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HP-71B Short & Sweet Sudoku Solver 
Valentín Albillo (#1075, PPC #4747) 

Among many other worthwhile contents, the previous issue of Datafile featured an 
article that, being as truly fond of combinatorial puzzles as I am, immediately 
caught my fancy, namely “--) sudoku (--“ by Peter Gatenby (V24N1 p48-50). 
Though it seems that sudoku puzzles aren’t exactly new, I simply hadn’t seen them 
before, and was intrigued by its very simple rules yet substantial challenge in 
degrees varying from relatively affordable to plainly exasperating. 
Also, being an HP-calc fan I instantly saw that it would make a fair programming 
challenge. How difficult ? Well, Mr. Gatenby’s interesting article describes his own 
attempt, and the perspective seems rather gloomy. He says, for example (the  
highlighting is mine): 

“I have written a long and complicated hp49g+ program to solve sudoku 
puzzles. The printout on HP-IR printer strip is about one metre long and it 
seems pointless to take up pages of Datafile with a huge listing ...” 

Wow. And for the HP49g+ no less, i.e.: the fastest, most powerful HP calculator 
ever. Mr. Gatenby doesn’t include any program code for the aforementioned 
reasons, but delves instead into a description of his program. He tells us that it 
“must run six ‘first-order’ solution procedures’” but can encounter a so-called 
“thwarting” condition in which case, in Mr. Gatenby’s own words: 

“The solver needs to use old-fashioned pencil and paper an a ‘2 nd-order’ 
procedure to find a new entry, then set the program off again with an extra 
digit in place [...] Most puzzles are solved with 4 or fewer program runs but 
some need also one or more second-order interventions. I chickened out of 
trying to program any second-order procedures.” 

In other words, his program may be unable to solve the puzzle all by itself and may 
require one or more human interventions to provide some new, human-computed 
digits and resume. Gloomy indeed. Alas, despite these simplifications: 

“A single run at an early stage takes about four minutes on a 49g+ [...] My 
whole program is very bitty, with 18 subroutines in five levels [...]” 

Thus, the task at hand seems to be very difficult indeed, specially as it takes a fast, 
state-of-the-art HP49g+ four minutes per run (several of them) of a long (1 metre) 
and complicated program (18 subroutines in 5 levels executing 6 first-order 
procedures), not to mention occasional human intervention(s). 
Certainly, Mr. Gatenby’s achievement deserves all our respect, but ... Can we try 
and do better with an old-fashioned dinosaur of the 80’s like the HP-71B 1, say ?  

You bet ! 
                                                 
1 No HP-71B, HP-IL ROM or Math ROM ? No problem. Search the Web for Emu71, a free 
emulator for Windows (>30X faster), or HP-71X, an excellent emulator (2X) for your HP48/49. 
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Introducing SUDOKU71, a Sudoku solver program 
 

SUDOKU71 is a very short program (35 lines, 1300+ bytes) I’ve written for the 
HP-71B which can solve any sudoku puzzle without requiring human intervention. 
It is not based on Mr. Gatenby’s program (which I’ve not seen) or ideas but on my 
own approach instead, which includes advanced techniques such as bitboards and 
making good use of the powerful capabilities provided by the HP-71B system to 
recursively search till a solution is found, limited only by available RAM and time.  
In practice it’ll solve most typical newspaper sudoku puzzles in reasonable times, 
Mr. G.’s examples are solved in 2 min 23 s and 59 sec, respectively. See Examples 
for puzzles having from the usual 30 to as few as only 19 initially filled-up cells.  

