
DATAFILE Vxx Nx Page 1

HP-71B Minimax Polynomial Fit
Valentín Albillo (#1075, PPC #4747)

Curve fitting has always been a very popular application for every kind of
computing device, from programmable calculators using RPN to large mainframe
computers running FORTRAN, and understandably so. Besides the obvious uses
in engineering, statistics and finance, where fitting laboriously gathered data to
some appropriate mathematical function allows further analytical study and
reasonably reliable forecasts, there are hundreds of real-life applications, from a
programmer trying to minimize the time needed to compute a complicated special
function, to a music lover trying to come up with a simple formula to convert the
values in an old tape counter to actual times in seconds.

Now, in order to fit some mathematical function to a given set of data, we must
select its type (polynomial, exponential, etc.) and some criteria to measure the
quality of the fit. The type is very dependent on the characteristics of the given
dataset but polynomials are the most popular of all: they’re very easy and fast to
compute, requiring nothing but a few additions and multiplications, and they’re
also extremely easy to integrate, differentiate, and solve for particular values.

As for measuring the quality of the fit, there are several options which minimize
some well-defined error measure. If you decide to minimize the average error,
you’ll be doing a so called Least Squares fit, which minimizes the squares of the
differences between the original values and those computed using your function.
This is an extremely popular election since the coefficients of the least-squares
polynomial are really easy to compute, and you’ll end up with very simple code
which will return the required coefficients fast, like this subprogram I wrote
clearly demonstrates (Math ROM required) 1 :
 SUB LSP(X(),Y(),A()) @ N=UBND(X,1) @ D=UBND(A,1) @ DIM U(N,D),V(D)
 MAT U=CON @ FOR I=1 TO N @ FOR J=2 TO D @ U(I,J)=X(I)^(J-1) @ NEXT J
 NEXT I @ MAT V=TRN(U)*Y @ MAT U=TRN(U)*U @ MAT A=SYS(U,V) @ END SUB

This 3-liner takes arrays X, Y, containing the coordinates of the data points, and
returns the coefficients of the least-squares polynomial fit in array A. The number
of data points is the size of X, while the degree of the polynomial is the size of A.
Call it either from the keyboard or from some program, such as this simple tester:
 DESTROY ALL @ OPTION BASE 1 @ INPUT "#Points, Degree=";N,D
 DIM X(N),Y(N),A(D+1) @ MAT INPUT X,Y @ CALL LSP(X,Y,A) @ MAT DISP A

Let’s test it. First key in the tester program, then the LSP subprogram (with line
numbers of your choice), then try and fit a 2nd-degree least-squares polynomial to
the following data points:

1 In all program snippets here line numbers are present only if referenced; you may use whatever
line numbering suits you as long as it’s sequential from lower to higher line numbers. Also, all
code featured in this article extensively uses Math ROM keywords, mainly matrix operations.

Page 2 DATAFILE Vxx Nx

X 0 1 2 3 4 5

Y 10.2 10.9 14.3 18.9 26.3 34.8

 >FIX 3 [ENTER]
 >RUN [ENTER]
 #Points, Degree= 6,2 [ENTER]
 X(1)? 0,1,2,3,4,5 [ENTER]
 Y(1)? 10.2,10.9,14.3,18.9,26.3,34.8 [ENTER]
 10.093, 0.055, 0.982

thus the sought-for fitting least-squares polynomial of degree 2 is:

P(x) = 10.093 + 0.055 x + 0.982 x2

Now let’s fit a least-squares line to these data:
X 1 2 3 4

Y 2 2 4 4

 >RUN [ENTER]
 #Points, Degree= 4,1 [ENTER]
 X(1)? 1,2,3,4 [ENTER]
 Y(1)? 2,2,4,4 [ENTER]
 1.000, 0.800

so the fitting least-squares line (degree 1) is:

P(x) = 1.000 + 0.800 x

Note: Data points need not be equally spaced, and further they need not be
entered in any particular order.

