cosecant, Secant, Cotangent, and their inverses.
- You can extend the identification capabilities by adding your own functions, including user-defined functions. See Example 3 below for details. Running time is linear.
$\mathbf{R}$ : $R^{\text {th }}$-root to apply, where R goes from 1 to $\mathbf{A}$. (\#Rt) (1=no root)
$\mathbf{N}$ : Integer numerator or the simplest fraction within max.err. $\mathbf{K}$ (Err)
D: ditto, the denominator
$\mathbf{C}_{\mathbf{j}}$ : predefined constant, where $0<=\mathbf{j}<=\mathbf{B} \quad(\# \mathrm{Cn})$. The index $\mathrm{j}=0$ corresponds to no predefined constant present.
- The constants to try are predefined in data statements at lines 22-24. The first integer value is the number of constants predefined (6), the remaining string values are first the constants' values (which can be arbitrary, evaluable numeric expressions), then the constants' user-specified names.
- You can give the constants arbitrary names ("EulerGamma", " Pi ") but you must include the name in parentheses if the name's an expression (" $(\operatorname{Ln}(2) * \mathrm{Pi})$ ") for proper output syntax.
- By default $\mathbf{B}$ is taken as $\mathbf{3}$, i.e.: $\pi, \boldsymbol{e}, \boldsymbol{\operatorname { L n } ( \mathbf { 2 } )}$ will be tried, but it can go up to 6 for extra constants $\gamma, \varphi, \pi \boldsymbol{\operatorname { L n } ( \mathbf { 2 } ) \text { , and further, }}$ you can extend the identification capabilities by adding your own, see Example 4 below for details. Running time is linear.
$\mathbf{P}: \mathrm{P}^{\text {th }}$-power to raise the constant to, where P goes from -L (i.e., $1 / \mathrm{P}^{\text {th }}-$ power) to $\mathbf{+ L}$ (\#Pw), including 1, i.e.: the constant as is.
- Symbolic expressions not of the generic form above won't be recognized, though their value will be if it has another, compatible form. In any case, the returned expression will evaluate to the given value within the max. relative error specified. For example, attempting to recognize $\pi+\boldsymbol{e}$ fails and gives:
$>C A L L$ IDENTIFP (PI+EXP (1) , S\$, 5, 3, 3, 8, 1E-9, 0) @ S\$ Sinh ( (661/284*Phi^2)^(1/2))
i.e.: we get $\operatorname{Sinh} \sqrt{\frac{\mathbf{6 6 1}}{\mathbf{2 8 4}}} \varphi$, which agrees with $\pi+\boldsymbol{e}$ to 9 decimal places.
- Identification may fail if the specified value isn't accurate enough. Further, specifying a smaller max. error and/or additional constants, powers, roots, or functions might help, at the expense of increased running time.
- The routine which assembles the symbolic expression for output (ines 5262 ) is very simple and doesn't try to further simplify it if possible. For instance 17.3205080757 will be identified as $\sqrt{\mathbf{3 0 0}}$, not the simpler $\mathbf{1 0} \sqrt{\mathbf{3}}$.
- The identification process includes a quick-exit mechanism which helps to greatly reduce the running time but may occasionally return a less simple expression than is possible. For instance, .643501108793 will be identified as $A \sin (3 / 5)$ instead of the equivalent but slightly simpler $\operatorname{Atan}(3 / 4)$.
- If the (absolute) value to identify exceeds about 15 and Atanh is one of the functions to try, it's possible that it gets incorrectly identified as Atanh (1), because Tanh equals 1 to 12 digits for arguments above $14.6+$, so 1 is considered the exact value for Atanh in that case. You must avoid specifying Atanh as a function to try in such cases or else put it in the last place.
- Values of some trigonometric functions of moderately sized arguments may fail to be recognized because the inverse function will only return values in certain limited ranges due to the periodicity. Thus SIn(1) will be recognized because ASIN (SIn (1)) is computed as 1 , but SIn (2) won't be because ASIn (SIn (2)) isn't returned as 2 by the HP-71B.
- The identification process is very computation-intensive and subject to combinatorial explosion. Thus it runs best under Emu71, a fast emulator where the timing will be 15-30 seconds at most, instead of in a physical HP71B, where running times can exceed $1-2$ hours in complex cases.


