
DATAFILE Vxx Nx Page 1

HP-71B Sudoku Solver’s Sublime Sequel
Valentín Albillo (#1075, PPC #4747)

After my original article HP-71B Short & Sweet Sudoku Solver appeared in
Datafile V24N2 p22, I went to try it with every Sudoku puzzle I could lay my
hands on. As part of that extensive testing, I finally concocted a comprehensive 15-
puzzle Test Suite which featured puzzles of all grades of difficulty, from the very
simplest, that my program could solve in a straightforward manner by iteratively
applying its forced-digit fill-in algorithm with no recursion whatsoever, to the very
hardest which needed deep recursion that would take an actual HP-71B 1 days, if
not weeks, to complete.

Using this Test Suite (featured at the end of this article!), I then went on to try and
improve my Solver Version 1.0 incrementally, using the TS as a performance meter
to quantitatively ascertain whether some modification was an improvement or not,
and by how much, while adamantly meeting the criteria of still resulting in a very
short program, and as “sweet” as possible. After three beta ‘internal releases’, here
you are, the ultimate SUDOKU71 Version 2.0, a.k.a. SUDOKUV2 or V2 for short.
V2 is still a very small program, just 45 lines (i.e.: slightly over a half of a typical
80-line page), well under 2 Kbytes of code (1898 bytes). How much of an
improvement is it ? In a word: tremendous ! Just consider these facts:

• V2 is faster than V1 in nearly every TS puzzle, with ratios from 0.93x in the
worst case to more than 1000x in the best cases. In general, the harder the
puzzle the faster V2 over V1. As an extreme case, TS#8 took Emu71 more than
3 hours to solve running V1 while V2 solves it in just 10 seconds ! Even a real
HP-71B takes under 5 minutes to solve it (V1 would take well over 4 days).

• V2 needs to use recursion in just 3 out of the 15 TS puzzles. In contrast, V1
uses recursion in 12 of the 15 puzzles. Which is more, when using recursion V2
typically stays at shallow depths, never going below depth 3, and even that just
for two of the puzzles. V1, on the contrary, frequently goes to depths 5 and 6,
with the corresponding high running times and memory consumption those
depths entail.

• V2 implements more sophisticated fill-in algorithms which, while still being
fairly simple and requiring very little code, nevertheless afford a substantial
increase in forced-digit detection, resulting in recursion being needed much less
frequently, as the grid is usually solved or nearly so by them.

The rest of this article includes the listing, a description of the new sections (refer
to the original article in V24N2 for important details), usage instructions, a couple
of examples, and last but not least, my Test Suite. Enjoy !

1 No HP-71B, HP-IL ROM or Math ROM ? No problem. Search the Web for Emu71, a free
emulator for Windows (>40X faster), or HP-71X, an excellent emulator (3X) for your HP48/49.

Page 2 DATAFILE Vxx Nx

SUDOKUV2 Program Listing
Here’s the full listing. For a thorough explanation of the new portions, see
Program details below (refer to the original article in V24N2 for the rest):

