Welcome to another installment of the new *Boldly Going* series. This time it features a relatively simple program which builds upon the extremely small general purpose routine **DEC2FRC** (featured/discussed elsewhere in this issue), to provide basic functionality for an advanced, very useful and *most impressive* feature which is nevertheless absent in our beloved machines’ built-in instruction sets, namely **identifying numeric constants**, i.e., the capability of, *given some real, numeric value, to try and identify its exact symbolic form* if possible, and that failing, to provide an approximate symbolic expression of user-specified relative accuracy.

This will allow us to perform some pretty nifty feats, such as:

- **Give exact, symbolic results for definite integrals** (even if they can’t be expressed in terms of elementary functions), finite or infinite *summations*, and specific values of transcendental functions. For instance, we’ll find that

\[
\int_{0}^{\frac{\pi}{2}} x^2 \ln^2(2\cos(x)) \, dx \quad \text{equals} \quad \frac{11}{1440} \pi^5
\]

- **Simplifying** certain complicated expressions by identifying the computed result as a much simpler symbolic expression. For instance,

\[
\frac{\text{Sinh} \frac{\pi}{4}}{\text{Cosh} \frac{\pi}{4} - \text{Sinh} \frac{\pi}{4}} + \frac{\text{Cosh} \frac{\pi}{4}}{\text{Cosh} \frac{\pi}{4} + \text{Sinh} \frac{\pi}{4}} \quad \text{equals} \quad \text{Cosh} \frac{\pi}{2}
\]

- **Perform exact arithmetic** with expressions involving *fractions*. For instance:

\[
\frac{1}{7} + \frac{2}{13} - \frac{3}{19} + \frac{1}{23} \quad \text{equals} \quad \frac{7249}{39767}
\]

- **Find out simpler or alternate** symbolic forms. For instance:

\[
\frac{\sqrt{3} - 1}{2\sqrt{2}} \quad \text{equals} \quad \text{Sin} \left(15^\circ\right)
\]

- **Identify the exact symbolic value of some given limit**. For instance:

\[
\lim_{x \to 0} (1 + \sin(x))^\text{Cot}(2x) \quad \text{equals} \quad \sqrt{e}
\]
Program listing for the HP-71B

This 31-line (1,562-byte) BASIC program listing consists of the base subprogram DEC2FRC and the main subprogram IDENTIFP, but for convenience’s sake there’s also a 1-line subprogram IDENTIFY to allow for simpler calls using defaults, as well as a small front-end program to provide interactive input and labeled output.

The front-end, “driver” main program

```
10 DESTROY ALL @ DIM S$[80] @ STD @ T$="identified as " @ INPUT "Value=";X
12 INPUT "#Cn,Rt,Fn,Err=","3,3,3,4,1E-9";C,P,R,F,K
14 CALL IDENTIFP(X,S$,C,P,R,F,K,V) @ IF V<95 THEN T$="might be "
16 DISP X;T$;S$;" (";STR$(V);"%)
```

The simpler call with default parameters

```
18 SUB IDENTIFY(X,S$) @ CALL IDENTIFP(X,S$,3,3,3,4,.000000001,0)
```

The full-fledged identifying subprogram

```
20 SUB IDENTIFP(X,S$,B,L,A,F,K,V) @ OPTION BASE 1 @ DIM T$[80],G$[80]
22 DATA 6,PI,EXP(1),LN(2),.577215664902,(1+SQR(5))/2,PI*LN(2)
24 DATA "Pi","e","Ln(2)","EulerGamma","Phi","(Pi*Ln(2))"
26 DATA 2^(),() Sin(),Cos(),Tan(),Exp(),Ln(),10^(),Lgt()
28 DATA 2^(),Log2(),Sinh(),Asinh(),Cosh(),Acosh(),Tanh(),Atanh()
30 DATA 1/Sin(),Asin(1/()),1/Cos(),Acos(1/()),1/Tan(),Atan(1/())
32 READ M @ DIM C(M),C$(M) @ READ C,C$,Z @ DIM F$(Z) @ READ F$ @ W1=INF
34 U=ABS(X) @ Z=MAX(1,MIN(Z,2*F+2)) @ M=MIN(M,B) @ A=MAX(1,A) @ L=MAX(1,L)
36 ON ERROR GOTO 44 @ FOR J=2 TO Z @ G$=F$(J) @ P=POS(G$,"()"
38 Y=VAL(G$[1,P] & "U" & G$[P+1]) @ IF J=2 THEN H=40 ELSE H=1
40 FOR R=1 TO A @ S=G$(J) @ P=POS(G$,"()"
42 P=P+(P=0) @ S=C(I)^P @ W=H @ GOSUB 46 @ NEXT P @ NEXT I @ NEXT R
44 NEXT J @ OFF ERROR @ GOTO 52
46 CALL DEC2FRC(Y^R*S,N,D,W) @ W=(N*N+D*D)/W
48 IF W=W1 THEN V=W/W1 @ W1=W @ N1=N @ D1=D @ I1=I @ P1=P @ R1=R @ J1=J
50 IF ABS(N)+ABS(D)>1100 THEN RETURN
52 S$="("[2-(R1#1)] @ T$=STR$(N1) @ IF D1#1 THEN T$=T$&"/"&STR$(D1)
54 IF P1=0 THEN 58 ELSE T$=T$&"/"[1+(P1>0),1+(P1>0)]@IF T$="1" THEN T$=""
56 T$=T$&C$(I1) @ IF ABS(P1)#1 THEN T$=T$&"^"&STR$(ABS(P1))
58 S$=S$&T$ @ Q=F$(J1)<>"()" @ IF R1#1 THEN S$=S$&"("[1/&STR$(R1)&"]"
60 IF Q THEN G$=F$(J1+2*MOD(J1,2)-1) @ Q=POS(G$,"()")
62 @ S$=G$[1,Q] & S$ & G$[Q+1]
64 S$="-[SGN(X)+2]&S$ @ V=100-INT(100*V)
```