## Examples galore

1. Use the identify subprogram to help compute the exact symbolic value of:
a) $\mathrm{S}=\int_{0}^{1} \frac{\operatorname{Tan}^{-1}\left(\sqrt{x^{2}+2}\right)}{\left(x^{2}+1\right) \sqrt{x^{2}+2}} \cdot d x \quad\left(=\frac{5}{96} \pi^{2}\right)$

First, we'll set up some modes and variables to be used in these examples:
>DESTROY ALL @ DIM S\$[80] @ RADIANS @ STD @ K=. 00000001
Now for the integral's numerical computation and subsequent identification:

```
> INTEGRAL (0,1,K,ATN (SQR (IVAR^2+2))/SQR(IVAR^2+2)/(IVAR^2+1))
    .514041895882
>CALL IDENTIFY(RES,S$) @ S$ -> 5/96*Pi^2
```

b) $S=\int_{0}^{\pi} \frac{x \operatorname{Sin}(x)}{1+\operatorname{Cos}^{2}(x)} \cdot d x \quad\left(=\frac{\pi^{2}}{4}\right)$

```
> INTEGRAL (0,PI,K,IVAR*SIN (IVAR)/(1+COS (IVAR)^2))
    2.46740110022
    >CALL IDENTIFY(RES,S$) @ S$ -> 1/4*Pi^2
```

c) $\mathrm{S}=\sum_{k=0}^{\infty} \frac{1}{64}\left(\frac{16}{6 k+1}+\frac{8}{6 k+2}-\frac{2}{6 k+4}-\frac{1}{6 k+5}\right) \quad\left(=\frac{32 \pi}{3 \sqrt{3}}\right)$

Compute and identify the sum by running this code in some temporary file:

```
10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
20S=S+(16/(6*I+1)+8/(6*I+2)-2/(6*I+4)-1/(6*I+5))/64^I
30 NEXT I @ CALL IDENTIFY(S,S$) @ S$
```

$\left(1024 / 27 * \mathrm{Pi}^{\wedge}\right)^{\wedge}(1 / 2)$, which simplifies to $32 * \mathrm{Pi} /(3 * \operatorname{SQR}(3))$

$$
\text { d) } \sum_{k=0}^{\infty} \frac{1}{64}\left(\frac{64}{(6 k+1)^{2}}-\frac{160}{(6 k+2)^{2}}-\frac{56}{(6 k+3)^{2}}-\frac{40}{(6 k+4)^{2}}+\frac{4}{(6 k+5)^{2}}-\frac{1}{(6 k+6)^{2}}\right)=32 L n^{2} 2
$$

Compute and identify the sum by running this code in some temporary file:

```
10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
20T=64/(6*I+1)^2-160/(6*I+2)^2-56/(6*I+3)^2
30 T=T-40/(6*I+4)^2+4/(6*I+5)^2-1/(6*I+6)^2 @ S=S+T/64^I
40 NEXT I @ CALL IDENTIFY(S,S$) @ S$
```

$32 * \operatorname{Ln}(2)^{\wedge} 2$
2. Illustrate the difference between using the simpler call to identify vs the full-fledged call to IDENTIFP while trying to identify these expressions:
a) $S=\frac{1+\sqrt{5}}{4} \quad\left(=\operatorname{Sin} \frac{3 \pi}{10}=\operatorname{Cos} \frac{\pi}{5}=\frac{\varphi}{2}\right.$ (half the golden ratio) )
>CALI IDENTIFY ( (1+SQR (5) )/4,S\$) @ S\$
$\operatorname{Sin}(3 / 10 * P i)$
>CALI IDENTIFP ( $(1+S Q R(5)) / 4, S \$, 5,3,3,4,1 E-9, V) @ S$ 1/2*Phi
The first call finds out the sine expression (instead of the slightly simpler cosine one because of the early termination feature), while the full-fledged call takes longer but does find the much simpler golden ratio relationship.
b) $\mathrm{S}=\sum_{k=1}^{\infty} \frac{1}{k^{4}} \quad\left(=\frac{\pi^{4}}{90}\right)$
$>S=0$ @ $F O R$ I=1000 TO 1 STEP -1 @ $S=S+I^{\wedge(-4) ~ @ ~ N E X T ~ I ~}$
>CALI IDENTIFY (S,S\$) @ S\$
2143/1980
>CALI IDENTIEP (S, S\$, 3, 4, 3, 4, 1E-9,V) @ S\$
1/90*Pi^4
This time the simpler call fails to correctly identify the sum, while the call to identifr succeeds when asked to search up to $4^{\text {th }}$ powers.
c) $x=$ the root of $\sum_{k=1}^{\infty} \frac{k^{k}}{k!} x^{k}=\frac{1}{2}$