However, Least-Squares polynomials, convenient as they are, do not distribute the
errors evenly all over the range of approximation as they actually minimize the
average error, which means there will be regions where the errors are larger than
average while other regions will have lower-than-average errors. This might be
acceptable in some applications but not in others, and is particularly non-optimal
for the task of approximating mathematical functions, where you aren’t interested
in the average error but in making sure the maximum absolute error never exceeds
a given tolerance for all arguments in some interval while using degrees as low as
possible. Or, conversely, to achieve the smallest maximum error possible for a
given degree. Enter Minimax Polynomial Fit.

Minimax Polynomial
By definition, the minimax polynomial is the approximating polynomial which has
the smallest maximum deviation from the true function. Thus, we’re minimizing
ABS(P(x)-f(x)) instead of (P(x)-f(x))2. The usual analytical approach is not readily
applicable as the ABS(x) function is less amenable to analytic manipulations than
the well-behaved x2 function; in particular the latter has a continuous derivative
while the former does not. We need to use quite complex, iterative algorithms
requiring raw power and processing time.

DATAFILE Vxx Nx Page 3

Introducing MMAXPOLY, a Minimax Polynomial Fitting program
MMAXPOLY is a 50-line (w/o comments) program I’ve written to compute
minimax polynomial approximations to any given set of data points. You can enter
the data points directly from the keyboard , you can specify a generating function
which will be evaluated in a given range to automatically generate the dataset, or
you can read the dataset from a file. In the first two cases, the whole dataset can be
stored in a file, for later retrieval and possibly further fitting or processing.

MMAXPOLY allows the user to either specify a particular degree for the minimax
polynomial, or else to give a maximum absolute error to be met, in which case it
will iteratively compute a series of minimax polynomials for the given dataset,
starting from degree 1 and incrementing it until either the maximum absolute error
is equal or less than the one specified, or the degree is already N-1 (where N is the
number of points in the dataset), which, rounding errors notwithstanding, would
necessarily result in an exact fit (maximum error = 0)

Here is the commented program listing2. For full details, see Notes, below:

 ‘MMAXPOLY’ (3,085 Bytes)

 1 ! MMAXPOLY - MINIMAX Polynomial Fitting (c) Valentin Albillo, 2005
 2 !
 3 ! Initialization
 4 !
 5 DESTROY ALL @ OPTION BASE 1 @ STD @ DIM F$[96],R$[96]
 6 DIM B,I,S,T,E,C,H,P,Q,L,M,N,X,J,K,D,W @ W=0 @ D=8 @ B=.001
 7 !
 8 ! Utility User-defined Functions
 9 !
10 DEF FNF(X) @ S=A(L) @ FOR J=N+1 TO 2 STEP -1 @ S=S*X+A(J) @ NEXT J
11 FNF=S @ END DEF
12 DEF FNS(I)=SGN(FNF(U(I))-V(I))
13 !
14 ! Ask for the data source (keyboard, defined function, file)
15 !
16 INPUT "Verbose ? (Y/N): ","N";R$ @ IF LEN(R$)#1 THEN 16
17 R$=UPRC$(R$) @ IF R$="Y" THEN W=1 ELSE IF R$#"N" THEN 16
18 INPUT "[K]bd,[D]ef,[F]ile=";R$
19 ON POS("KDF",UPRC$(R$))+1 GOTO 18,38,31,23
20 !
21 ! Ask for the name of the file and read in the data points
22 !
23 ON ERROR GOTO 23 @ INPUT "Filename=";R$ @ IF R$="" THEN 18
24 IF NOT POS(R$,":") THEN R$=R$&":MAIN"
25 ASSIGN #1 TO R$ @ READ #1;F$,P,Q,M @ DIM Z(M),Y(M) @ READ #1;Z,Y
26 ASSIGN #1 TO * @ OFF ERROR
27 DISP "f(X)=";F$;" (";P;",";Q;"),";M;"points" @ GOTO 48
28 !
29 ! Ask for the defined function, limits, and number of points
30 !
31 LINPUT "f(X)=";F$ @ F$=UPRC$(F$) @ IF F$="" OR POS(F$,"X")=0 THEN 18
32 INPUT "X1,X2,N=";P,Q,M @ IF Q<=P OR FP(M)#0 OR M<2 THEN 32
33 DIM Z(M),Y(M) @ J=(Q-P)/(M-1) @ ON ERROR GOTO 31

2 No HP-71 ? No problem. Google the web for Emu71, a free emulator for Windows, and/or HP-
71X, another outstanding emulator, this time for your HP48/49.