Here’s the full listing. For a thorough explanation, see Program details below: 

 SUDOKU71  (1,325 Bytes) 
 
10 ! *****<<< SUDOKU Solver v1.0 - (c) Valentin Albillo, 2005 >>>***** 
12 DESTROY ALL @ OPTION BASE 1 @ STD @ DIM P(9,9),S(9,9),E(9),F,X,Y,Z 
14 DISP "Initializing ..." @ FOR I=1 TO 9 @ K=3*((I-1) DIV 3)+1 
16 FOR J=1 TO 9 @ S(I,J)=K+(J-1) DIV 3 @ NEXT J @ E(I)=2^I @ NEXT I 
18 DISP "Enter puzzle:"; @ MAT INPUT P 
20 INPUT "Max. Depth (1-15) = ","2";X @ X=INT(MAX(MIN(X,15),1)) 
22 INPUT "Max. Width (2-9) = ","2";Y @ Y=INT(MAX(MIN(Y,15),2)) 
24 INPUT "Verbose (Y/N) ? ","N";R$ @ Z=R$#"N" @ DISP "Solving ..." 
26 CALL TRY(P,F,1,X,Y,Z,S,E) 
28 IF F=2 THEN DISP "SOLVED!" 
30 IF F=3 THEN DISP "Illegal?" ELSE IF F=4 THEN DISP "No solution found" 
32 MAT DISP USING "DX";P @ END 
34 ! 
36 SUB TRY(P(,),F,W,X,Y,Z,S(,),E()) @ INTEGER T(9,9),A(81,4) 
38 DIM R(9),C(9),B(9),D,I,J,U,V,K,M,N,H,L @ FOR I=1 TO 9 
40 FOR J=1 TO 9 @ IF P(I,J) THEN H=S(I,J) @ D=E(P(I,J)) @ GOSUB 78 
42 NEXT J @ NEXT I @ M=0 
44 F=2 @ K=0 @ MAT T=P @ FOR I=1 TO 9 @ U=R(I) @ FOR J=1 TO 9 
46 V=C(J) @ IF P(I,J) THEN 58 ELSE K=K+1 @ H=S(I,J) @ IF F=2 THEN F=0 
48 L=BINIOR(BINIOR(U,V),B(H)) @ IF L=1022 THEN F=3 @ MAT P=T @ END 
50 D=BINAND(BINCMP(L),1023)-1 @ N=BIT(D,1)+BIT(D,2)+BIT(D,3) 
52 N=N+BIT(D,4)+BIT(D,5)+BIT(D,6)+BIT(D,7)+BIT(D,8)+BIT(D,9) 
54 IF N=1 THEN P(I,J)=LOG2(D) @ F=1 @ M=M+1 @ GOSUB 78 @ GOTO 58 
56 A(K,1)=I @ A(K,2)=J @ A(K,3)=N @ A(K,4)=L 
58 NEXT J @ NEXT I @ IF F=1 THEN 44 
60 IF F=2 THEN END ELSE IF Z THEN DISP W;": ";M;"forced cells" 
62 IF W=X THEN F=4 @ END 
64 MAT T=P @ FOR U=1 TO K @ IF A(U,3)>Y THEN 76 
66 I=A(U,1) @ J=A(U,2) @ L=A(U,4) @ FOR V=1 TO 9 @ IF BIT(L,V) THEN 74 
68 P(I,J)=V @ DISP W;":>Try";I+J/10;"=";V @ CALL TRY(P,F,W+1,X,Y,Z,S,E) 
70 IF F=2 THEN END ELSE IF F=3 AND Z THEN DISP W;":    (dead end)" 
72 MAT P=T 
74 NEXT V 
76 NEXT U @ F=4 @ END 
78 R(I)=R(I)+D @ C(J)=C(J)+D @ B(H)=B(H)+D @ RETURN 

Notes:  The program requires approximately 1444 + 1735*MD bytes of free 
RAM available, where MD is the maximum depth of the search. It 
also makes use of keywords from the Math ROM and HP-IL ROM. 
Emu71 executes the program 40-70X faster on a typical 2.4 Ghz PC. 
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Programming details & techniques 
Note: A brief explanation of sudoku puzzles is in order: you’re given a 9x9 
grid, each cell to be occupied by a single digit 1-9, such that each of the 9 
columns, rows, and 3x3 non-overlapping blocks contain all digits without 
repetition. Initially some cells are already filled-in and you must fill the rest. 