 SUDOKUV2 (1,898 Bytes)
10 DESTROY ALL @ OPTION BASE 1 @ DIM P(9,9),S(9,9),E(9),R(9),C(9),B(9)
12 DISP "Initializing ..." @ STD @ FOR I=1 TO 9 @ K=3*((I-1) DIV 3)+1
14 FOR J=1 TO 9 @ S(I,J)=K+(J-1) DIV 3 @ NEXT J @ E(I)=2^I @ NEXT I
16 DISP "Enter puzzle: "; @ MAT INPUT P
18 INPUT "Max. Depth (1-15) = ","1";X @ X=INT(MAX(MIN(X,15),1))
20 INPUT "Max. Width (2-9) = ","2";Y @ Y=INT(MAX(MIN(Y,15),2))
22 INPUT "Verbose (Y/N) ? ","N";R$ @ Z=R$#"N" @ MAT DISP USING "DX";P
24 CALL TRY(P,F,1,X,Y,Z,S,E,R,C,B) @ IF F=2 THEN DISP "SOLVED!"
26 IF F=3 THEN DISP"Illegal?" ELSE IF F=4 THEN DISP"No solution found"
28 MAT DISP USING "DX";P @ END
30 SUB TRY(P(,),F,W,X,Y,Z,S(,),E(),R(),C(),B())
32 INTEGER A(81,4),N1(9,9),N2(9,9),N3(9,9),G(9,9),T(9,9)
34 DIM R2(9),C2(9),B2(9),D,I,J,U,V,K,M,N,H,L @ M=0 @ IF W#1 THEN 40
36 FOR I=1 TO 9 @ FOR J=1 TO 9 @ IF P(I,J) THEN D=E(P(I,J)) @ GOSUB 98
38 NEXT J @ NEXT I
40 F=2 @ K=0 @ MAT T=P @ MAT R2=R @ MAT C2=C @ MAT B2=B
42 FOR I=1 TO 9 @ U=R(I) @ FOR J=1 TO 9 @ V=C(J) @ IF P(I,J) THEN 56
44 K=K+1 @ H=S(I,J) @ F=F*(F#2) @ L=BINIOR(BINIOR(U,V),B(H))
46 IF L=1022 THEN F=3 @ MAT P=T @ MAT R=R2 @ MAT C=C2 @ MAT B=B2 @ END
48 D=BINAND(BINCMP(L),1023)-1 @ N=BIT(D,1)+BIT(D,2)+BIT(D,3)
50 N=N+BIT(D,4)+BIT(D,5)+BIT(D,6)+BIT(D,7)+BIT(D,8)+BIT(D,9)
52 IF N#1 THEN A(K,1)=I @ A(K,2)=J @ A(K,3)=N @ A(K,4)=L @ GOTO 56
54 P(I,J)=LOG2(D) @F=1 @M=M+1 @R(I)=R(I)+D @ C(J)=C(J)+D @ B(H)=B(H)+D
56 NEXT J @ NEXT I @ IF F=1 THEN 40 ELSE IF F=2 THEN END
58 MAT N1=ZER @MAT N2=ZER @ MAT N3=ZER @ N=0 @ FOR U=1 TO K @ I=A(U,1)
60 J=A(U,2) @ H=S(I,J) @ L=A(U,4) @ FOR V=1 TO 9 @ IF BIT(L,V) THEN 68
62 IF N1(I,V) THEN N1(I,V)=-1 ELSE N1(I,V)=J
64 IF N2(J,V) THEN N2(J,V)=-1 ELSE N2(J,V)=I
66 IF N3(H,V) THEN N3(H,V)=-1 ELSE N3(H,V)=I @ G(H,V)=J
68 NEXT V @ NEXT U @ FOR U=1 TO 9 @ FOR V=1 TO 9
70 J=N1(U,V) @ IF J>0 THEN I=U @ GOSUB 96
72 I=N2(U,V) @ IF I>0 THEN J=U @ GOSUB 96
74 I=N3(U,V) @ IF I>0 THEN J=G(U,V) @ GOSUB 96
76 NEXT V @ NEXT U @IF N THEN 40 ELSE IF Z THEN DISP W;": ";M;"forced"
78 IF W=X THEN F=4 @ END ELSE MAT T=P @ MAT R2=R @ MAT C2=C @ MAT B2=B
80 FOR U=1 TO K @ IF A(U,3)>Y THEN 94
82 I=A(U,1) @ J=A(U,2) @ L=A(U,4) @ FOR V=1 TO 9 @ IF BIT(L,V) THEN 92
84 P(I,J)=V @ H=S(I,J) @D=E(V) @R(I)=R(I)+D @C(J)=C(J)+D @ B(H)=B(H)+D
86 DISP W;":>Try";I+J/10;"=";V @ CALL TRY(P,F,W+1,X,Y,Z,S,E,R,C,B)
88 IF F=2 THEN END ELSE IF F=3 AND Z THEN DISP W;": (dead end)"
90 MAT P=T @ MAT R=R2 @ MAT C=C2 @ MAT B=B2
92 NEXT V
94 NEXT U @ F=4 @ END
96 IF P(I,J) THEN RETURN ELSE M=M+1 @ N=1 @ P(I,J)=V @ D=E(V)
98 H=S(I,J) @ R(I)=R(I)+D @ C(J)=C(J)+D @ B(H)=B(H)+D @ RETURN

Notes: The program requires approximately 1725 + 2791*MD bytes of free
RAM available, where MD is the maximum depth of the search. It
also makes use of keywords from the Math ROM and HP-IL ROM.
Emu71 executes the program 50-100X faster on a typical 2.4 Ghz PC.