Page 4 DATAFILE Vxx Nx

34 FOR I=1 TO M @ Z(I)=P+(I-1)*J @ X=RES @ Y(I)=VAL(F$) @ NEXT I @ GOTO 43
35 !
36 ! Ask for the number of data points and input them from the kbd
37 !
38 INPUT "# Points=";M @ DIM Z(M),Y(M) @ F$="Points" @ FOR I=1 TO M
39 DISP "#";STR$(I); @ INPUT ": X,Y=";Z(I),Y(I) @ NEXT I @ P=Z(1) @ Q=Z(M)
40 !
41 ! Allow the user to store the data points in a file
42 !
43 ON ERROR GOTO 43 @ INPUT "Store in ","*";R$
44 IF R$#"*" THEN ASSIGN #1 TO R$ @ PRINT #1;F$,P,Q,M,Z,Y @ ASSIGN #1 TO *
45 !
46 ! Ask the user for the degree/error of the minimax polynomial
47 !
48 ON ERROR GOTO 48 @ E=-1 @ INPUT "Degree=";R$ @ IF R$="" THEN 50
49 N=INT(ABS(VAL(R$))) @ IF N=0 OR N>=M THEN 48 ELSE 52
50 INPUT "Max. error=";E @ E=ABS(E) @ FOR N=1 TO M-1
51 STD @ DISP "Degree";N;"..."; @ IF W THEN DISP
52 L=N+2 @ DIM A(L),U(L),V(L) @ FIX D @ OFF ERROR @ P=0 @ Q=0
53 !
54 ! Choose an initial tuple
55 !
56 FOR I=1 TO L @ J=(M-1)*(I-1)/(L-1)+1 @ U(I)=Z(J) @ V(I)=Y(J) @ NEXT I
57 !
58 ! Compute mm-polynomial for this tuple and max. error for all data
59 !
60 CALL SPOLMM(U,V,A) @ H=ABS(A(1)) @ C=0 @ FOR I=1 TO M
61 R=FNF(Z(I))-Y(I) @ IF ABS(R)>ABS(C) THEN C=R @ T=I
62 NEXT I @ K=Z(T) @ IF W THEN DISP " h=";H;", H=";C;"in ";K
63 !
64 ! Check if the ending criteria are already met
65 !
66 IF N=M-1 OR C=0 THEN 81 ELSE IF ABS(ABS(H/C)-1)<B OR H=P AND C=Q THEN 81
67 !
68 ! Rebuild the current tuple to include the data point of max. error
69 !
70 P=H @ Q=C @ IF U(1)<K THEN 72 ELSE IF FNS(1)=SGN(C) THEN I=1 @ GOTO 77
71 FOR I=L TO 2 STEP -1 @ U(I)=U(I-1) @ V(I)=V(I-1) @ NEXT I @ GOTO 77
72 IF U(L)>K THEN 74 ELSE IF FNS(L)=SGN(C) THEN I=L @ GOTO 77
73 FOR I=1 TO L-1 @ U(I)=U(I+1) @ V(I)=V(I+1) @ NEXT I @ GOTO 77
74 FOR I=1 TO L @ IF U(I)>K THEN 76
75 NEXT I
76 IF FNS(I)#SGN(C) THEN I=I-1
77 U(I)=K @ V(I)=Y(T) @ GOTO 60
78 !
79 ! Process finished, display coefficients and max. error
80 !
81 FIX D@ DISP " H=";ABS(C)@ IF E>=0 AND ABS(C)>E AND N#M-1 AND NOT W THEN 83
82 FOR I=2 TO L @ STD @ DISP "A"&STR$(I-2)&"="; @ FIX D @ DISP A(I) @ NEXT I
83 IF E<0 OR ABS(C)<=E THEN END
84 NEXT N @ DISP "Max. degree reached" @ END
85 !
86 ! Optionally, scans an interval for the absolute maximum error
87 !
88 DEF FNE(X1,X2,S) @ M=-INF @ FOR X=X1 TO X2 STEP S @ J=VAL(F$)-FNF(X)
89 J=ABS(J) @ IF J>M THEN M=J @ I=X
90 NEXT X @ DISP I @ FNE=M @ END DEF
91 !
92 ! Subprogram to compute the mm-polynomial and max. error for a tuple
93 !
94 SUB SPOLMM(X(),Y(),A()) @ L=UBND(X,1) @ DIM M(L,L),Z @ MAT M=CON
95 FOR I=1 TO L @ M(I,1)=(-1)^I @ Z=X(I) @ FOR J=3 TO L
96 M(I,J)=Z^(J-2) @ NEXT J @ NEXT I @ MAT A=SYS(M,Y) @ END SUB