Compute the root by running this code in some temporary file:

```
10 DESTROY ALL @ S=FNROOT (0,1/3,FNF (FVAR)-1/2) @ DISP S
20 DEF FNF (X) @ Y=0 @ K=1
30 T=(K*X)^K/FACT (K) @ IF Y+T#Y THEN Y=Y+T @ K=K+1 @ GOTO 30
40 FNF=Y
```

>RUN
.238843770192
>CALL IDENTIFY (S,S\$) @ S\$
$(1 / 27 / e)^{\wedge}(1 / 3) \quad$, which simplifies to $x=\frac{1}{3 \sqrt[3]{e}}$
There's no need to issue the more complex call since the call to identify succeeded in retrieving the correct symbolic expression for the root.
3. Show how to extend the functionality by adding new functions in order to recognize symbolic expressions of the form $N+\pi$ and $N-\pi$

We just need to enter a new data statement containing the proper definitions for both the new function and its inverse, which in this case will be:

31 DATA (Pi+()),(()-Pi)
and we must also change line 26 DATA $2 \underline{26}$, (), (), $\ldots$ to 26 DATA $\underline{28}$, (), (), $\ldots$ since we've added 2 new functions. Notice that the definitions are enclosed in parentheses (which are necessary for correct output syntax if the value is $<0)$ and that their argument is represented by the empty parentheses set, () .
Let's check the extended recognition capabilities by evaluating and identifying the following definite integral, this time using the front-end:

$$
\mathrm{S}=\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} \cdot d x \quad\left(=\frac{22}{7}-\pi\right)
$$

$>$ RUN

```
Value=INTEGRAL (0,1,1E-12,(IVAR* (1-IVAR))^4/(1+IVAR^2))
#Cn,Pw,Rt, Fn, Err=3, 3, 3, 14,1E-9
1.26448926735E-3 identified as ((22/7)-Pi) (100%)
```

and now we can also identify $\pi+\boldsymbol{e}$, which earlier we couldn't !:

```
>CALL IDENTIFP(5.85987448205,S$,3,3,3,14,1E-9,0) @ S$
    (Pi+(e))
```


## 4. Show how to extend the functionality by adding new constants

Let's extend the functionality by predefining an additional constant, "Gamma (1/4)", approximately 3.62560990822 . We just need to add its value and name to the appropriate data statements. In this case, we'll enter:

```
23 DATA 3.62560990822
25 DATA "Gamma(1/4)"
```

and we must also change the statement 22 DATA $6, \mathrm{PI}, \ldots$ to 22 DATA $\mathbf{7}, \mathrm{PI}$, ... since we've added one new constant. Let's check it out by identifying:

$$
\begin{aligned}
& S=\int_{0}^{\frac{\pi}{2}} \sqrt{2 \pi \operatorname{Sin}^{3}(x)} \cdot d x \quad\left(=\frac{1}{6} \Gamma^{2}\left(\frac{1}{4}\right)\right) \\
& \text { >RUN } \\
& \quad \text { Value=INTEGRAL }(0, P I / 2,1 E-10, \operatorname{SQR}(2 * \operatorname{PI} * \operatorname{SIN}(\text { IVAR }) \wedge 3)) \\
& \quad \text { \#Cn, Pw,Rt,Fn,Err=7,3,3,4,1E-9 } \\
& \quad 2.19084120111 \text { identified as } 1 / 6 * \operatorname{Gamma}(1 / 4) \wedge 2
\end{aligned}
$$

5. Find exact symbolic values for the examples given in the introduction
a) Compute $S=\int_{0}^{\frac{\pi}{2}} x^{2} \operatorname{Ln}^{2}(2 \operatorname{Cos}(x)) . d x \quad\left(=\frac{11}{1440} \pi^{5}\right)$