DATAFILE Vxx Nx Page 3

Programming details & techniques
Note: A brief explanation of sudoku puzzles: you’re given a 9x9 grid, each
cell to be occupied by a single digit 1-9, such that each of the 9 columns,
rows, and 3x3 non-overlapping blocks contain all digits without repetition.
Initially some cells are already filled-in and you must fill the rest.

SUDOKUV2 continues to be a no-frills, didactic program, all its improvements
being related to performance, i.e., reducing solving time. Only the new algorithms
that have been added and other important changes will be discussed here, you
should refer to the original article in V24N2 for important functional details as well
as to get an overall view and thorough description of all remaining program parts.

Updating the bitboards more efficienly
For efficiency, V1 updated all bitboards dynamically each time a cell was assigned
a value. However, this was done only within the iterative processes at each
particular depth. Everytime the TRY subprogram was called, it would first of all
regenerate the bitboards from the current grid, regardless of the depth.

The new V2, on the other hand, only generates the bitboards once, from the initial
grid, at depth 1, as seen in this code fragment:
 30 SUB TRY(P(,),F,W,X,Y,Z,S(,),E(),R(),C(),B())
 32 ...
 34 ... IF W#1 THEN 40
 36 FOR I=1 TO 9 @ FOR J=1 TO 9 @ IF P(I,J) THEN D=E(P(I,J)) @ GOSUB 98
 38 NEXT J @ NEXT I

TRY checks the current depth at line 34, and generates the bitboards only if at
depth 1. Once the bitboards are generated, they’re updated whenever a cell changes
status, and are then made available to the next depth by passing them by reference
as parameters of TRY. Notice that now TRY’s parameter list does include the
three bitboard vectors R(), C(), and B().

This results in significant savings in processing time as generating the bitboards is
a time-consuming process. Now this is done only once per puzzle.

Filling-in additional forced digits: the Conjugate Criterium
In V1, at each depth level and before resorting to expensive recursion, TRY
attempted to correctly fill in as many cells as possible by determining which cells
could admit only a single, forced value, repeting the process iteratively until no
more cells could be filled-in forcibly.

V1 essentially determined those cells that could hold only one value because all
other possible values were already used up in cells belonging to their row, column,
or block. Though these weren’t the only forced digits out there, they could be
found very fast by using bitboards (see V24N2), and the idea was to make findings
as quickly as possible, then let the recursive search do the rest.

While this works quite well, the extensive tests I made with the help of the TS
conclusively demonstrated that it was preferable to proceed otherwise, namely to

Page 4 DATAFILE Vxx Nx

spend extra time searching for other kinds of forced digits, hoping to either avoid
recursion altogether or at the very least let it handle a less empty grid. So V2
follows this strategy and, just after filling-in as many cells as possible with the
former forced-digit criterium, it goes on to search additional forced digits by using
the conjugate criterium, namely to look for those digits which can go in just one
particular cell because all other empty cells in its row, column, or block also
belong to a row, column, or block that already includes that digit. Note the
conjugation: this is the equivalent of the first criterium after exchanging cell and
digit. This sample puzzle from V24N2 will make it clear:

We saw in the original article (V24N2) how the first
criterium uses bitboards to discover that, for instance, cell
(1,6) is forced to have the value 7.

Now, the conjugate criterium allows us to discover that,
for instance, cell (1,8) must forcibly hold the value 4, and
cell (1,9) must hold a 5. This is accomplished using this
table for Row 1 which the program has previously
generated from information already gathered at the time:

 Legal Digits

 Row Column 1 2 3 4 5 6 7 8 9

 1 1 0 0 1 0 0 0 0 1 0 Notice that the bit representing the

 1 2 0 0 1 0 0 1 1 1 0 digit 5 is set only for column 9, so

 1 4 0 0 1 0 0 1 1 0 0 cell (1,9) is forced to hold a 5.