Note: No ROMs required to enter/use the program, but the Math ROM gets heavily used in the examples.

The base Decimal-to-Fraction subprogram

```
64 SUB DEC2FRC(X,N,D,W) @ V=1 @ N=1 @ D=0 @ Y=INF @ Z=ABS(X) @ P=SGN(X) @ X=Z
66 C=INT(X) @ IF FP(X) THEN X=1/FP(X) @ S=N ELSE N=(N+C+U)*F @ D=D*C+V @ END
68 T=D @ N=N+C+U @ U=S @ D=D*C+V @ V=T @ R=N/D
70 IF ABS(R/Z-1)<=W THEN N=N+F @ END
72 IF R=Y OR MAX(N,D)>1E12 THEN N=U+F @ D=D ELSE Y=R @ GOTO 66
```
Program description & syntax
As stated above, the program listing includes four different sections of code, namely three subprograms and one main, front-end program to allow for a convenient, interactive experience. Let’s discuss them in turn, in reverse order:

DEC2FRC: The Convert-Real-To-Fraction subprogram
The basic routine (lines 64-70) upon which the identifying subprogram depends. It converts a given real value to a fraction with the lowest possible terms, within a user-specified maximum relative error. It is discussed elsewhere in this same issue of Datafile but, for the sake of completeness, its calling syntax is the following:

\[
\text{CALL DEC2FRC}(X, N, D, W)
\]

where:

- \(X\) input: real value to convert to fractional form
- \(N\) output: integer numerator of the simplest fraction
- \(D\) output: integer denominator of the simplest fraction
- \(W\) input: maximum relative error (0 means maximum accuracy)

Example: Convert \(\pi\) to a rational with max. error \(\leq 1E-7\); with minimum error.

\[
\text{CALL DEC2FRC}(\pi, N, D, 1E-7) @ N;D,N/D;\pi
\]

\[
355 113 3.14159292035 3.14159265359
\]

\[
\text{CALL DEC2FRC}(\pi, N, D, 0) @ N;D,N/D;\pi
\]

\[
1146408 364913 3.14159265359 3.14159265359
\]

IDENTIFP: The Main Identification subprogram
This is the main subprogram (lines 20-62) which attempts to identify the user-given real value; it can be fine-tuned by specifying various parameters when issuing the call, according to the following syntax:

\[
\text{CALL IDENTIFP}(X, S\$, B, L, A, F, K, V)
\]

where:

- \(X\) input: real value to identify
- \(S\$\) output: symbolic expression which represents the value
- \(B\) input: max. number of predefined constants to try
- \(L\) input: max. positive/negative power to try
- \(A\) input: max. \(N\)th-root to try
- \(F\) input: max. number of predefined functions to try
- \(K\) input: max. relative error for rationalization
- \(V\) output: identification’s confidence indicator (0-100%)

Example: Identify the value \(-2.34305547341\)

\[
\text{CALL IDENTIFP}(-2.34305547341, S\$, 3, 3, 3, 12, 1E-9, V) @ S\$;V
\]

\[-1/\sin((11/13/\pi^2)^(1/3))\]

100

So \(-2.34305547341\) is identified as \(-\csc 3\sqrt{\frac{11}{13\pi^2}}\) with 100% confidence.
IDENTIFY: The Convenience Simpler Call with Default Parameters

This one-line subprogram (line 18) directly calls IDENTIFP with default parameters which are appropriate for most cases. The simple calling syntax is as follows:

```plaintext
CALL IDENTIFY(X,S$), where:

- X input: real value to identify
- S$ output: symbolic expression which represents the value
```

