HP-71B Sudoku Solver’s Sublime Sequel

Valentin Albillo (#1075, PPC #4747)

After my origina article HP-71B Short & Sweet Sudoku Solver appeared in
Datafile V24N2 p22, | went to try it with every Sudoku puzzle | could lay my
hands on. As part of that extensive testing, | finally concocted a comprehensive 15
puzzle Test Suite which featured puzzles of al grades of difficulty, from the very
simplest, that my program could solve in a straightforward manner by iteratively
applying its forced-digit fill-in algorithm with no recursion whatsoever, to the very
hardest which needed deep recursion that would take an actual HP-71B * days, if
not weeks, to complete.

Using this Test Suite (featured at the end of this articlel), | then went on to try and
improve my Solver Version 1.0 incrementally, using the TS as a performance meter
to quantitatively ascertain whether some modification was an improvement or not,
and by how much, while adamantly meeting the criteria of still resulting in a very
short program, and as “sweet” as possible. After three beta ‘internal releases’, here
you are, the ultimate SUDOKU71 Version 2.0, ak.a. SUDOKUV2 or V2 for short.

V2 is gill a very small program, just 45 lines (i.e.: dightly over a half of atypical
80-line page), wel under 2 Kbytes of code (1898 bytes). How much of an
improvement isit ? In aword: tremendous! Just consider these facts:

V2 isfaster than V1 in nearly every TS puzzle, with ratios from 0.93x in the
worst case to more than 1000x in the best cases. In genera, the harder the
puzzle the faster V2 over V1. As an extreme case, TS#8 took Emu71 more than
3 hours to solve running V1 while V2 solvesit in just 10 seconds ! Even ared
HP-71B takes under 5 minutes to solve it (V1 would take well over 4 days).

V2 needs to use recursion in just 3 out of the 15 TS puzzles. In contrast, V1
usesrecursion in 12 of the 15 puzzles. Which is more, when using recursion V2
typicaly stays at shallow depths, never going below depth 3, and even that just
for two of the puzzles. V1, on the contrary, frequently goes to depths 5 and 6,
with the corresponding high running times and memory consumption those
depths entail.

V2 implements more sophisticated fill-in algorithms which, while still being
fairly ssimple and requiring very little code, nevertheless afford a substantial
increase in forced-digit detection, resulting in recursion being needed much less
frequently, asthe grid is usually solved or nearly so by them.

The rest of this article includes the listing, a description of the new sections (refer
to the origina article in V24N2 for important details), usage instructions, a couple
of examples, and last but not least, my Test Suite. Enjoy !

1 No HP-71B, HP-IL ROM or Math ROM ? No problem. Search the Web for Emu71, a free
emulator for Windows (>40X fader), or HP-71X, an excellent emulator (3X) for your HP48/49.

DATAFILE Vxx Nx Page 1

SUDOKUV2 Program Listing

Here's the full listing. For a thorough explanation of the new portions, see
Program details below (refer to the original article in V24N2 for the rest):

SUDOKUV2 (1,898 Bytes)

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

DESTROY ALL @ CPTION BASE 1 @DI M P(9, 9), S(9, 9), E(9), R(9), C(9), B(9)
DISP "Initializing ..." @STD @FOR 1=1 TO 9 @K=3*((1-1) DIV 3)+1
FOR J=1 TO9 @S(I,J)=K+(J-1) DIV 3 @NEXT J @E(1)=2"1 @ NEXT |
DISP "Enter puzzle: "; @MAT | NPUT P

I NPUT "Max. Depth (1-15) = ","1"; X @ X=I NT(MAX(M N(X, 15), 1))

INPUT "Max. Wdth (2-9) = ","2":Y @ Y=l NT(MAX(M N(Y, 15), 2))

I NPUT "Verbose (Y/N) 2 ","N';R$ @Z=R$#"'N' @MNAT DI SP USI NG "DX"; P
CALL TRY(P,F,1,X Y, 2 S, E,RCB) @IF F=2 THEN DI SP " SOLVED! "

|F F=3 THEN DI SP"I 11 egal ?" ELSE IF F=4 THEN DI SP'No sol ution found"
MAT DI SP USI NG "DX": P @ END