Though a capable solver,  SUDOKU71 is a no-frills, didactic program, and as such 
it has a very basic shell providing minimal input/output capabilities around its 
central core (subprogram TRY), which is where all advanced techniques and 
optimizations reside. For production quality, more advanced input (saving, loading,  
editing puzzles) and output (formated grids, choice of output device, statistics) is 
mandatory, but that’s just the icing of the cake and for the purposes of this article a 
more focused approach is best. We discuss now the diverse sections & techniques. 

The Shell 
The twelve lines 10-34 are the shell, whose purpose is to do some initialization, 
input the puzzle and search specifications, call the subprogram which actually does 
all the work, and report the results to the user. Firstly, it initializes two constant 
arrays later used in the solving process: 
 14 DISP "Initializing ..." @ FOR I=1 TO 9 @ K=3*((I-1) DIV 3)+1 
 16 FOR J=1 TO 9 @ S(I,J)=K+(J-1) DIV 3 @ NEXT J @ E(I)=2^I @ NEXT I 

This is done for speed, as it’s much faster to pass the initialized arrays to the search 
subprogram (which then uses mere array references to retrieve values) instead of 
wasting time recomputing them every time they’re needed. The array contents are: 

 S(9,9) Given the row-column cell coordinates, retrieves its block number  
 E(9) Retrieves precalculated integer powers of 2 

Now the shell prompts the user to enter the puzzle. Thanks to the Math ROM 
advanced matrix capabilities, this is done using a single  MAT INPUT command: 
 18 DISP "Enter puzzle:"; @ MAT INPUT P 

The shell asks the user now for the search parameters (default values are provided), 
and validates them (using INT, MAX, MIN) to ensure they’re integer values in some 
specific range: 
 20 INPUT "Max. Depth (1-15) = ","2";X @ X=INT(MAX(MIN(X,15),1)) 
 22 INPUT "Max. Width (2-9) = ","2";Y @ Y=INT(MAX(MIN(Y,15),2)) 
 24 INPUT "Verbose (Y/N) ? ","N";R$ @ Z=R$#"N" @ DISP "Solving ..." 

Input completed, the shell calls now the search subprogram, TRY, passing it all 
required arrays and parameters, one of them by value (1), the rest by reference: 
 26 CALL TRY(P,F,1,X,Y,Z,S,E) 

Upon returning from the subprogram, the shell finds out the kind of result obtained 
and informs the user. The grid (fully solved, partially solved, or intact) is output as 
well with a single  MAT DISP USING  statement, and the program ends: 
 28 IF F=2 THEN DISP "SOLVED!" 
 30 IF F=3 THEN DISP "Illegal?" ELSE IF F=4 THEN DISP "No solution found" 
 32 MAT DISP USING "DX";P @ END 
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The Search 
The 22 lines (36 to 78) comprise the search subprogram, TRY. This is a recursive 
subprogram which performs a depth-first search to a specified Maximum Depth 
by calling itself till this depth is reached, while applying simple heuristics and  
efficient techniques to keep the search manageable and achieve good performance. 

For each depth level, TRY attempts to correctly fill in as many cells as possible by 
determining which cells admit only a single, forced value. Each such cell is 
assigned that value, and as every extra cell filled in can result in other cells being 
now forced, the process is iterated till no more forced cells remain. If no empty 
cells are left, a solution has been found and no further seach is necessary. Else, 
provided the specified Maximum Depth is 2 or more, the recursive search begins:  

For each empty cell, TRY determines all legal values and then tentatively tests a 
maximum of N of them (as per the Maximum Width parameter) by updating the 
grid with each in turn and recursively calling itself to solve the new, easier puzzle 
(1 cell less). This goes on till one of the following stopping criteria is met: 

• If no empty cells are left, a solution has been found and the search ends 
immediately, returning from all recursive calls back to the calling shell. The 
grid is updated with the solution for the shell to report to the user.  

• If a cell is found which is impossible to fill, the puzzle is inconsistent and 
there’s no solution. The search ends immediately and returns back to the shell. 
The grid is restored to its initial state for the user to examine it (maybe a typo?) 

• If the specified maximum depth/width have been reached without finding a 
solution, the search ends. The grid is returned with as many cells correctly 
filled-in as possible. The user might simply increase the depth/width and restart 
the search, see Test case #2 in Examples below. 