The following default parameters are assumed:

- $3 = \text{max. number of predefined constants to try (} \pi, e, \ln 2\text{)}$
- $3 = \text{max. pos/neg. power to try (up to cubes or } 1/\text{cubes)}$
- $3 = \text{max. } N^{\text{th}}\text{-root to try (up to cubic roots)}$
- $4 = \text{max. number of predef. functions to try (} \sin, \cos, \tan, \exp\text{)}$
- $1E-9 = \text{max. relative error for rationalization}$

Example: Compute and identify all roots of $x^4 - 6\sqrt{3}x^3 + 8x^2 + 2\sqrt{3}x - 1 = 0$

```plaintext
>DESTROY ALL @ OPTION BASE 1 @ DIM C(5) @ COMPLEX R(4) @ MAT INPUT C
   C(1)? 1,-6*SQR(3),8,2*SQR(3),-1 [ENTER]
>MAT R=PROOT(C)
>FOR I=1 TO 4 @ S=REPT(R(I)) @ CALL IDENTIFY(S,S$) @ S;"="S$ @NEXT I
  .21255656167  =  Tan(1/15*Pi)  -.445228685309 = -Tan(2/15*Pi)
  1.11061251483  =  Tan(4/15*Pi)  9.51436445421  =  Tan(7/15*Pi)
```

The Front-end, “driver” main program

Again for convenience, a simple front-end program (lines 10-16) is included, which when `RUN` simply prompts the user for the value to identify (any numeric expression) and any desired parameters, for which defaults are offered, namely:

- $\#Cn = \text{max. number of predefined constants to try (default = 3)}$
- $Pw = \text{max. pos/neg. power to try (default = 3 i.e.: -3 to 3)}$
- $Rt = \text{max. } N^{\text{th}}\text{-root to try (default = 3 = up to cubic roots)}$
- $Fn = \text{max. number of predef. functions to try (default = 4)}$
- $Err = \text{max. relative error for rationalization (default = } 1E-9\text{)}$

It then calls IDENTIFP and outputs the resulting symbolic expression along with a confidence indicator (0-100%) which measures the identification’s reliability: values $\geq 95\%$ are labeled as “identified as”, lesser values as “might be”.

Example: Compute and identify the value of $I = \int_{0}^{1} \frac{x^2 - 2x - 5}{x^3 + 6x^2 + 11x + 6} \cdot dx$

```plaintext
>RUN
Value=INTEGRAL(0,1,1E-10,(IVAR^2-2*IVAR-5)/(IVAR^3+6*IVAR^2+11*IVAR+6))
\#Cn,\ Pw,\ Rt,\ Fn,\ Err=3, 4, 3, 4, 1E-10 [ENTER]
  -.471132142625 might be -Ln(6561/4096) (91%) 
```

which, since $6561=9^4$ and $4096=8^4$, readily simplifies to $I = 4 \ln \frac{8}{9}$
Notes and Limitations

- The identification subprogram can initially recognize a symbolic expression of the generic form:

\[
(+ \text{ or } -) F_i \left(\sqrt[R]{ \frac{N}{D} C_j^P } \right)
\]

where:

- \(F_i \): predefined function or its inverse, where \(0 \leq i \leq F \) \((#Fn)\). The index \(i=0 \) corresponds to no function applied.
 - The functions to try are predefined in DATA statements at lines 26-30. The first value is the number of functions predefined (13+13 inverses), the remaining string values are the functions’ names, which must be the actual name the HP-71B recognizes, with the argument represented by the empty parentheses set, ().
 - Any function can be specified in the DATA statements but if the name’s not recognized at run time or it causes any kind of runtime error (for certain arguments, f.i.), it will be skipped.
 - By default, \(F \) is taken as \(4 \), i.e.: SIN, COS, TAN, EXP, and their inverses will be tried. Values of \(F \) in 6-9 include hyperbolic functions and require the Math ROM, else they will get skipped. Values of \(F \) in 10-12 define extra trigonometric functions: Cosecant, Secant, Cotangent, and their inverses.
 - You can extend the identification capabilities by adding your own functions, including user-defined functions. See Example 3 below for details. Running time is linear.