SUB TRY(P(,),F,WX'Y,Z S(,),E(),R(),), B())

| NTEGER A(81, 4), N1(9, 9), N2(9, 9), N3(9, 9), & 9, 9), T(9, 9)

DIM R2(9), C2(9),B2(9),D,1,J,UV,K MNHL @M0 @I F W1 THEN 40
FOR1=1 TO9 @FOR J=1 TO9 @IF P(l,J) THEN D=E(P(Il,J)) @ GOSUB 98
NEXT J @ NEXT |

F=2 @K=0 @MAT T=P @ MAT R2=R @ MAT C2=C @ MAT B2=B

FOR1=1 TO9 @U=R(1) @FOR J=1 TO9 @V=C(J) @IF P(1,J) THEN 56
K=K+1 @H=S(1,J) @ F=F*(F#2) @ L=BI NI OR(BI Nl OR(U, V), B(H))

| F L=1022 THEN F=3 @ MAT P=T @ MAT R=R2 @ MAT C=C2 @ MAT B=B2 @ END
D=BI NAND(B NCMP(L), 1023) -1 @ N=BI T(D, 1) +Bl T(D, 2) +BI T(D, 3)

N=N+BI T(D, 4) +BI T(D, 5) +BI T(D, 6) +BlI T(D, 7) +BI T(D, 8) +BI T(D, 9)

IF N#1 THEN A(K, 1) =1 @A(K 2)=J @A(K, 3)=N @A(K, 4)=L @ GOTO 56
P(1,J)=LOX2(D) @=1 @M1 @(1)=R(1)+D @C(J)=C(J)+D @B(H) =B(H) +D
NEXT J @NEXT | @I F F=1 THEN 40 ELSE | F F=2 THEN END

MAT N1=ZER @AT N2=ZER @ MAT N3=ZER @N=0 @FOR U=1 TO K @1=A(U, 1)
J=A(U 2) @H=S(1,J) @L=A(U,4) @FOR V=1 TO9 @IF BIT(L,V) THEN 68
IF NI1(1,V) THEN NL(I,V)=-1 ELSE Ni(I,V)=J

IF N2(J,V) THEN N2(J,V)=-1 ELSE N2(J, V)=l

IF N3(H,V) THEN N3(H, V)=-1 ELSE N3(H, V)=l @G H, V)=J

NEXT V @ NEXT U @FOR U=1 TO 9 @FOR V=1 TO 9

J=N1(U,V) @IF J>0 THEN | =U @ GOSUB 96

1=N2(U, V) @IF 1>0 THEN J=U @ GOSUB 96

1=N3(U,V) @IF >0 THEN J=G(U, V) @ GOSUB 96

NEXT V @NEXT U @F N THEN 40 ELSE IF Z THEN DISP W": "; M "for ced"
| E WX THEN F=4 @ END ELSE MAT T=P @ MAT R2=R @ MAT C2=C @ MAT B2=B

FOR U=1 TOK @IF A(U, 3)>Y THEN 94
1=A(U 1) @J=A(U,2) @L=A(U 4) @FOR V=1 TO9 @IF BIT(L,V) THEN 92
P(I,J)=V @H=S(1,J) @=E(V) @R(1)=R(1)+D @(J)=C(J)+D @B(H) =B(H) +D

DISP W":>Try"; 1+3/10;"=";V @CALL TRY(P,F, W1,X,Y,Z, S, E R C, B)
IF F=2 THEN END ELSE IF F=3 AND Z THEN DISP W": (dead end)"
MAT P=T @ VAT R=R2 @ VAT C=C2 @ MAT B=B2

NEXT V

NEXT U @F=4 @ END
|E P(1,J) THEN RETURN ELSE MeMrl @N=1 @P(1,J) =V @ D=E(V)
H=S(1,J) @R(1)=R(1)+D @(J)=C(J)+D @B(H =B(H) +D @ RETURN

Notes: The program requires approximately 1725 + 2791*M D bytes of free

RAM available, where M D is the maximum depth of the search. It
also makes use of keywords from the Math ROM and HP-IL ROM.
Emu71 executes the program 50-100X faster on atypical 2.4 Ghz PC.