Now for the details: 

TRY begins by accepting all required parameters and dimensioning two arrays 
(both are specified as  INTEGER  to save RAM, specially important since TRY will 
call itself recursively and each call will generate additional instances of those 
arrays. Thus, it’s advisable to use  INTEGER  for the largest arrays): 
 36 SUB TRY(P(,),F,W,X,Y,Z,S(,),E()) @ INTEGER T(9,9),A(81,4) 

The parameters are as follows: 
  P(,)  is the puzzle grid (input/output variable) passed by reference so that 

the resulting grid after the search can be returned back to the caller 
  F is an output variable (thus passed by reference) which returns a value 

indicating the results of the search (2=Solved, 3=Illegal, 4=Unsolved) 
  W     is an input, the current depth of the search, always passed by value 
  X     is an input, the Maximum Depth of the search 
  Y    is an input, the Maximum Width of the search 
  Z    is an input, a flag controlling the verbosity of search messages 
  S(,)  is an input, a constant array with the mapping of the cells to blocks 
  E() is an input, a constant array with precalculated integer powers of 2
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Now other local small arrays and variables are dimensioned. For HP-71B‘s arrays 
and variables, REAL is faster than INTEGER, so for speed we only use INTEGER for 
large arrays (in fact, all variables used in this program could be declared INTEGER, 
and you might want to do so if getting out of free RAM while running it): 
    38 DIM R(9),C(9),B(9),D,I,J,U,V,K,M,N,H,L @ FOR I=1 TO 9 

A loop is now entered to generate the bitboards for all rows/columns/blocks. The 
grid is scanned for occupied cells and for each of them a call is made to a 
subroutine which simply sets the bit representing the value assigned to the cell in 
the bitboards corresponding to the row, column and block where the cell resides:  
 40 FOR J=1 TO 9 @ IF P(I,J) THEN H=S(I,J) @ D=E(P(I,J)) @ GOSUB 78 
 42 NEXT J @ NEXT I @ M=0 

Assorted variables are initialized and a copy of the current grid is made. Now we 
loop to scan for all empty cells, and among them determine and fill in all forced 
ones (a single legal value) and find out and record all legal values for the rest. This 
is efficiently accomplished using the generated bitboards (see Bitboards below): 
    44 F=2 @ K=0 @ MAT T=P @ FOR I=1 TO 9 @ U=R(I) @ FOR J=1 TO 9 
    46 V=C(J) @ IF P(I,J) THEN 58 ELSE K=K+1 @ H=S(I,J) @ IF F=2 THEN F=0 
    48 L=BINIOR(BINIOR(U,V),B(H)) @ IF L=1022 THEN F=3 @ MAT P=T @ END 
    50 D=BINAND(BINCMP(L),1023)-1 @ N=BIT(D,1)+BIT(D,2)+BIT(D,3) 
    52 N=N+BIT(D,4)+BIT(D,5)+BIT(D,6)+BIT(D,7)+BIT(D,8)+BIT(D,9) 

If there’s just a single legal value, the cell is filled in at once and the subroutine is 
called again to update the corresponding cell’s bitboards (row/column/block): 
    54 IF N=1 THEN P(I,J)=LOG2(D) @ F=1 @ M=M+1 @ GOSUB 78 @ GOTO 58 

Else, the empty cell’s data (row, column, number of legal values, and the legal 
values themselves in bitboard format) are recorded  for eventual further search: 
    56 A(K,1)=I @ A(K,2)=J @ A(K,3)=N @ A(K,4)=L 

At loop termination, we check if any forced cells were assigned, and if so we go 
back to repeat the loop till no forced cells remain. Else, if no empty cells either, the 
puzzle is solved and the search ends. If not, the number of forced cells is reported: 
    58 NEXT J @ NEXT I @ IF F=1 THEN 44 
    60 IF F=2 THEN END ELSE IF Z THEN DISP W;": ";M;"forced cells" 

At this point, the grid has been updated  with all forced cells, but there are still 
empty cells which admit 2 or more legal values. If we’re already at the maximum 
search depth, we search no more but immediately return to the caller: 
    62 IF W=X THEN F=4 @ END 