 1 6 0 0 0 0 0 0 1 0 0 Likewise , the bit representing the

 1 8 0 0 0 1 0 1 0 1 0 digit 4 is set only for column 8, so

 1 9 0 0 0 0 1 1 0 0 0 cell (1,8) is forced to hold a 4.

These tables are generated on the fly and stored in three 9x9 matrices, one for each
of Rows, Columns, and Blocks. Then the solitary bits which denote forced digits
are detected and extracted. These ten lines of code do it all:
 58 MAT N1=ZER @ MAT N2=ZER @ MAT N3=ZER @ N=0 @ FOR U=1 TO K @ I=A(U,1)
 60 J=A(U,2) @ H=S(I,J) @ L=A(U,4) @ FOR V=1 TO 9 @ IF BIT(L,V) THEN 68
 62 IF N1(I,V) THEN N1(I,V)=-1 ELSE N1(I,V)=J
 64 IF N2(J,V) THEN N2(J,V)=-1 ELSE N2(J,V)=I
 66 IF N3(H,V) THEN N3(H,V)=-1 ELSE N3(H,V)=I @ G(H,V)=J
 68 NEXT V @ NEXT U @ FOR U=1 TO 9 @ FOR V=1 TO 9
 70 J=N1(U,V) @ IF J>0 THEN I=U @ GOSUB 96
 72 I=N2(U,V) @ IF I>0 THEN J=U @ GOSUB 96
 74 I=N3(U,V) @ IF I>0 THEN J=G(U,V) @ GOSUB 96
 76 NEXT V @ NEXT U @ IF N THEN 40 ELSE IF Z THEN DISP W;": ";M;"forced"

These are essentially all the main changes to V1, the rest having to do with the
dimensioning and update of the existing bitboards and new tables. Have a look at
the original article in V24N2, which explains very thoroughly all sections not dealt
with here, bitboards in particular.

DATAFILE Vxx Nx Page 5

Usage instructions

• The following are sample inputs and outputs. To start the program, press:
[RUN] -> Initializing ...

 -> Enter puzzle:P(1,1)?

• Enter the contents of all cells (0 if empty), left to right, top to bottom, separated
by commas. You can enter up to 48 cells at a time, but entering just a single row
per prompt will make it probably easier for you to keep track. For example:

4,5,0,0,0,0,0,0,6 [ENTER]
P(2,1)? 0,0,3,0,0,1,0,0,7 [ENTER]

 ... (enter rows 3 to 8)
P(9,1)? 7,0,0,0,0,0,0,6,4 [ENTER]

• Now enter the Maximum Depth and Maximum Width of the search (or accept
the default values) and specify whether you want Verbose output or not:

Max. Depth (1-15) = 2 [ENTER]
Max. Width (2-9) = 2 [ENTER]
Verbose (Y/N) ? N [ENTER]

• The search will proceed unattended until a solution is found or it exhausts Max.
Depth/Width without finding one (see Examples for more sample outputs):

Solving ...
(depth level#) :>Try (cell)=(digit)

 ...
 then eventually, the search results are reported, which will be one of these:

SOLVED ! The subsequent grid is a full solution to the puzzle.
Illegal? The puzzle is inconsistent and has no solution.
No solution found The grid is output with as many correct digits

filled in as found. Increase Max.Depth/Width, no
need to re-enter the puzzle, just: CONT 18[ENTER]

Notes:

• Running time increases exponentially with Maximum Depth/Width, so it’s
advisable to start with the lowest values (Max. Depth = 1, Max. Width=2) and
increase them if no solution is found. Usually (but not always), it’s best to
restrict Width to the range 2-4 and increase Depth instead. See V24N2.

• Verbose output includes the number of digits forced at each node of the search
as well as indicating when it has encountered a dead end and it’s backtracking.

• The program doesn’t alter the DELAY setting, use the one that suits you best.