A tough integral because of the singularity, we'll use two subintervals:

```
>S=INTEGRAL (0,3*PI/8,1E-12,(IVAR*LN (2*COS (IVAR)))^2)
>S=S+INTEGRAL (3*PI/8,PI/2,1E-12,(IVAR*LN (2*COS (IVAR)))^2)
>RUN
    Value=RES
    #Cn,Pw,Rt,Fn,Err=3,5, 3, 4, 1E-9
        2.33765036938 identified as 11/1440*Pi^5 (100%)
```

b) Simplify $\frac{\operatorname{Sinh} \frac{\pi}{4}}{\operatorname{Cosh} \frac{\pi}{4}-\operatorname{Sinh} \frac{\pi}{4}}+\frac{\operatorname{Cosh} \frac{\pi}{4}}{\operatorname{Cosh} \frac{\pi}{4}+\operatorname{Sinh} \frac{\pi}{4}} \quad\left(=\operatorname{Cosh} \frac{\pi}{2}\right)$
>RUN
Value $=$ SINH(PI/4)/(COSH(PI/4)-SINH(PI/4) $)+\operatorname{COSH}($ PI/4)/(COSH(PI/4)+SINH(PI/4))
\#Cn, Pw, Rt, Fn, Err=3, 3, 3, 9, 1E-9
2.50917847867 identified as Cosh(1/2*Pi) (100\%)
c) Compute as an exact fraction $\frac{\mathbf{1}}{\mathbf{7}}+\frac{\mathbf{2}}{\mathbf{1 3}}-\frac{\mathbf{3}}{\mathbf{1 9}}+\frac{\mathbf{1}}{\mathbf{2 3}} \quad\left(=\frac{\mathbf{7 2 4 9}}{\mathbf{3 9 7 6 7}}\right)$
>RUN
Value $=1 / 7+2 / 13-3 / 19+1 / 23$
\#Cn, Pw, Rt, Fn, Err=0, 0, 0, 0, 1E-9
.182286820731 identified as 7249/39767 (100\%)
d) Find an alternate symbolic form of $\frac{\sqrt{3}-1}{2 \sqrt{2}} \quad\left(=\operatorname{Sin}\left(\mathbf{1 5}^{\mathbf{o}}\right)\right)$
>DEGREES @ RUN
Value=(-1+SQR (3)) /2/SQR (2)
\#Cn, Pw, Rt, Fn, Err=3, 3, 3, 4, 1E-9 .258819045103 identified as $\operatorname{Sin}(15)$ (100\%)
e) Identify the limit $\operatorname{Lim}_{x \rightarrow 0}(1+\operatorname{Sin}(x)) \operatorname{Cot}(2 x) \quad(=\sqrt{e})$

```
>RADIANS @ RUN
    Value=(1+SIN (1E-7))^ (1/TAN (2E-7))
    #Cn, Pw, Rt, Fn, Err=3, 3, 3, 4,1E-7
        1.64872122948 identified as (e)^(1/2) (100%)
```

6. Test suite to demonstrate what's possible and help check new versions

| Expression to symbolically evaluate | Computed value (Up. limit \& rel. error for INTEGRAL ) | Identification parameters | Identified symbolic value |
| :---: | :---: | :---: | :---: |
| $\int_{0}^{1} x^{4}(1-x)^{4} \cdot d x$ | $\begin{gathered} 1.5873015873 \mathrm{E}-3 \\ (\mathrm{~K}=1 \mathrm{E}-8) \end{gathered}$ | default | $\frac{1}{630}$ |
| $\int_{0}^{\infty} e^{-x^{2}} \cdot d x$ | .886226925453 $(\mathrm{U}=10, \mathrm{~K}=1 \mathrm{E}-10)$ | default | $\frac{\sqrt{\pi}}{2}$ |
| $\int_{0}^{\infty} \frac{e^{-x}-e^{-\pi x}}{x} \cdot d x$ | 1.14472988575 $(\mathrm{U}=20, \mathrm{~K}=1 \mathrm{E}-10)$ | default | Ln $\pi$ |
| $\int_{0}^{\infty} \frac{1}{1+x^{4}} \cdot d x$ | $\begin{gathered} 1.11072073421 \\ (\mathrm{U}=1 \mathrm{E} 3, \mathrm{~K}=1 \mathrm{E}-10) \end{gathered}$ | default | $\frac{\pi}{2 \sqrt{2}}$ |
| $\int_{0}^{1} \operatorname{Ln} \Gamma(x) \cdot d x$ | $\begin{aligned} & .918938533029 \\ & (\mathrm{~K}=1 \mathrm{E}-10, \text { takes } \\ & \text { very long) } \end{aligned}$ | default | Ln $\sqrt{2 \pi}$ |
| $\int_{0}^{\frac{\pi}{2}} \operatorname{Sin}(x) \operatorname{Ln} \operatorname{Sin}(x) . d x$ | -. 306852819438 $(K=1 E-10)$ | default | $\operatorname{Ln} \frac{2}{e}$ |
| $\int_{0}^{1} \operatorname{Ln} \frac{1+x}{1-x} \cdot d x$ | $\begin{gathered} 1.38629436094 \\ (K=1 \mathrm{E}-10) \end{gathered}$ | default | 2 Ln 2 |
| $\int_{0}^{1} \frac{1}{x} \operatorname{Ln} \frac{1+x}{1-x} \cdot d x$ | $\begin{aligned} & 2.4674011001 \\ & (\mathrm{~K}=1 \mathrm{E}-10, \text { takes } \\ & \text { very long }) \end{aligned}$ | default | $\frac{\pi^{2}}{4}$ |
| $\int_{0}^{\frac{\pi}{2}} \frac{-\operatorname{Ln} \operatorname{Cos}(x)}{\operatorname{Tan}(x)} \cdot d x$ | . 41123351671 $(\mathrm{K}=1 \mathrm{E}-10)$ | default | $\frac{\pi^{2}}{24}$ |