Page 2 DATAFILE Vxx Nx

Programming details & techniques
Note: A brief explanation of sudoku puzzles: you're given a 9x9 grid, each
cell to be occupied by a single digit 1-9, such that each of the 9 columns,
rows, and 3x3 non-overlapping blocks contain all digits without repetition.
Initially some cells are aready filled-in and you must fill the rest.

SUDOKUV2 continues to be a no-frills, didactic program, al its improvements
being related to performance, i.e., reducing solving time. Only the new agorithms
that have been added and other important changes will be discussed here, you
should refer to the origina article in V24N2 for important functional details as well
asto get an overall view and thorough description of al remaining program parts.

Updating the bitboar ds mor e efficienly

For efficiency, V1 updated all bitboards dynamically each time a cell was assigned
a vaue. However, this was done only within the iterative processes at each
particular depth. Everytime the TRY subprogram was caled, it would first of all
regenerate the bitboards from the current grid, regardiess of the depth.

The new V2, on the other hand, only generates the bitboards once, from the initial
grid, at depth 1, as seen in this code fragment:

30 SUB TRY(P(,),F, WX Y,Z S(,),E(),R(),C),B())
32 ...
34 ... |F W1 THEN 40

36 FOR 1=1 TO9 @FOR J=1 TO9 @IF P(1,J) THEN D=E(P(l,J)) @ GOSUB 98
38 NEXT J @ NEXT |

TRY checks the current depth at line 34, and generates the bitboards only if at
depth 1. Once the bitboards are generated, they’ re updated whenever a cell changes
status, and are then made available to the next depth by passing them by reference
as parameters of TRY. Notice that now TRY’s parameter list does include the
three bitboard vectors R(), C(), and B().

This results in significant savings in processing time as generating the bitboards is
atime-consuming process. Now thisis done only once per puzzle.

Filling-in additional forced digits: the Conjugate Criterium

In V1, a each depth level and before resorting to expensive recursion, TRY
attempted to correctly fill in as many cells as possible by determining which cells
could admit only a single, forced value, repeting the process iteratively until no
more cells could befilled-in forcibly.

V1 essentialy determined those cells that could hold only one value because all

other possible values were already used up in cells belonging to their row, column,

or block. Though these weren't the only forced digits out there, they could be
found very fast by using bitboards (see V24N2), and the idea was to make findings
as quickly as possible, then let the recursive search do the rest.

While this works quite well, the extensive tests | made with the help of the TS
conclusively demonstrated that it was preferable to proceed otherwise, namely to

DATAFILE Vxx Nx Page 3

spend extra time searching for other kinds of forced digits, hoping to either avoid
recursion atogether or at the very least let it handle a less empty grid. So V2
follows this strategy and, just after filling-in as many cells as possible with the
former forced-digit criterium, it goes on to search additional forced digits by using
the conjugate criterium, namely to look for those digits which can go in just one
particular cell because all other empty cells in its row, column, or block aso
belong to a row, column, or block that aready includes that digit. Note the
conjugation: this is the equivalent of the first criterium after exchanging cell and
digit. This sample puzzle from V24N2 will make it clear:

2] [1] |9 We saw in the origind article (V24N2) how the first
5| |4 criterium uses bitboardsto discover that, for instance, cell

‘7‘ 2 S 2 - 3 ; (1,6) isforced to have the value 7.
Now, the conjugate criterium allows us to discover that,
5 8|7]9 2| forinstance, cell (1,8) must forcibly hold the value 4, and
69 2 54| cdl (1,9 must hold a 5. This is accomplished using this
1 9 ; & : table for Row 1 which the program has previously

generated from information already gathered at the time:
Legal Digits

Row Colum 1 2 3 4 5 6 7 8 9

1 1 0O 01 0 0 0O O 1 O Notice that the bit representing the
1 2 0 01 00 1 1 1 O digit 5is set only for colum 9, so
1 4 0O 01 0 01 1 00 cell (1,9) is forced to hold a 5.