• Should you miss the final grid, you can re-output it by executing this right from
the keyboard:

 RUN 28 [ENTER]

Page 6 DATAFILE Vxx Nx

Examples (directly taken from the Test Suite below)

Test case #1: 30 cells
>RUN
Initializing ...
Enter puzzle:
P(1,1)? 0,5,0,0,0,1,4,0,0 [ENTER]
P(2,1)? 2,0,3,0,0,0,7,0,0 [ENTER]
P(3,1)? 0,7,0,3,0,0,1,8,2 [ENTER]
P(4,1)? 0,0,4,0,5,0,0,0,7 [ENTER]
P(5,1)? 0,0,0,1,0,3,0,0,0 [ENTER]
P(6,1)? 8,0,0,0,2,0,6,0,0 [ENTER]
P(7,1)? 1,8,5,0,0,6,0,9,0 [ENTER]
P(8,1)? 0,0,2,0,0,0,8,0,3 [ENTER]
P(9,1)? 0,0,6,4,0,0,0,7,0 [ENTER]

Max. Depth (1-15) = 1 [ENTER] 6 5 8 2 7 1 4 3 9
Max. Width (2-9) = 2 [ENTER] 2 1 3 8 9 4 7 5 6
Verbose (Y/N) ? N [ENTER] 4 7 9 3 6 5 1 8 2

9 2 4 6 5 8 3 1 7
Solving ... 5 6 7 1 4 3 9 2 8

 8 3 1 9 2 7 6 4 5
SOLVED! { HP71B: 59 seconds } 1 8 5 7 3 6 2 9 4

{ Emu71: 1 second } 7 4 2 5 1 9 8 6 3
3 9 6 4 8 2 5 7 1

Notes: This one is very easy, and no recursion is needed at all (Depth =1)

 Test case #13: 19 cells
>RUN
Initializing ...
Enter puzzle:
P(1,1)? 0,0,0,0,0,9,0,0,0 [ENTER]
P(2,1)? 0,0,0,0,1,4,7,0,0 [ENTER]
P(3,1)? 0,0,2,0,0,0,0,0,0 [ENTER]
P(4,1)? 7,0,0,0,0,0,0,8,6 [ENTER]
P(5,1)? 5,0,0,0,3,0,0,0,2 [ENTER]
P(6,1)? 9,4,0,0,0,0,0,0,1 [ENTER]
P(7,1)? 0,0,0,0,0,0,4,0,0 [ENTER]
P(8,1)? 0,0,6,2,5,0,0,0,0 [ENTER]
P(9,1)? 0,0,0,8,0,0,0,0,0 [ENTER]

Max. Depth (1-15) = 1 [ENTER]
Max. Width (2-9) = 2 [ENTER] 8 1 4 7 2 9 6 3 5
Verbose (Y/N) ? N [ENTER] 6 5 9 3 1 4 7 2 8
 3 7 2 5 6 8 1 9 4
Solving ... 7 2 1 4 9 5 3 8 6
 5 6 8 1 3 7 9 4 2
SOLVED! { HP71B: 4 min 45 sec } 9 4 3 6 8 2 5 7 1

{ Emu71: 10 sec } 2 8 5 9 7 1 4 6 3
 4 9 6 2 5 3 8 1 7

 1 3 7 8 4 6 2 5 9

Notes: A lot harder, but recursion is still not needed ! V1 took nearly 8 hours (in
an actual HP-71B) and had to go all the way to depth 5 in order to solve it.

DATAFILE Vxx Nx Page 7

Test Suite: 15 choice puzzles of various difficulties, from very easy to very hard.

Sudoku Test Puzzle # Cells 71B (Emu71) Version 1.0 Computed Solution

01.

30

00:00:59

(00:00:01)

using 1-2

Recursion

NOT needed

00:00:55

(00:00:01)

using 1-2

Recursion

NOT needed

6 5 8 2 7 1 4 3 9
2 1 3 8 9 4 7 5 6
4 7 9 3 6 5 1 8 2
9 2 4 6 5 8 3 1 7
5 6 7 1 4 3 9 2 8
8 3 1 9 2 7 6 4 5
1 8 5 7 3 6 2 9 4
7 4 2 5 1 9 8 6 3
3 9 6 4 8 2 5 7 1

02.