Else, further recursive search is possible. For each recorded cell we traverse the list 
of its legal values (up to N of them, where N is the Maximum Width), update the 
grid with each value in turn, and recursively call TRY to solve the updated puzzle: 
 64 MAT T=P @ FOR U=1 TO K @ IF A(U,3)>Y THEN 76 
 66 I=A(U,1) @ J=A(U,2) @ L=A(U,4) @ FOR V=1 TO 9 @ IF BIT(L,V) THEN 74 
 68 P(I,J)=V @ DISP W;":>Try";I+J/10;"=";V @ CALL TRY(P,F,W+1,X,Y,Z,S,E) 

Upon returning from this call, we test the result. If F=2, the updated puzzle was 
solved by the call and we return immediately to the caller. If F=3, an inconsistency 
was detected, so we report a “dead end” to the user (if Verbose). 
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 70 IF F=2 THEN END ELSE IF F=3 AND Z THEN DISP W;":    (dead end)" 

If the call didn’t solve the updated puzzle, we simply backtrack to the current 
puzzle and try another legal value for the cell, then another cell. If we exhaust all 
legal values and cells, we report failure (F=4) and end the search at this depth: 
 72 MAT P=T 
 74 NEXT V 
 76 NEXT U @ F=4 @ END 

This subroutine updates a cell’s bitboards by setting the bit for the corresponding 
cell’s value. Usually, BINIOR boolean commands would be necessary, but as the bit 
being set is guaranteed not to be set on entry, sum operators will do, and faster: 
 78 R(I)=R(I)+D @ C(J)=C(J)+D @ B(H)=B(H)+D @ RETURN 

Bitboards 
Previous experience with Computer Chess made it 
plain to me that bitboards would be a natural for this 
puzzle. A bitboard is a binary representation of some 
aspect of the puzzle which is boolean in nature, such 
as “Does Row 1 already contain a 7 ?”. Once you’ve 
generated the bitboards, all kinds of questions can be 
answered very quickly by simply performing boolean 
operations upon them. SUDOKU71 makes extensive 
use of this technique. For instance, for the puzzle 
shown, we obtain these row/column/block bitboards: 

 
       Rows bitboards          Columns bitboards      Blocks bitboards 

Using them, we can discover that cell 1,6 is forced to have the value 7 as follows: 
   R(1)= Bitboard of Row #1 :  1  1  0  0  0  0  0  0  1  (digits used in Row #1=1,2,9 )   
   C(6)= Bitboard of Col #6:   0  0  1  1  0  1  0  0  1  (digits used in Column #6 ) 
   B(2)= Bitboard of Block #2: 1  0  0  1  1  0  0  1  0  (digits used in Block #2 ) 
   L   = R(1) OR C(6) OR  B(2) :  1  1  1  1  1  1  0  1  1  (digits used in any of them ) 
   D   = Complement of L:   0  0  0  0  0  0  1  0  0 (digits legal for cell(1,6) = 7 ) 

This gives us all the legal values for the cell: just the value 7. The HP-IL ROM 
binary operations are used for manipulating the bitboards: BINIOR (OR), BINCMP 
(Complement), BINAND (to mask out the pertinent 9 bits), and BIT (to count the 
number of values set in a bitboard. Also, LOG2 from the Math ROM is used to 
extract the value (7) from the final bitboard (D). For maximum efficiency, all 
bitboards are updated dynamically each time a cell is assigned a value. 
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Usage instructions 

• The following are sample inputs and outputs. To start the program, press:  
[RUN] -> Initializing ... 

 -> Enter puzzle:P(1,1)? 