DATAFILE Vxx Nx Page 5

Notes:
• If a generating function is specified, the program uses VAL to evaluate it, so you

may use most any BASIC expression which evaluates to a number (e.g.
SIN(COS(X))). External function keywords present in LEX/ROMs are allowed
too (e.g., GAMMA(X)+LOG2(X)+1) as well as so-called ‘funny’ functions (i.e.,
FNROOT (Solve) and INTEGRAL (Integrate)). You must use X as the independent
variable and must ensure that your expression is syntactically correct and is
computable in the specified interval, else an error will eventually occur when
VAL attempts to evaluate it and you’ll be asked again for a correct function.

• The program computes the exact minimax polynomial fit of a given degree to a
discrete set of data points. For continuous functions, a set of N data points is
generated, where N is specified by the user, and the program fits a minimax
polynomial to that. The resulting polynomial is not the mathematically exact
minimax polynomial for the given function but rather a close approximation to
it, which, for sufficiently large N, is close enough for all practical purposes.

• However, you should exercise care in not choosing too large a value for N,
because the iterative algorithm used needs to construct and then solve a system
of N+1 linear equations per iteration, and so the memory requirements increase
at least quadratically with N while the processing time increases cubically.
Also, these large systems are inherently bad-conditioned, thus further impacting
the solution’s accuracy. Though the algorithm used is highly self-correcting and
will cater for inaccuracies, they might well cause it to enter an indefinite loop.
Reasonable maximum values for N would be from 20 (best) to 50.

• The iterative algorithm used selects an initial M-tuple of datapoints (where M
depends on the specified degree), then exactly fits a minimax polynomial to it.
This polynomial is then checked against the remaining datapoints. If some data
point results in an error larger than the one computed for the M-tuple, it is
exchanged by the one closest to it in the M-tuple (taking care to preserve error’s
sign alternance), and the whole process is repeated for the altered M-tuple. This
is guaranteed to converge (and quite fast at that), resulting in a final minimax
polynomial that has the same maximum error for the whole dataset, not just for
datapoints belonging to its originating M-tuple.

• To avoid indefinite loops and unnecessary refinement, the program uses a
comprehensive termination criterium (line 66): if we’re already at the maximum
possible degree or if the maximum error is already zero, it terminates. Else, if
during the last two iterations the error has decreased negligibly or the program
is exchanging back and forth the same two datapoints, then terminate as well.

• There are three internal routines that are user-callable, see Usage instructions:
 SUB SPOLMM(X(),Y(),A()) non-iteratively computes the coefficients (A)
 of the minimax polynomial for an M-tuple (X,Y)
 DEF FNE(X1,X2,S) once done, scans interval [X1,X2] for maximum
 error, in steps of S. Returns both X and MaxErr
 DEF FNF(X) once done, evaluates minimax polynomial at X

Page 6 DATAFILE Vxx Nx

Usage instructions
 Note: Most errors while entering data will result in the data being asked again.

Start the program: RUN [ENTER]
Verbose ? (Y/N): N

• Press Y [ENTER] if you want to see intermediate results every iteration,
including the max. error for the M-tuple (h), the max. error for the whole
datapoint set (H) and the X coordinate of the datapoint where it appears.

• Press N [ENTER] (or just [ENTER]) if you don’t want intermediate results.
[K]bd,[D]ef,[F]ile=

• Press K [ENTER] if you intend to enter datapoints right from the keyboard
• Press D [ENTER] if you want to enter an expression defining a function
• Press F [ENTER] if you want to take datapoints from a file

Option K - Entering datapoints from the keyboard:
Points=

• Enter the number of datapoints (X,Y) in your set
#1: X,Y=

• Enter each datapoint’s coordinates X,Y in turn, separated by a “,”.
Datapoints must be entered in increasing X-order. Repeat until all
datapoints are entered. Then, you’ll be asked:

Store in *

• If you want to store the dataset in a file, enter its name, which can include
a device suffix if it’s going to reside in some external device.