27

00:02:53

(00:00:06)

using 1-2

Recursion
NOT needed

Untested

(00:00:30)

using 3-2

Recursion
needed

6 8 2 1 3 9 4 5 7
5 4 1 6 7 2 8 9 3
9 7 3 4 5 8 1 2 6
7 1 9 5 2 3 6 8 4
4 3 5 8 6 1 9 7 2
2 6 8 9 4 7 3 1 5
1 5 6 2 8 4 7 3 9
3 9 4 7 1 5 2 6 8
8 2 7 3 9 6 5 4 1

03.

24

00:03:58

(00:00:08)

using 1-2

Recursion
NOT needed

00:06:55

(00:00:11)

using 3-3

Recursion
needed

3 2 1 9 5 4 7 6 8
4 6 9 8 2 7 3 5 1
5 8 7 1 3 6 4 9 2
6 5 8 2 4 9 1 7 3
9 4 3 6 7 1 8 2 5
7 1 2 3 8 5 6 4 9
1 9 5 7 6 8 2 3 4
8 3 6 4 9 2 5 1 7
2 7 4 5 1 3 9 8 6

04.

26

00:02:32

(00:00:05)

using 1-2

Recursion
NOT needed

00:02:29

(00:00:04)

using 2-2

Recursion
needed

4 5 2 8 9 7 3 1 6
8 9 3 6 5 1 4 2 7
1 7 6 4 2 3 9 8 5
6 3 7 1 4 8 2 5 9
5 4 9 3 6 2 1 7 8
2 8 1 9 7 5 6 4 3
3 2 4 5 8 6 7 9 1
9 6 5 7 1 4 8 3 2
7 1 8 2 3 9 5 6 4

05.

24

00:03:50

(00:00:08)

using 1-2

Recursion
NOT needed

Untested

(00:00:08)

using 2-2

Recursion
needed

2 1 4 9 5 8 3 6 7
5 6 7 1 3 2 8 4 9
3 9 8 6 4 7 2 1 5
4 8 1 7 9 6 5 2 3
7 5 2 4 8 3 6 9 1
9 3 6 5 2 1 4 7 8
8 4 3 2 1 9 7 5 6
1 7 5 8 6 4 9 3 2
6 2 9 3 7 5 1 8 4

Page 8 DATAFILE Vxx Nx

06.

26

00:02:51

(00:00:06)

using 1-2

Recursion
NOT needed

Untested

(00:01:30)

using 3-2

Recursion
needed

3 1 2 6 8 4 9 5 7
7 9 8 5 2 1 6 3 4
4 5 6 7 3 9 2 8 1
9 7 5 4 1 6 8 2 3
2 8 1 9 7 3 5 4 6
6 4 3 2 5 8 1 7 9
1 2 4 3 9 5 7 6 8
8 6 7 1 4 2 3 9 5
5 3 9 8 6 7 4 1 2

07.

22

00:04:52

(00:00:10)

using 1-2

Recursion
NOT needed

00:19:58

(00:00:21)

using 2-3

Recursion
needed

2 9 4 1 6 5 8 3 7
6 1 7 8 3 4 9 5 2
3 8 5 9 7 2 6 4 1
5 3 2 6 8 1 4 7 9
7 4 1 2 5 9 3 8 6
8 6 9 7 4 3 2 1 5
9 2 8 4 1 7 5 6 3
4 7 3 5 9 6 1 2 8
1 5 6 3 2 8 7 9 4

08.

20

00:04:44

(00:00:10)

using 1-2

Recursion
NOT needed

Untested

(03:10:30)

using 5-3

Recursion
needed

6 9 2 3 8 1 5 4 7
4 3 5 6 2 7 1 8 9
1 8 7 5 4 9 2 3 6
9 1 8 2 7 4 6 5 3
5 7 4 9 3 6 8 2 1
2 6 3 1 5 8 7 9 4
7 4 6 8 9 2 3 1 5
3 2 1 4 6 5 9 7 8
8 5 9 7 1 3 4 6 2

09.