1 6 0O 0 0O OO0 1 000 Likewise , the bit representing the
1 8 0 0 01 01 0 1 O digit 4 is set only for colum 8, so
1 9 0 0 001 1 0 0 O cell (1,8) is forced to hold a 4.

These tables are generated on the fly and stored in three 9x9 matrices, one for each
of Rows, Columns, and Blocks. Then the solitary bits which denote forced digits
are detected and extracted. These ten lines of code do it all:

58 MAT N1=ZER @ MAT N2=ZER @ MAT N3=ZER @N=0 @ FOR U=1 TO K @1 =A(U, 1)
60 J=A(U,2) @H=S(1,J) @L=A(U,4) @FOR V=1 TO9 @IF BIT(L,V) THEN 68
62 I F NI1(I,V) THEN NL(I,V)=-1 ELSE Ni(I,V)=J

64 1 F N2(J,V) THEN N2(J,V)=-1 ELSE N2(J, V)=l

66 | F N3(H, V) THEN N3(H, V)=-1 ELSE N3(H, V)=l @ G(H, V)=J

68 NEXT V @NEXT U @FOR U=1 TO 9 @FOR V=1 TO 9

70 J=N1(U,V) @I F J>0 THEN | =U @ GOSUB 96

72 1=N2(U,V) @I F 1>0 THEN J=U @ GOSUB 96

74 1=N3(U,V) @IF 1>0 THEN J=G(U,V) @ GOSUB 96

76 NEXT V @NEXT U @I F N THEN 40 ELSE IF Z THEN DISP W": "; M "forced"

These are essentially all the main changes to V1, the rest having to do with the
dimensioning and update of the existing bitboards and new tables. Have alook at
the original article in V24N2, which explains very thoroughly all sections not dealt
with here, bitboards in particular.

Page 4 DATAFILE Vxx Nx

Usage instructions

The following are sample inputs and outputs. To start the program, press:
[RUN| ->|nitializing ...
-> Enter puzzle:P(1,1)7?

Enter the contents of all cells (0 if empty), |eft to right, top to bottom, separated
by commas. Y ou can enter up to 48 cells at atime, but entering just a single row
per prompt will make it probably easier for you to keep track. For example:
4,5,0,0,0,0,0,0,6 [ENTER
P(2,1)? 0,0,3,0,0,1,0,0,7 [ENTER
(enter rows 30 8)
P(9,1)? 7,0,0,0,0,0,0,6,4 [ENTER

Now enter the Maximum Depth and Maximum Width of the search (or accept
the default values) and specify whether you want Ver bose output or not:

Max. Depth (1-15) = 2 [ENTER|

Max. Wdth (2-9) = 2 [ENTER|

Ver bose (Y/'N) ? N [ENTER]
The search will proceed unattended until a solution is found or it exhausts Max.

Depth/Width without finding one (see Examples for more sample outputs):
Solving ...

(depth level#) :>Try (cell) =(digit)

then eventually, the search results are reported, which will be one of these:
SOLVED! The subsequent grid isa full solution to the puzzle.
Illegal ? The puzzle is inconsistent and has no solution.

No solution found The grid is output with as many correct digits
filled in as found. Increase Max.Depth/Width, no
need to re-enter the puzzle, just: CONT 18[ENTER]

Notes:

Running time increases exponentially with Maximum Depth/Width, so it's
advisable to start with the lowest values (Max. Depth = 1, Max. Width=2) and
increase them if no solution is found. Usualy (but not always), it's best to
restrict Width to the range 2-4 and increase Depth instead. See V24N2.

Verbose output includes the number of digits forced at each node of the search
aswell asindicating when it has encountered a dead end and it’ s backtracking.