• If you don’t want to store the data in a file, simply press [ENTER]
Option D - Entering an expression defining a function:
f(X)=

• Enter the expression that computes f(x). It must be syntactically valid and
must evaluate without error for the range given below. You may use
LEX/ROM functions and must use X as the independent variable.

X1,X2,N=

• Enter the interval of approximation and the number of points in the
dataset that will be automatically generated by evaluating your function,
separating all values by commas. The function will then be evaluated N
times, which may take a long time depending on the nature of your
function and the number of points specified. Then, you’ll be asked:

Store in *

• See Option K above.
Option F – Taking datapoints from a file:
Filename=

• Enter the name of the file where your dataset is stored. It may be a RAM
file or it may include a device suffix (i.e.: MYDATA:HDRIVE1).

f(X)=EXP(X)+GAMMA(X) (1 , 2), 20 points

DATAFILE Vxx Nx Page 7

• After entering the filename, the dataset is read and a message is shown,
to confirm its origin, the interval of approximation, and the number of
points in the dataset. Points appears if it was entered from the keyboard.

Specifying a given degree for the polynomial:
Degree=

• Enter the polynomial’s degree, which must be a value from 1 to N-1,
where N is the number of points in the dataset. After you press [ENTER],
the coefficients and maximum error for the polynomial are computed:

H= (maximum absolute error for the whole dataset)
A0= (1st coefficient (a0))

 ..
 An= (last coefficient (an))

 And we have: P(x) = a0 + a1 x + a2 x2 + .. + an xn
Specifying a maximum absolute error for the polynomial:

If you prefer, you may specify a maximum error for the polynomial and let the
program automatically find the required degree. To that effect, when asked:

Degree=

• Just press [ENTER]. It will immediately ask:
Max. error=

• Enter the maximum absolute error you want and press [ENTER]. The
program will go on searching for the minimax polynomial which meets
that criterium, starting from degree 1 upwards:

Degree 1 .. H= (maximum error for degree 1)
 ..
Degree n .. H= (maximum error for degree N)

• It will stop and display the coefficients of the final polynomial as soon as
the current degree meets the maximum error specified, or else the
maximum possible degree has been reached, in which case it’ll display:

Max. Degree reached
Further options once the polynomial has been computed:
• You can evaluate the polynomial at any given argument from the keyboard

using FNF(your argument). For instance:
>FOR X=-1 TO 1 STEP 0.1 @ PRINT X, FNF(X) @ NEXT X [ENTER]

• You can scan the whole interval (using a given step) for its maximum error,
right from the keyboard, with FNE(x1,x2,step). It will return both the
maximum error found and the X coordinate where it appears. For instance:

 >FNE(-1,1,0.01) [ENTER]
 0.56000000 (x where the maximum error is)
 0.04525456 (maximum deviation found)

You must have already computed the polynomial and must still be within the
program’s environment in order to use FNF and FNE. Additionally, scanning with
FNE only makes sense when you’ve specified a function f(x) to fit.

Page 8 DATAFILE Vxx Nx

Examples

1. For starters, try and fit a 2nd degree polynomial to y=ex in the [-1,1] interval
such that the absolute maximum error is minimized.

As we’re asked to fit a minimax polynomial to a function, we’ll have to do with an
approximation to the exact minimax polynomial by selecting a sufficient number
of datapoints in the given interval and fitting a minimax polynomial to that. We’ll
then check the resulting polynomial’s maximum error over the continuous interval.
Let’s proceed, automatically generating and using 21 datapoints for the fit:
>RUN
Verbose ? (Y/N): Y [ENTER] (see maximum error’s convergence)
[K]bd,[D]ef,[F]ile= D [ENTER] (we’ll give a function to fit)
f(X)= EXP(X) [ENTER] (the function to fit is y=e^x)
X1,X2,N= -1,1,21 [ENTER] (we’ll use 21 points in [-1,1])
Store in * [ENTER] (don’t store the points in a file)
Degree= 2 [ENTER] (we want a 2nd degree polynomial)

 h= 0.03695390 , H= 0.05384982 in 0.60000000 (1st iteration)
 h= 0.04367387 , H=-0.04736857 in -0.40000000 (2nd iteration)
 h= 0.04472950 , H= 0.04472950 in -1.00000000 (final iteration)