24

00:06:54

(00:00:15)

using 1-2

Recursion
NOT needed

Untested

(00:14:26)

using 6-2

Recursion
needed

4 7 8 5 1 6 2 9 3
9 6 5 8 3 2 1 4 7
2 1 3 4 9 7 8 5 6
7 4 9 3 6 1 5 2 8
8 3 6 2 5 9 7 1 4
1 5 2 7 4 8 3 6 9
5 2 4 9 7 3 6 8 1
6 9 7 1 8 5 4 3 2
3 8 1 6 2 4 9 7 5

10.

24

00:06:26

(00:00:14)

using 2-2

Recursion
needed

Untested

(01:00:33)

using 5-2

Recursion
needed

2 8 3 6 7 1 9 4 5
9 7 6 5 4 8 2 3 1
4 1 5 3 9 2 8 7 6
5 6 7 4 1 9 3 8 2
8 3 4 2 6 7 1 5 9
1 9 2 8 3 5 4 6 7
3 2 1 7 8 6 5 9 4
7 5 8 9 2 4 6 1 3
6 4 9 1 5 3 7 2 8

DATAFILE Vxx Nx Page 9

11.

30

00:02:04

(00:00:04)

using 1-2

Recursion
NOT needed

Untested

(00:00:04)

using 2-2

Recursion
needed

9 6 3 1 7 4 2 5 8
1 7 8 3 2 5 6 4 9
2 5 4 6 8 9 7 3 1
8 2 1 4 3 7 5 9 6
4 9 6 8 5 2 3 1 7
7 3 5 9 6 1 8 2 4
5 8 9 7 1 3 4 6 2
3 1 7 2 4 6 9 8 5
6 4 2 5 9 8 1 7 3

12.

30

00:01:03

(00:00:01)

using 1-2

Recursion
NOT needed

Untested

(00:00:01)

using 1-2

Recursion
NOT needed

8 6 2 3 1 7 9 4 5
1 7 3 5 9 4 2 8 6
4 5 9 6 8 2 1 3 7
7 1 4 2 6 3 5 9 8
9 2 8 4 5 1 7 6 3
5 3 6 8 7 9 4 1 2
6 9 7 1 2 8 3 5 4
2 4 5 9 3 6 8 7 1
3 8 1 7 4 5 6 2 9

13.

19

00:04:45

(00:00:10)

using 1-2

Recursion
NOT needed

07:58:03

(00:06:36)

using 5-2

Recursion
needed

8 1 4 7 2 9 6 3 5
6 5 9 3 1 4 7 2 8
3 7 2 5 6 8 1 9 4
7 2 1 4 9 5 3 8 6
5 6 8 1 3 7 9 4 2
9 4 3 6 8 2 5 7 1
2 8 5 9 7 1 4 6 3
4 9 6 2 5 3 8 1 7
1 3 7 8 4 6 2 5 9

14.

19

00:15:21

(00:00:32)

using 3-2

Recursion
needed

Untested

(03:26:48)

using 6-2

Recursion
needed

2 6 7 5 4 9 1 3 8
9 8 3 6 2 1 4 5 7
5 4 1 7 8 3 2 6 9
7 5 8 3 9 2 6 4 1
3 1 4 8 5 6 7 9 2
6 2 9 1 7 4 3 8 5
1 9 5 4 6 7 8 2 3
4 3 2 9 1 8 5 7 6
8 7 6 2 3 5 9 1 4

15.

19

00:09:38

(00:00:19)

using 3-4

Recursion
needed

Untested

(02:42:07)

using 5-4

Recursion
needed

1 2 6 4 3 7 9 5 8
8 9 5 6 2 1 4 7 3
3 7 4 9 8 5 1 2 6
4 5 7 1 9 3 8 6 2
9 8 3 2 4 6 5 1 7
6 1 2 5 7 8 3 9 4
2 6 9 3 1 4 7 8 5
5 4 8 7 6 9 2 3 1
7 3 1 8 5 2 6 4 9