The program doesn't alter the DELAY setting, use the one that suits you best.

Should you miss the final grid, you can re-output it by executing this right from
the keyboard:
RUN 28 [ENTER]

DATAFILE Vxx Nx Page 5

Examples (directly taken from the Test Suite below)
Test case#l: 30cells

5 1[4 SRN-
Initializing ...
2 3 7 Enter puzzle:
7 3 1182 P(1,1)? 0,5,0,0,0,1,4,0,0 [ENTER]
4 5 71l P(2,1)? 2,0,3,0,0,0,7,0,0 [ENTER]
1 3 P(3,1)? 0,7,0,3,0,0,1,8,2 [ENTER]
8 5 6 P(4,1)? 0,0,4,0,5,0,0,0,7 [ENTER]
P(5,1)? 0,0,0,1,0,3,0,0,0 [ENTER]
118|5 6 9 P(6,1)? 8,0,0,0,2,0,6,0,0 [ENTER]
2 8 3| P(7,1)? 1,8,5,0,0,6,0,9,0 [ENTER]
6|4 7 P(8,1)? 0,0,2,0,0,0,8,0,3 [ENTER|
P(9,1)? 0,0,6,4,0,0,0,7,0 [ENTER]
Max. Depth (1-15) = 1 [ENTER] 6582714309
Max. Wdth (2-9) = 2 [ENTER] 213894756
Verbose (Y/N) ? N [ENTER] 479365182
924658317
Solving ... 567143928
831927645
SOLVED! { HP71B: 59 seconds } 1857362914
{ Emu71: 1 second } 742519863
396482571

Notes: Thisoneisvery easy, and no recursion is needed at al (Depth =1)
Test case#13: 19 cdls

5 -
Initializing ...
1147 Enter puzzle:
2 P(1,1)? 0,0,0,0,0,9,0,0,0 [ENTER]
7 g8lel| P(2,1)2 0,0,0,0,1,4,7,0,0 [ENTER|
5 3 5| P(3,1)72 002000000 [ENTER|
9la i P(4,1)? 7,0,0,0,0,0,0,8,6 [ENTER]
P(5,1)? 5,0,0,0,3,0,0,0,2 [ENTER]
4 P(6,1)? 9,4,0,0,0,0,0,0,1 [ENTER]
625 P(7,1)? 0,0,0,0,0,0,4,0,0 [ENTER]
8 P(8,1)? 0,0,6,2,5,0,0,0,0 [ENTER]
P(9,1)? 0,0,0,8,0,0,0,0,0 [ENTER]
Max. Depth (1-15) = 1 [ENTER]
Max. Wdth (2-9) = 2 [ENTER] 814729635
Ver bose (Y/N) ? N [ENTER] 6 59314728
372568194
Solving ... 721495386
568137942
SOLVED! { HP71B: 4 min 45 sec } 943682571
{ Emu71l: 10 sec } 285971463
496253817
1378462509

Notes: A lot harder, but recursion is still not needed ! V1 took nearly 8 hours (in
an actual HP-71B) and had to go al the way to depth 5in order to solveit.

Page 6 DATAFILE Vxx Nx

Test Suite: 15 choice puzzles of various difficulties, from very easy to very hard.

Sudoku Test Puzzle# |Cells | 71B (Emu71) | Version 1.0 | Computed Solution
5)4 6582714309