| Expression to symbolically evaluate | Computed value (Up. limit \& rel. error for INTEGRAL ) | Identification parameters | Identified symbolic value |
| :---: | :---: | :---: | :---: |
| $\int_{0}^{\infty} \frac{x^{4}}{\left(x^{4}+x^{2}+1\right)^{3}} \cdot d x$ | 3.77874867484E-2 $(\mathrm{U}=30, \mathrm{~K}=1 \mathrm{E}-10)$ | default | $\frac{\pi}{48 \sqrt{3}}$ |
| $\int_{0}^{\infty} \frac{x^{3}}{\left(x^{4}+7 x^{2}+1\right)^{5 / 2}} \cdot d x$ | $\begin{gathered} 8.23045267136 \mathrm{E}-3 \\ (\mathrm{U}=60, \mathrm{~K}=1 \mathrm{E}-10) \end{gathered}$ | default | $\frac{2}{243}$ |
| $\int_{0}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{1.776}+1\right)} \cdot d x$ | $\begin{gathered} .785398163226 \\ (U=2000, K=1 \mathrm{E}-7) \end{gathered}$ | default | $\frac{\pi}{4}$ |
| $\int_{0}^{\frac{\pi}{2}} \frac{1}{\left(1+\operatorname{Tan}(x)^{2.007}\right)} \cdot d x$ | .785398163398 $(\mathrm{K}=1 \mathrm{E}-10)$ | default | $\frac{\pi}{4}$ |
| $\sum_{k=1}^{\infty} \frac{(-1)^{(k+1)}}{(2 k-1)^{5}}$ | . 996157828071 $(\mathrm{U}=76)$ | $\begin{gathered} 3,5,3,4 \\ 1 \mathrm{E}-9 \end{gathered}$ | $\frac{5 \pi^{5}}{1536}$ |
| $\int_{0}^{\infty} \frac{x}{e^{x}-1} \cdot d x$ | 1.64493406686 $(\mathrm{U}=30, \mathrm{~K}=1 \mathrm{E}-10)$ | default | $\frac{\pi^{2}}{6}$ |
| $\int_{0}^{\infty} \frac{\operatorname{Ln}^{2}(x)}{e^{x}}-\frac{x}{e^{x}-1} \cdot d x$ | $\begin{aligned} & .333177923808 \\ & \text { (subintervals) } \end{aligned}$ | $\begin{gathered} 5,3,3,4 \\ 1 \mathrm{E}-9 \end{gathered}$ | $\gamma^{2}$ |
| $\sum_{k=1}^{\infty} \frac{-1}{k 10}$ | $\begin{gathered} -.105360515657 \\ (\mathrm{U}=10) \end{gathered}$ | $\begin{gathered} 3,3,3,4 \\ 1 \mathrm{E}-12 \end{gathered}$ | $\operatorname{Ln} \frac{9}{10}$ |
| $\frac{1}{2} \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}$ | $\begin{gathered} 2.45412285246 \mathrm{E}-2 \\ \text { (in DEGREES) } \end{gathered}$ | default | $\operatorname{Sin}\left(\frac{45^{\circ}}{32}\right)$ |
| $\sum_{k=0}^{\infty} \frac{1}{(2 k+1) 4^{k}}$ | 1.09861228867 $(\mathrm{U}=20)$ | default | Ln 3 |