- \(R \): \(R^{th} \)-root to apply, where \(R \) goes from 1 to \(A \) \((#Rt)\) (1=no root)
- \(N \): Integer numerator or the simplest fraction within max.err. \(K \) \((Err)\)
- \(D \): ditto, the denominator
- \(C_j \): predefined constant, where \(0 \leq j \leq B \) \((#Cn)\). The index \(j=0 \) corresponds to no predefined constant present.
 - The constants to try are predefined in DATA statements at lines 22-24. The first integer value is the number of constants predefined (6), the remaining string values are first the constants’ values (which can be arbitrary, evaluable numeric expressions), then the constants’ user-specified names.
 - You can give the constants arbitrary names (“EulerGamma”, “Pi”) but you must include the name in parentheses if the name’s an expression (“(Ln(2)*Pi)”) for proper output syntax.
By default B is taken as 3, i.e.: π, e, $Ln(2)$ will be tried, but it can go up to 6 for extra constants γ, φ, $\pi Ln(2)$, and further, you can extend the identification capabilities by adding your own, see Example 4 below for details. Running time is linear.

P: P^{th}-power to raise the constant to, where P goes from $-L$ (i.e., $1/P^{th}$-power) to $+L$ ($#Pw$), including 1, i.e.: the constant as is.

- Symbolic expressions not of the generic form above won’t be recognized, though their value will be if it has another, compatible form. In any case, the returned expression will evaluate to the given value within the max. relative error specified. For example, attempting to recognize $\pi + e$ fails and gives:

  ```plaintext
  >CALL IDENTIFP(PI+EXP(1),S$,5,3,8,1E-9,0) @ S$
  \text{Sinh}(\sqrt[2]{661/284}\Phi^{(1/2)})
  ```

 i.e.: we get $\text{Sinh} \left(\sqrt[2]{661/284}\Phi \right)$, which agrees with $\pi + e$ to 9 decimal places.

- Identification may fail if the specified value isn’t accurate enough. Further, specifying a smaller max. error and/or additional constants, powers, roots, or functions might help, at the expense of increased running time.

- The routine which assembles the symbolic expression for output (lines 52-62) is very simple and doesn’t try to further simplify it if possible. For instance, 17.3205080757 will be identified as $\sqrt{300}$, not the simpler $10\sqrt{3}$.

- The identification process includes a quick-exit mechanism which helps to greatly reduce the running time but may occasionally return a less simple expression than is possible. For instance, $.643501108793$ will be identified as $\text{Asin}(3/5)$ instead of the equivalent but slightly simpler $\text{Atan}(3/4)$.

- If the (absolute) value to identify exceeds about 15 and Atanh is one of the functions to try, it’s possible that it gets incorrectly identified as $\text{Atanh}(1)$, because Tanh equals 1 to 12 digits for arguments above 14.6+, so 1 is considered the exact value for Atanh in that case. You must avoid specifying Atanh as a function to try in such cases or else put it in the last place.

- Values of some trigonometric functions of moderately sized arguments may fail to be recognized because the inverse function will only return values in certain limited ranges due to the periodicity. Thus $\text{SIN}(1)$ will be recognized because $\text{ASIN}(\text{SIN}(1))$ is computed as 1, but $\text{SIN}(2)$ won’t be because $\text{ASIN}(\text{SIN}(2))$ isn’t returned as 2 by the HP-71B.

- The identification process is very computation-intensive and subject to combinatorial explosion. Thus it runs best under Emu71, a fast emulator where the timing will be 15-30 seconds at most, instead of in a physical HP-71B, where running times can exceed 1-2 hours in complex cases.
Examples galore

1. **Use the IDENTIFY subprogram to help compute the exact symbolic value of**:

 a) \[
 S = \int_{0}^{1} \frac{\tan^{-1}(\sqrt{x^2+2})}{(x^2+1)\sqrt{x^2+2}} \, dx \quad (= \frac{5}{96} \pi^2)
 \]

 First, we’ll set up some modes and variables to be used in these examples:

   ```plaintext
   >DESTROY ALL @ DIM S$[80] @ RADIANS @ STD @ K=.00000001
   ```

 Now for the integral’s numerical computation and subsequent identification:

   ```plaintext
   >INTEGRAL(0,1,K,ATN(SQR(IVAR^2+2))/SQR(IVAR^2+2)/(IVAR^2+1))
   .514041895882
   >CALL IDENTIFY(RES,S$) @ S$ → 5/96*Pi^2
   ```

 b) \[
 S = \int_{0}^{\pi} \frac{x \sin(x)}{1+\cos^2(x)} \, dx \quad (= \frac{\pi^2}{4})
 \]

   ```plaintext
   >INTEGRAL(0,PI,K,IVAR*SIN(IVAR)/(1+COS(IVAR)^2))
   2.46740110022
   >CALL IDENTIFY(RES,S$) @ S$ → 1/4*Pi^2
   ```

 c) \[
 S = \sum_{k=0}^{\infty} \frac{1}{64^k} \left(\frac{16}{6k+1} + \frac{8}{6k+2} - \frac{2}{6k+4} - \frac{1}{6k+5} \right) \quad (= \frac{32\pi}{3\sqrt{3}})
 \]

 Compute and identify the sum by running this code in some temporary file:

   ```plaintext
   10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
   20 S=S+(16/(6*I+1)+8/(6*I+2)-2/(6*I+4)-1/(6*I+5))/64^I
   30 NEXT I @ CALL IDENTIFY(S,S$) @ S$ (1024/27*Pi^2)^(1/2), which simplifies to 32*Pi/(3*SQR(3))
   ```

 d) \[
 \sum_{k=0}^{\infty} \frac{1}{64^k} \left(\frac{64}{(6k+1)^2} - \frac{160}{(6k+2)^2} - \frac{56}{(6k+3)^2} - \frac{40}{(6k+4)^2} + \frac{4}{(6k+5)^2} - \frac{1}{(6k+6)^2} \right) = 32Ln^22
 \]

 Compute and identify the sum by running this code in some temporary file:

   ```plaintext
   10 DESTROY ALL @ S=0 @ FOR I=0 TO 10
   20 T=64/(6*I+1)^2-160/(6*I+2)^2-56/(6*I+3)^2
   30 T=T-40/(6*I+4)^2+4/(6*I+5)^2-1/(6*I+6)^2 @ S=S+T/64^I
   40 NEXT I @ CALL IDENTIFY(S,S$) @ S$ 32*Ln(2)^2
   ```
2. Illustrate the difference between using the simpler call to IDENTIFY vs the full-fledged call to IDENTIFP while trying to identify these expressions:

a) \[S = \frac{1 + \sqrt{5}}{4} \quad (= \sin \frac{3\pi}{10} = \cos \frac{\pi}{5} = \frac{\phi}{2} \text{ (half the golden ratio)}) \]

>CALL IDENTIFY(((1+SQR(5))/4),S$) @ S$
>\sin(3/10*\pi)

>CALL IDENTIFP(((1+SQR(5))/4),S$,5,3,4,1E-9,V) @ S$
>1/2*\phi$

The first call finds out the sine expression (instead of the slightly simpler cosine one because of the early termination feature), while the full-fledged call takes longer but does find the much simpler golden ratio relationship.

b) \[S = \sum_{k=1}^{\infty} \frac{1}{k^4} \quad (= \frac{\pi^4}{90}) \]

>S=0 @ FOR I=1000 TO 1 STEP -1 @ S=S+I^(-4) @ NEXT I
>CALL IDENTIFY(S,S$) @ S$
>2143/1980

>CALL IDENTIFP(S,S$,3,4,3,4,1E-9,V) @ S$
>1/90*\pi^4$

This time the simpler call fails to correctly identify the sum, while the call to IDENTIFP succeeds when asked to search up to 4th powers.

c) \[x = \text{the root of} \sum_{k=1}^{\infty} \frac{k^k}{k!} x^k = \frac{1}{2} \]

Compute the root by running this code in some temporary file:

10 DESTROY ALL @ S=FNROOT(0,1/3,FNF(FVAR)-1/2) @ DISP S
20 DEF FNF(X) @ Y=0 @ K=1
30 T=(K*X)^K/FACT(K) @ IF Y+T#Y THEN Y=Y+T @ K=K+1 @ GOTO 30
40 FNF=Y
>RUN
>238843770192
>CALL IDENTIFY(S,S$) @ S$

\((1/27/e)^{1/3}\), which simplifies to \[x = \frac{1}{3^{3/4}e} \]

There’s no need to issue the more complex call since the call to IDENTIFY succeeded in retrieving the correct symbolic expression for the root.
3. **Show how to extend the functionality by adding new functions in order to recognize symbolic expressions of the form** \(N + \pi \) and \(N - \pi \)

We just need to enter a new **DATA** statement containing the proper definitions for *both* the new function and its inverse, which in this case will be:

\[
31 \text{ DATA } (\pi+()),(()-\pi)
\]

and we must also change line 26 **DATA** 26, (), (), ... to 26 **DATA** 28, (), (), ... since we’ve added 2 new functions. Notice that the definitions are enclosed in parentheses (which are necessary for correct output syntax if the value is <0) and that their argument is represented by the empty parentheses set, () .