2 - 3 . T — 00: 00: 59 00:00:55 |2 13894756
479365182

ARG = (00:00:01) |(00:00:01) | g 5 4 s cg 31 7

1] |3 30 using 1-2 | using 1-2 |56 7143928

8 2 6 i i 831927645
11815 5 9 Recur si on Recur si on 185736294

2 8| |3 NOT needed | NOT needed |7 4251986 3

01 64 7 396482571
6 1 5 682139457

4 2 3 00: 02: 53 Untested |2 41672893

3 5 1 973458126

1 3 4 (00:00:06) |(00:00:30) | 719523684

5 (6] |9 27 using 1-2 | using 3-2 |435861972

2 9 1 268947315

6l 18] |7 Recur si on Recursion |1 562847 39

3 7 6 NOT needed needed 3947152678

02 2 6 1 827396541
3|2 7 321954768
918 3 00:03:58 | 00:06:55 |469827351

6 2 587136492

5 9 3 (00:00:08) |(00:00:11) [58249173

4 2 24 -) : i 943671825

= 3 2 using 1-2 using 3-3 212385640

1 7 Recur si on Recursion |1 957 6 8234

6 215 NOT needed needed 836492517

03 4 8|6 274513986
415 6 452897316

3 1 ’ 00: 02: 32 00:02:29 |893651427

2|3 176423985

4] 12]5 (00:00:05) |(00:00:04) |6 37148259

93| |2]1 26 using 1-2 using 2-2 549362178

8|1 7 281975643
5(8 Recursion | Recursion (324586791

9 7 8 NOT needed needed 9657148232
047 6|4 7182395614
4] |5 6 214958367

6 |1 8 |9 00: 03: 50 Untested |56 7132849

3 / 398647215

8 5 (00:00:08) |(00:00:08) |48179652 3

41 13 24 using 1-2 using 2-2 7524836091

6 7 936521478

2 6 Recur si on Recursion |8 43219756

1 5 4 3 NOT needed needed 175864932

05 2 7 1 6293751814

DATAFILE Vxx Nx

Page 7

NI MOOLWUAN
LOMOONN~NOO
OONOL —AMNMS
THOWO MO N M~
OANMEANIOO T ©
OO N ONM A
NOOUOAMSN~NO
—AO0OUNOTNOM
MMN~N<TO N O LW

MNNATHOOOUL MO
MO <IN A ONOD
VOO MAN LI~
LN AOMMNO
OCMMN~NOU T HO N
00O ONMNTL M
<IN NAO 0M O
=IO MT O© NMNLW
NOMUOMNOOO I -

MO OMASTUOON
FOMWOANO M~ ©
DA NOONMO I
AN OO N M
OANT NN OO -
MO ANO A 0T M~
NONOSMOAOD
MO —AMNO AN
O<THOUOUNNMO

MMN~NOO O N
O <TLONAHOOOMMN~
N—=HOOMNMOITO
OANMNMNETHOOOMLO T
MOV N~0ON
O MANMNO O
OO MO ON N~
MNOATOMHO ANO
TOANNOAL OM

DA ONON<MO
< MM~ OO N
ONOM-A IO O~
A0 NONMNOT M
NSO AHOMOOWAN WO
O MITNOMNO -
MO NT N 00O
O~ OMO N <
NOIT OO —AMMN O

~~ —~~ ~~ —~~ —~~
- o N § o < @ 5 - 9 ® § - ©o N § - o N §
O ™M o] O N 4 o] O ™M o] O N ¢ o] O M g o]
S I U o B © -3 o I
- .. 7 L m - .. 7 - .. 7 - .. 7
n grd o O grd n O grd 0n < grd n O grd
o o 2 50 - o 2 50 o 4 2 50 o =4 2 50 o © 2 50
£S5 g¢ S 8 5 9¢ £ & 5 982 £ s - 282 £ 4 - 92
n D n @ n @ n D n Q
mo S ¢ o O S ¢ mo S ¢ mo S ¢ mo S @
N N N N N
—~ © ~~ © ~~ © —~ © ~~
4 © N Sao a o Y S0 <~ o Y §o v © Y S0 o I Y 5
w o 4 -9 w o &4 - S <4 &4 23 w o &4 2D N oA =D
N S o5 20 O o 2o O o 2o 6 6 o5 2o © S 5 %o
o © g 5c o © g 5c o © g 5c © © g 5c © ° ¢ 509
. £ 3 . = 3 . . = 3 . = 3 ~. = 3
S o S o S o S o S o c
S o 4 %W S o 2 %W S o 2 %W S o 9 %W S o & @
N N N N N
© N o < <
AN AN AN AN AN
~|<t (] a\} ~|[© o\l - | = ©
@ ~ [l <~ < 0 ~ o — | ~ 0
ol [Te) ™ [{e} AW |~ Te} s o] [Io] w (VAo l Kop] w0
< |~ | aN} [aV] (e} w M~ o -— (9] (o] (2p]
™ o N © — o ~ 0
w| |[<|o — | ® © < <t ® ~ © ©
) - |= M~ (0o ® < o ™ o~ © |0
0|~ I <o« ™ © 0 ~ < |m © ™
@ |0 © N o 0 |w© SRR T ~
o) N~ o0 o S
o o o o —i