• Enter the contents of all cells (0 if empty), left to right, top to bottom, separated 
by commas. You can enter up to 48 cells at a time, but entering just a single row 
per prompt will make it probably easier for you to keep track. For example: 

4,5,0,0,0,0,0,0,6  [ENTER] 
P(2,1)? 0,0,3,0,0,1,0,0,7  [ENTER] 

                ...      (enter rows 3 to 8) 
P(9,1)?   7,0,0,0,0,0,0,6,4  [ENTER] 

• Now enter the Maximum Depth and Maximum Width of the search (or accept 
the default values) and specify whether you want Verbose output or not: 

Max. Depth (1-15) =  2  [ENTER] 
Max. Width (2-9) =   2  [ENTER] 
Verbose (Y/N) ?  N  [ENTER] 

• The search will proceed unattended until a solution is found or it exhausts Max. 
Depth/Width without finding one (see Examples for more sample outputs): 

Solving ... 
(depth level#) :>Try (cell)=(digit) 

  ... 
      then eventually, the search results are reported, which will be one of these: 

SOLVED !   The subsequent grid is a full solution to the puzzle. 
Illegal?   The puzzle is inconsistent and has no solution. 
No solution found The grid is output with as many correct digits 

filled in as found. Increase Max.Depth/Width, no 
need to re-enter the puzzle, just: CONT 20[ENTER] 

Notes: 

• Running time increases exponentially with Maximum Depth/Width, so it’s 
advisable to start with the lowest values (Max. Depth = 1, Max. Width=2) and 
increase them if no solution is found. Usually (but not always), it’s best to 
restrict Width to the range 2-4 and increase Depth instead. See Examples. 

• Verbose output includes the number of digits forced at each node of the search 
as well as indicating when it has encountered a dead end and it’s backtracking. 

• The program doesn’t alter the DELAY setting, use the one that suits you best. 

• Should you miss the final outputs, you can re-output them by executing this 
right from the keyboard: 

     RUN 28  [ENTER] 
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Examples 

Test case #1:   30 cells  
>RUN 
Initializing ... 
Enter puzzle:  
P(1,1)? 0,5,0,0,0,1,4,0,0  [ENTER] 
P(2,1)? 2,0,3,0,0,0,7,0,0  [ENTER] 
P(3,1)? 0,7,0,3,0,0,1,8,2  [ENTER] 
P(4,1)? 0,0,4,0,5,0,0,0,7  [ENTER] 
P(5,1)? 0,0,0,1,0,3,0,0,0  [ENTER] 
P(6,1)? 8,0,0,0,2,0,6,0,0  [ENTER] 
P(7,1)? 1,8,5,0,0,6,0,9,0  [ENTER] 
P(8,1)? 0,0,2,0,0,0,8,0,3  [ENTER] 
P(9,1)? 0,0,6,4,0,0,0,7,0  [ENTER] 

 
Max. Depth (1-15) = 1   [ENTER] 6 5 8 2 7 1 4 3 9 
Max. Width (2-9) =  2   [ENTER] 2 1 3 8 9 4 7 5 6 
Verbose (Y/N) ?     N   [ENTER] 4 7 9 3 6 5 1 8 2 

9 2 4 6 5 8 3 1 7 
Solving ...     5 6 7 1 4 3 9 2 8 

    8 3 1 9 2 7 6 4 5 
SOLVED! { HP71B: 55 seconds } 1 8 5 7 3 6 2 9 4 

{ Emu71: 1 second   } 7 4 2 5 1 9 8 6 3 
3 9 6 4 8 2 5 7 1 

Notes:  This is a very simple case, and no recursion is needed at all (Depth =1) 

Test case #2:   26 cells  
>RUN 
Initializing ... 
Enter puzzle:  
P(1,1)? 4,5,0,0,0,0,0,0,6  [ENTER] 
P(2,1)? 0,0,3,0,0,1,0,0,7  [ENTER] 
P(3,1)? 0,0,0,0,2,3,0,0,0  [ENTER] 
P(4,1)? 0,0,0,0,4,0,2,5,0  [ENTER] 
P(5,1)? 0,0,9,3,0,2,1,0,0  [ENTER] 
P(6,1)? 0,8,1,0,7,0,0,0,0  [ENTER] 
P(7,1)? 0,0,0,5,8,0,0,0,0  [ENTER] 
P(8,1)? 9,0,0,7,0,0,8,0,0  [ENTER] 
P(9,1)? 7,0,0,0,0,0,0,6,4  [ENTER] 