Let’s check the extended recognition capabilities by evaluating and identifying the following definite integral, this time using the front-end:

\[
S = \int_{0}^{1} \frac{x^4(1-x)^4}{1+x^2} \, dx \quad (= \frac{22}{7} - \pi)
\]

> **RUN**

Value=INTEGRAL(0,1,1E-12,(IVAR*(1-IVAR))^4/(1+IVAR^2))

\#Cn,Pw,Rt,Fn,Err=3,3,3,14,1E-9

1.26448926735E-3 identified as ((22/7)-Pi) (100%)

and now we can also identify \(\pi + e \), which earlier we couldn’t !:

> **CALL IDENTIFP(5.85987448205,S$,...)**

(Pi+(e))

4. **Show how to extend the functionality by adding new constants**

Let’s extend the functionality by predefining an additional constant, “Gamma(1/4)”, approximately \(3.62560990822 \). We just need to add its value and name to the appropriate **DATA** statements. In this case, we’ll enter:

\[
23 \text{ DATA } 3.62560990822
\]
\[
25 \text{ DATA } "\text{Gamma(1/4)}"
\]

and we must also change the statement 22 **DATA** 6,PI,... to 22 **DATA** 7,PI,... since we’ve added one new constant. Let’s check it out by identifying:

\[
S = \int_{0}^{\pi/2} \sqrt{2 \pi \sin^3(x)} \, dx \quad (= \frac{1}{6} \Gamma^2\left(\frac{1}{4}\right))
\]

> **RUN**

Value=INTEGRAL(0,PI/2,1E-10,SQR(2*PI*SIN(IVAR)^3))

\#Cn,Pw,Rt,Fn,Err=7,3,3,4,1E-9

2.19084120111 identified as 1/6*Gamma(1/4)^2 (100%)
5. Find exact symbolic values for the examples given in the introduction

a) Compute \(S = \int_0^{\pi/2} x^2 \ln^2(2 \cos(x)) \, dx \) \(= \frac{11}{1440} \pi^5 \)

A tough integral because of the singularity, we’ll use two subintervals:

\(> S=\text{INTEGRAL}(0,3^{*}\pi/8,1E-12,(\text{IVAR}^{*}\ln(2^{*}\cos(\text{IVAR}))^2)) \)

\(> S=\text{INTEGRAL}(3^{*}\pi/8,\pi/2,1E-12,(\text{IVAR}^{*}\ln(2^{*}\cos(\text{IVAR}))^2)) \)

\(> \text{RUN} \)

Value=RES

\#Cn,Pw,Rt,Fn,Err=3,5,3,4,1E-9

2.33765036938 identified as 11/1440*Pi^5 (100%)

b) Simplify \(\frac{\sinh \frac{\pi}{4}}{\cosh \frac{\pi}{4} - \sinh \frac{\pi}{4}} + \frac{\cosh \frac{\pi}{4}}{\cosh \frac{\pi}{4} + \sinh \frac{\pi}{4}} \) \(= \cosh \frac{\pi}{2} \)

\(> \text{RUN} \)

Value=\text{SINH}(\pi/4)/(\text{COSH}(\pi/4)-\text{SINH}(\pi/4))+\text{COSH}(\pi/4)/(\text{COSH}(\pi/4)+\text{SINH}(\pi/4))

\#Cn,Pw,Rt,Fn,Err=3,3,3,9,1E-9

2.50917847867 identified as \(\cosh(1/2*\pi) \) (100%)

c) Compute as an exact fraction \(\frac{1}{7} + \frac{2}{13} - \frac{3}{19} + \frac{1}{23} \) \(= \frac{7249}{39767} \)

\(> \text{RUN} \)

Value=1/7+2/13-3/19+1/23

\#Cn,Pw,Rt,Fn,Err=0,0,0,0,1E-9

.182286820731 identified as 7249/39767 (100%)

d) Find an alternate symbolic form of \(\frac{\sqrt{3} - 1}{2\sqrt{2}} \) \(= \sin(15^\circ) \)

\(> \text{DEGREES} @ \text{RUN} \)

Value=(-1+SQR(3))/2/SQR(2)

\#Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-9

.258819045103 identified as \(\sin(15) \) (100%)

e) Identify the limit \(\lim_{x \to 0} (1 + \sin(x))^{\cot(2x)} \) \(= \sqrt{e} \)

\(> \text{RADIANS} @ \text{RUN} \)

Value=(1+\text{SIN}(1E-7))^(1/\text{TAN}(2E-7))

\#Cn,Pw,Rt,Fn,Err=3,3,3,4,1E-7

1.64872122948 identified as \((e)^{1/2} \) (100%)
6. Test suite to demonstrate what's possible and help check new versions