| Expression to symbolically evaluate | Computed value (Up. limit \& rel. error for INTEGRAL ) | Identification parameters | Identified symbolic value |
| :---: | :---: | :---: | :---: |
| $\int_{0}^{2 \pi} \frac{\operatorname{Cos}^{2}(3 x)}{5-4 \operatorname{Cos}(2 x)} \cdot d x$ | $\begin{gathered} 1.1780972451 \\ (K=1 E-10) \end{gathered}$ | default | $\frac{3 \pi}{8}$ |
| $\int_{0}^{\infty} \frac{x}{\operatorname{Sinh}(x)} \cdot d x$ | $\begin{aligned} & 2.46740110027 \\ & (U=30, K=1 E-10) \end{aligned}$ | default | $\frac{\pi^{2}}{4}$ |
| $\int_{0}^{\frac{\pi}{2}} \frac{1}{9+4 \sqrt{5} \operatorname{Cos}(x)} \cdot d x$ | $\begin{gathered} .111341014342 \\ (K=1 \mathrm{E}-10) \end{gathered}$ | default | $\operatorname{Sin}^{-1}\left(\frac{1}{9}\right)$ |
| $\int_{0}^{\infty} \frac{e^{-x^{2}}-e^{-x}}{x} \cdot d x$ | $\begin{aligned} & .288607832453 \\ & (U=30, K=1 E-10) \end{aligned}$ | $\begin{gathered} 5,3,3,4, \\ 1 \mathrm{E}-9 \end{gathered}$ | $\frac{\gamma}{2}$ |
| $\int_{0}^{\infty} \frac{\operatorname{Sin}(\pi x)}{\operatorname{Sinh}\left(\frac{\pi}{2} x\right)} . d x$ | . 996272076217 $(\mathrm{U}=30, \mathrm{~K}=1 \mathrm{E}-10)$ | $\begin{gathered} 3,3,3,9 \\ 1 \mathrm{E}-9 \end{gathered}$ | Tanh $\pi$ |
| $\sum_{k=1}^{\infty} \frac{(1+\sqrt{5})^{2 k-1}}{(2 k-1)!}$ | 12.6971007574 <br> ( $\mathrm{U}=11$ ) | $\begin{gathered} 5,3,3,9 \\ 1 \mathrm{E}-9 \end{gathered}$ | $\operatorname{Sinh}(2 \varphi)$ |
| $\sum_{k=1}^{\infty} \frac{\left(5 \operatorname{Cos}^{2}\left(\frac{\pi}{5}\right)\right)^{2 k-1}}{(2 k-1)!}$ | $\begin{gathered} 13.1702053741 \\ (\mathrm{U}=13) \end{gathered}$ | $\begin{gathered} 5,3,3,9 \\ 1 \mathrm{E}-9 \end{gathered}$ | $\operatorname{Sinh}\left(\frac{5}{4} \varphi^{2}\right)$ |
| $\int_{0}^{\frac{\pi}{2}} \frac{1}{\int_{0}^{2} \frac{e^{-x^{2}}-e^{-x}}{x} \cdot d x} \cdot d x$ | $\begin{aligned} & \text { 3. } 36816833521 \\ & \text { (U=30, K=1E-10 } \\ & \text { para ambas } \\ & \text { integrales) } \end{aligned}$ | $\begin{gathered} 5,3,3,12, \\ 1 \mathrm{E}-9 \end{gathered}$ | $\frac{1}{\operatorname{Tan}\left(\frac{\gamma}{2}\right)}$ |

Note: If you don't have a Math ROM, simply identify the given numeric values

## Exercise 4U

Extend the functionality by adding a new function, $\Gamma^{\mathbf{2}}(\boldsymbol{x})$, and its inverse. Check your implementation by computing and identifying these expressions:
a) $\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{\pi}{2} \operatorname{Sin}(x)} \cdot d x$
b) $\sqrt[3]{2} \sqrt{\frac{\pi}{3}} \Gamma\left(\frac{1}{6}\right)$

## Solution:



## "Further reading"

As is, these simple routines can certainly identify a useful variety of numerical results, providing the simplest approximate expression when exact identification is not possible and, when running in a fast platform, their capabilities can be greatly expanded by adding extra predefined constants and functions. However, there's a three-pronged problem with this approach: (1) the exponential explosion of cases to try, (2) the increasing need for more precision to discriminate the correct result among spurious fits, and (3) the limited variety of recognizable expressions.

Problems (1) and (3) can be tamed with integer relation algorithms, such as LLL and PSLQ. However, any implementation which must deal with non-trivial cases absolutely requires multiprecision. For instance, recognizing $\sqrt[5]{5}-\sqrt[4]{4}$ needs from 50- to 100-digit precision, depending on the algorithm, and lots of CPU. Tricky !