 
Max. Depth (1-15) = 1   [ENTER] 4 5 2 8 9 7 3 1 6 
Max. Width (2-9) =  2   [ENTER] 0 0 3 0 0 1 0 0 7 
Verbose (Y/N) ?     Y   [ENTER] 0 0 0 0 2 3 0 0 0 

0 0 0 0 4 0 2 5 0 
Solving ...     0 0 9 3 0 2 1 0 8 

0 8 1 0 7 0 0 0 0 
1 :  10 forced cells    0 0 0 5 8 0 0 0 0 
No solution found { 1 min 11 sec } 9 0 0 7 0 0 8 0 0 

7 0 8 0 0 9 5 6 4 

Notes:  This case isn’t that simple, and trying to avoid recursion (Depth=1) doesn’t 
produce a full solution, though it was still able to fill in 10 forced cells. We  simply 
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repeat the search, this time with Depth=2, which succeeds wholesale. No need to 
re-enter the puzzle, just type right from the command prompt: 
>CONT 20     [ENTER] 
Max. Depth (1-15) = 2   [ENTER] 
Max. Width (2-9) =  2   [ENTER] 
Verbose (Y/N) ?     Y   [ENTER] 
 
Solving ...     4 5 2 8 9 7 3 1 6 
 1 :  10 forced cells     8 9 3 6 5 1 4 2 7 
 1 :>Try 2.1 = 6    1 7 6 4 2 3 9 8 5 
 1 :    (dead end)   6 3 7 1 4 8 2 5 9 
 1 :>Try 2.1 = 8    5 4 9 3 6 2 1 7 8 
 2 :  0 forced cells   2 8 1 9 7 5 6 4 3 
 1 :>Try 2.2 = 6    3 2 4 5 8 6 7 9 1 
 1 :    (dead end)   9 6 5 7 1 4 8 3 2 
 1 :>Try 2.2 = 9    7 1 8 2 3 9 5 6 4 
 
SOLVED!  { HP71B: 2 min 29 sec } { Emu71: 4 seconds } 

Test case #3:   24 cells  
>RUN 
Initializing ...  
Enter puzzle:  
P(1,1)? 3,2,0,0,0,0,7,0,0  [ENTER] 
P(2,1)? 0,0,9,8,0,0,3,0,0  [ENTER] 
P(3,1)? 0,0,0,0,0,6,0,0,2  [ENTER] 
P(4,1)? 0,5,0,0,0,9,0,0,3  [ENTER] 
P(5,1)? 0,4,0,0,0,0,0,2,0  [ENTER] 
P(6,1)? 7,0,0,3,0,0,0,4,0  [ENTER] 
P(7,1)? 1,0,0,7,0,0,0,0,0  [ENTER] 
P(8,1)? 0,0,6,0,0,2,5,0,0  [ENTER] 
P(9,1)? 0,0,4,0,0,0,0,8,6  [ENTER] 

 
Max. Depth (1-15) = 3   [ENTER] SOLVED!  { HP71B: 6 min 55 sec } 
Max. Width (2-9) =  3   [ENTER]     { Emu71: 11 seconds   } 
Verbose (Y/N) ?     N  [ENTER]  

3 2 1 9 5 4 7 6 8 
Solving ...     4 6 9 8 2 7 3 5 1 
 1 :>Try 1.3 = 1    5 8 7 1 3 6 4 9 2 
 2 :>Try 1.4 = 4    6 5 8 2 4 9 1 7 3 
 2 :>Try 1.4 = 5    9 4 3 6 7 1 8 2 5 
 2 :>Try 1.4 = 9    7 1 2 3 8 5 6 4 9 
 2 :>Try 1.5 = 4    1 9 5 7 6 8 2 3 4 
 2 :>Try 1.5 = 5    8 3 6 4 9 2 5 1 7 
      2 7 4 5 1 3 9 8 6 
Notes:  This is harder, so we need to increase both Depth and Width to 3, (3-3) 
from now on. (2-9) or (3-2) fails but (5-2) (trading Width for Depth) also succeeds.  