<table>
<thead>
<tr>
<th>Expression to symbolically evaluate</th>
<th>Computed value (Up. limit & rel. error for INTEGRAL)</th>
<th>Identification parameters</th>
<th>Identified symbol value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int_0^1 x^4 (1-x)^4 \cdot dx$</td>
<td>1.5873015873E-3 ($K=1E-8$)</td>
<td>default</td>
<td>$\frac{1}{630}$</td>
</tr>
<tr>
<td>$\int_0^\infty e^{-x^2} \cdot dx$</td>
<td>.886226925453 ($U=10, K=1E-10$)</td>
<td>default</td>
<td>$\frac{\sqrt{\pi}}{2}$</td>
</tr>
<tr>
<td>$\int_0^\infty \frac{e^{-x} - e^{-\pi x}}{x} \cdot dx$</td>
<td>1.14472988575 ($U=20, K=1E-10$)</td>
<td>default</td>
<td>$\ln \pi$</td>
</tr>
<tr>
<td>$\int_0^\infty \frac{1}{1+x^4} \cdot dx$</td>
<td>1.11072073421 ($U=1E3, K=1E-10$)</td>
<td>default</td>
<td>$\frac{\pi}{2 \sqrt{2}}$</td>
</tr>
<tr>
<td>$\int_0^\infty \ln \Gamma(x) \cdot dx$</td>
<td>.918938533029 ($K=1E-10$, takes very long)</td>
<td>default</td>
<td>$\ln \sqrt{2\pi}$</td>
</tr>
<tr>
<td>$\int_0^{\pi/2} \sin(x) \ln \sin(x) \cdot dx$</td>
<td>-.306852819438 ($K=1E-10$)</td>
<td>default</td>
<td>$\ln \frac{2}{e}$</td>
</tr>
<tr>
<td>$\int_0^1 \ln \frac{1+x}{1-x} \cdot dx$</td>
<td>1.38629436094 ($K=1E-10$)</td>
<td>default</td>
<td>$2 \ln 2$</td>
</tr>
<tr>
<td>$\int_0^1 \frac{1}{x} \ln \frac{1+x}{1-x} \cdot dx$</td>
<td>2.4674011001 ($K=1E-10$, takes very long)</td>
<td>default</td>
<td>$\frac{\pi^2}{4}$</td>
</tr>
<tr>
<td>$\int_0^{\pi/2} -\ln \cos(x) \cdot dx$</td>
<td>.41123351671 ($K=1E-10$)</td>
<td>default</td>
<td>$\frac{\pi^2}{24}$</td>
</tr>
<tr>
<td>Expression to symbolically evaluate</td>
<td>Computed value (Up. limit & rel. error for INTEGRAL)</td>
<td>Identification parameters</td>
<td>Identified symbolic value</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>(\int_0^{\infty} \frac{x^4}{(x^4 + x^2 + 1)^3} , dx)</td>
<td>3.77874678494E-2 (U=30, K=1E-10)</td>
<td>default</td>
<td>(\frac{\pi}{48 \sqrt{3}})</td>
</tr>
<tr>
<td>(\int_0^{\infty} \frac{x^3}{(x^4 + 7x^2 + 1)^{5/2}} , dx)</td>
<td>8.23045267136E-3 (U=60, K=1E-10)</td>
<td>default</td>
<td>(\frac{2}{243})</td>
</tr>
<tr>
<td>(\int_0^{\infty} \frac{1}{(x^2 + 1)(x^1.776 + 1)} , dx)</td>
<td>.78539816326 (U=2000, K=1E-7)</td>
<td>default</td>
<td>(\frac{\pi}{4})</td>
</tr>
<tr>
<td>(\int_0^{\pi/2} \frac{1}{(1 + \tan(x)^{2.007})} , dx)</td>
<td>.78539816398 (K=1E-10)</td>
<td>default</td>
<td>(\frac{\pi}{4})</td>
</tr>
<tr>
<td>(\sum_{k=1}^{\infty} \frac{(-1)^{(k + 1)}}{(2k - 1)^{5}})</td>
<td>.996157828071 (U=76)</td>
<td>3, 5, 3, 4, 1E-9</td>
<td>(\frac{5 \pi}{1536})</td>
</tr>
<tr>
<td>(\int_0^{\infty} \frac{x}{e^x - 1} , dx)</td>
<td>1.64493406686 (U=30, K=1E-10)</td>
<td>default</td>
<td>(\frac{\pi}{6})</td>
</tr>
<tr>
<td>(\int_0^{\infty} \frac{\ln^2(x)}{e^x} - \frac{x}{e^x - 1} , dx)</td>
<td>.333177923808 (subintervals)</td>
<td>5, 3, 3, 4, 1E-9</td>
<td>(\gamma^2)</td>
</tr>
<tr>
<td>(\sum_{k=1}^{\infty} \frac{-1}{k^{10}})</td>
<td>-.105360515657 (U=10)</td>
<td>3, 3, 3, 4, 1E-12</td>
<td>(\ln \frac{9}{10})</td>
</tr>
<tr>
<td>(\frac{1}{2} \sqrt{2 + \sqrt{2}}}}}}}}}}}}}}}}}}}}))</td>
<td>2.45412285246E-2 (in DEGREES)</td>
<td>default</td>
<td>(\sin \left(\frac{45^\circ}{32} \right))</td>
</tr>
<tr>
<td>(\sum_{k=0}^{\infty} \frac{1}{(2k + 1)(4k)})</td>
<td>1.09861228867 (U=20)</td>
<td>default</td>
<td>(\ln 3)</td>
</tr>
<tr>
<td>Expression to symbolically evaluate</td>
<td>Computed value (Up. limit & rel. error for INTEGRAL)</td>
<td>Identification parameters</td>
<td>Identified symbolic value</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>$\int_{0}^{2\pi} \frac{\cos^2(3x)}{5 - 4\cos(2x)} \cdot dx$</td>
<td>1.1780972451 $(K=1E-10)$</td>
<td>default</td>
<td>$\frac{3\pi}{8}$</td>
</tr>
<tr>
<td>$\int_{0}^{\infty} \frac{x}{\sinh(x)} \cdot dx$</td>
<td>2.46740110027 $(U=30,K=1E-10)$</td>
<td>default</td>
<td>$\frac{2}{4}$</td>
</tr>
<tr>
<td>$\int_{0}^{\pi/2} \frac{1}{9 + 4\sqrt{5}\cos(x)} \cdot dx$</td>
<td>0.11134101432 $(K=1E-10)$</td>
<td>default</td>
<td>$\sin^{-1}\left(\frac{1}{9}\right)$</td>
</tr>
<tr>
<td>$\int_{0}^{\infty} \frac{e^{-x^2} - e^{-x}}{x} \cdot dx$</td>
<td>0.288607832453 $(U=30,K=1E-10)$</td>
<td>5, 3, 3, 4, 1E-9</td>
<td>γ</td>
</tr>
<tr>
<td>$\int_{0}^{\infty} \frac{\sin(\pi x)}{\sinh\left(\frac{\pi}{2}x\right)} \cdot dx$</td>
<td>0.996272076217 $(U=30,K=1E-10)$</td>
<td>3, 3, 3, 9, 1E-9</td>
<td>Tanhπ</td>
</tr>
<tr>
<td>$\sum_{k=1}^{\infty} \frac{(1+\sqrt{5})^{2k-1}}{(2k-1)!}$</td>
<td>12.6971007574 $(U=11)$</td>
<td>5, 3, 3, 9, 1E-9</td>
<td>$\sinh(2\varphi)$</td>
</tr>
<tr>
<td>$\sum_{k=1}^{\infty} \frac{(5 \cos^2\left(\frac{\pi}{5}\right))^{2k-1}}{(2k-1)!}$</td>
<td>13.1702053741 $(U=13)$</td>
<td>5, 3, 3, 9, 1E-9</td>
<td>$\sinh\left(\frac{5}{4}\varphi^2\right)$</td>
</tr>
<tr>
<td>$\int_{0}^{\pi/2} \frac{1}{\sin^2(x)} \cdot dx$</td>
<td>3.36816833521 $(U=30,K=1E-10$ para ambas integrales)</td>
<td>5, 3, 3, 12, 1E-9</td>
<td>$\frac{1}{\tan\left(\frac{\gamma}{2}\right)}$</td>
</tr>
</tbody>
</table>