DATAFILE Vxx Nx

Page 8

VOO —THOMNNTANLLM
T MO «— N 0 M~
NOMNLO MO O
<SOOMNNAM O
MNANOMOOAST O
M OTOOMNANLW
MOOTHOUOHO NN
OMNMNLUONO MO A T
O NN MO

DOMNOMAN IO
<STOMO O—AWUMN~NN
ONALMNT MO O
MN<ANM—AO 0O W0
OO0 OONNMS
MUOONTO O M~
NMO 0O~ -
OO AEANMO T
OEAITNNOONO ONM

LOTONAMMNSO®
MANOOO T N~NO AW
O MOoO WS 0N
OO NNAMO
N OO MOWMNL I
MO OO N
O NAHOMLO O I~
—AOMNMNNO <0 O M
OMMNMNOOON I

OO AN MO
MO ITO 0NN
ATNOMNMNMOL O
O MNO <N WD
ANOOULNO—AAM
OOMNMNMOO —ATO N
MM OT O LWON O
OO UOHANOMN~
NOUOMNMO AT O

COMOANMNTL O
IOMNMNNO AWM
OO MMNSNO
MM OOT ON
MANOO TN~ O
ST OOANLOMMNSO
OO IMN~NMANO O -
NOMNMNUWAHO M
0O M<T O ON LN

~ ~ o ~ ~ —~
- 3 N 5 5 <4 Y §o m © N § - o Y § - ~ Y §
® O (° o o) o ™ ¢ gl D I ¢) o O | gl
U - -3 w -3 © -3 o B
- 7 - m . 7 - e m - e 5
n O o 2O n O 5 20 © © 5 Y0 n © 5 0 n N o YO
o © 2 50 o © 2 5c n o 2 50 o N 2 50 o & 2 50
£S5 8¢ £33 3 NS oz 98 £ 85 8¢ Ed g 32
Z o (\u% Z o =4 Z S &
—~ © —~ © ~ e —~ ~
+ < Y 5o w94 Y So nw o N S0 - o N5 o o Y §
© © « -3 © ° « -7 NS A -3 N ™ o -7 ® w3
N S o 2o 4 O 5 20 ¥ S 5 Lo b S o 2o ® O o 2
o © 2 5¢c o o 2 5¢c o © 2 5¢c < o g 509 S o g 5¢9
~ - £ 3 ~ £ 3 - £ 3 . = 3 ~ £ 3
S o S O S o S o c S O c
885 &9 88 % 85 88 2 &9 88 3¢ 88 3¢
N—r N—r N—r N—r N—r
% % (@] (o)) (@]
—i — —i
— o] [=|~ ~lo| fe]s © ||~ — © o| [~
Te} M~ ™ 9] P « M~ — Lee] <
© ™ o o © ~ < o~ ~
< (0| [~ |~ [©|o <+| (o] |of |© o< - © ™ (o)
—| |o|o| [~[a| |= - ™ 0 < 0 ™ o| [«+| [~
—lo] «] o |~|w w| (| |of |o o © o © 0
© © ~ o - o © <| |[o <
© < 0 o < 0 M~ e [~ [
| |~[o <|~| [o]w© ~|w|o o © o| [v

11.

12

13.

14,

15.

Page 9

DATAFILE Vxx Nx