A good strategy is to begin with (1-2) and increase them if no solution is found. 
For puzzles up to 24 cells  it’s best to increase just the Depth leaving the Width 
fixed at 2. Over 26 cells, it’s best to first increase the Width, and only increase the 
Depth if even setting Width to 9 doesn’t succeed. For this puzzle, (3-3) to (3-9) all 
succeed equally fast while (5-2) also does but 33 times (!) slower. 
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Test case #4:   22 cells (!) 
>RUN 
Initializing ... 
Enter puzzle:  
P(1,1)? 0,0,0,0,0,0,0,0,0  [ENTER] 
P(2,1)? 0,0,7,8,3,0,0,0,0  [ENTER] 
P(3,1)? 0,0,5,0,0,2,6,4,0  [ENTER] 
P(4,1)? 0,0,2,6,0,0,0,7,0  [ENTER] 
P(5,1)? 0,4,0,0,0,0,0,8,0  [ENTER] 
P(6,1)? 0,6,0,0,0,3,2,0,0  [ENTER] 
P(7,1)? 0,2,8,4,0,0,5,0,0  [ENTER] 
P(8,1)? 0,0,0,0,9,6,1,0,0  [ENTER] 
P(9,1)? 0,0,0,0,0,0,0,0,0  [ENTER] 

Max. Depth (1-15) = 2   [ENTER]  SOLVED!  { HP71B: 19 min 58 sec } 
Max. Width (2-9) =  3   [ENTER]      { Emu71: 21 seconds   } 
Verbose (Y/N) ?     N   [ENTER]  2 9 4 1 6 5 8 3 7 
       6 1 7 8 3 4 9 5 2 
Solving:      3 8 5 9 7 2 6 4 1 
 1 :>Try 1.2 = 3     5 3 2 6 8 1 4 7 9 
 1 :>Try 1.2 = 8     7 4 1 2 5 9 3 8 6 
 1 :>Try 1.2 = 9     8 6 9 7 4 3 2 1 5 
      ...      9 2 8 4 1 7 5 6 3 
 1 :>Try 6.3 = 9     4 7 3 5 9 6 1 2 8 
 1 :>Try 6.8 = 1     1 5 6 3 2 8 7 9 4 
 

Notes:  Nice-looking puzzle, (2-3) solves it fastest. (3-2) does, too, but 4X slower.  

        Test case #5:   19 cells (!!) 
>RUN 
Initializing ... 
Enter puzzle:  
P(1,1)? 0,0,0,0,0,9,0,0,0  [ENTER] 
P(2,1)? 0,0,0,0,1,4,7,0,0  [ENTER] 
P(3,1)? 0,0,2,0,0,0,0,0,0  [ENTER] 
P(4,1)? 7,0,0,0,0,0,0,8,6  [ENTER] 
P(5,1)? 5,0,0,0,3,0,0,0,2  [ENTER] 
P(6,1)? 9,4,0,0,0,0,0,0,1  [ENTER] 
P(7,1)? 0,0,0,0,0,0,4,0,0  [ENTER] 
P(8,1)? 0,0,6,2,5,0,0,0,0  [ENTER] 
P(9,1)? 0,0,0,8,0,0,0,0,0  [ENTER] 

Max. Depth (1-15) = 5  [ENTER]  SOLVED!  { HP71B: 7 hr 58 min  } 
Max. Width (2-9) =  2 [ENTER]      { Emu71: 6 min 36 sec } 
Verbose (Y/N) ?     N  [ENTER]  8 1 4 7 2 9 6 3 5 
       6 5 9 3 1 4 7 2 8 
Solving ...      3 7 2 5 6 8 1 9 4 
 1 :>Try 4.3 = 1     7 2 1 4 9 5 3 8 6    
 2 :>Try 2.3 = 5     5 6 8 1 3 7 9 4 2 
 3 :>Try 1.3 = 4     9 4 3 6 8 2 5 7 1 
       ...      2 8 5 9 7 1 4 6 3    
 4 :>Try 2.3 = 9     4 9 6 2 5 3 8 1 7 
 4 :>Try 3.5 = 6     1 3 7 8 4 6 2 5 9 

Notes:  The very hardest nut (!) but (5-2) cracks it. (3-4) would, too, albeit slower. 