Note: If you don’t have a Math ROM, simply identify the given *numeric* values.
Exercise 4U

Extend the functionality by adding a new function, \(\Gamma^2(x) \), and its inverse. Check your implementation by computing and identifying these expressions:

\[
\begin{align*}
\text{a)} & \quad \int_0^\frac{\pi}{2} \sqrt{\frac{\pi}{2}} \sin(x) \, dx \\
\text{b)} & \quad 3\sqrt{2} \sqrt{\frac{\pi}{3}} \Gamma\left(\frac{1}{6}\right)
\end{align*}
\]

Solution:

```
(9) \ 019747167272\ \text{gamma}(1/3)\ \text{gamma}(3/6)
\text{value}=2.710469469\ \text{gamma}(4/6)
\text{value}=\text{integral}(0.\text{PI}/2,\text{PI}-10,\sin(\text{iA}r)^2)\ (\text{gamma}(2/3))
\]

```

“Further reading”

As is, these simple routines can certainly identify a useful variety of numerical results, providing the simplest approximate expression when exact identification is not possible and, when running in a fast platform, their capabilities can be greatly expanded by adding extra predefined constants and functions. However, there’s a three-pronged problem with this approach: (1) the exponential explosion of cases to try, (2) the increasing need for more precision to discriminate the correct result among spurious fits, and (3) the limited variety of recognizable expressions.

Problems (1) and (3) can be tamed with integer relation algorithms, such as \text{LLL} and \text{PSLQ}. However, any implementation which must deal with non-trivial cases absolutely requires multiprecision. For instance, recognizing \(\sqrt[5]{5} - \sqrt[4]{4}\) needs from 50- to 100-digit precision, depending on the algorithm, and lots of CPU. Tricky!