 H = 0.04472950 (absolute maximum error over the 21 generated points)
 A0= 0.98915039 (minimax polynomial coefficients)
 A1= 1.13047170 (ditto)
 A2= 0.55393025 (ditto)

So we have:
P(x) = 0.98915039 + 1.13047170 x + 0.55393025 x2

Let’s check its maximum error by scanning the [-1,1] interval at 0.1 steps. From
the keyboard, type:
 >FNE(-1,1,0.1) [ENTER] (scan [-1,1] using steps of 0.1)
 -1.00000000 (x where the maximum error is)
 0.04472950 (maximum deviation found)

which is as expected because the 21 datapoints used are spaced by exactly 0.1.
Let’s do a much finer scan, using 0.01 steps:
 >FNE(-1,1,0.01) [ENTER] (scan again using steps of 0.01)
 0.56000000 (x where the maximum error is)
 0.04525456 (maximum deviation found)

so our discrete approximation gives a maximum error that is within 1.17% of the
true maximum error over the whole continuous interval (you can compute this
percentage by evaluating (M-H)/H*100 right from the keyboard). That’s good
enough for us and certainly much better than what least-squares can achieve.
Scanning the interval using 0.001 steps results in the same maximum error while
using the ultra-fine (and ultra-time-consuming!!) 0.0001 step size results in a
maximum deviation of 0.04525460 (for x = 0.5603), virtually the same as before.

DATAFILE Vxx Nx Page 9

2. Martial artist Gemma Saotome needs a polynomial approximation to the
inverse of the Gamma function in [2,10]. He wants the predicted values’ error to
be less than 0.001 but first he’s keen to try if a 5th degree P(x) would suffice.
>RUN
Verbose ? (Y/N): N [ENTER] (don’t show convergence)
[K]bd,[D]ef,[F]ile= D [ENTER] (we’ll give a function to fit)
f(X)= FNROOT(1,5,GAMMA(FVAR)-X) [ENTER](Gamma’s inverse)
X1,X2,N= 2,10,20 [ENTER] (we’ll use 20 points in [2,10])
Store in IGAMDATA [ENTER] (store the points for later use)
Degree= 5 [ENTER] (fit a 5th degree polynomial)
 H= 0.00223353 (absolute maximum error over the 20 generated points)

 A0= 1.22884198, A1= ... (coefficients of P(x))

Regrettably, the resulting maximum error H=0.002+ exceeds 0.001 so he tries
again, this time directly specifying the maximum error and having the program
automatically find out the necessary degree and coefficients of the polynomial:
>RUN
Verbose ? (Y/N): N [ENTER] (don’t show convergence)
[K]bd,[D]ef,[F]ile= F [ENTER] (we’ll specify the file ..)
Filename= IGAMDATA [ENTER] (.. where the points were stored)
 f(X)=FNROOT(1,5,GAMMA(FVAR)-X) (2, 10), 20 points (shows the info)
Degree= [ENTER] (we don’t specify a degree ..)
Max. error= 0.001 [ENTER] (.. but max err must be <=0.001)

 Degree 1 ... H= 0.16574531 (maximum error for 1st degree)
 Degree 2 ... H= 0.05075812 (ditto for 2nd degree)
 Degree 3 ... H= 0.01708390 (..)
 Degree 4 ... H= 0.00601569 (..)
 Degree 5 ... H= 0.00223353 (..)
 Degree 6 ... H= 0.00082511 (error for 6th degree is <0.001!)
 A0= 0.92372552, A1= 1.82262391, A2=-0.56542641, A3= 0.10801104
 A4=-0.01201826, A5= 0.00071517, A6=-0.00001756 (coeffs of P(x))
So we have:
 P(x) = 0.92372552 + 1.82262391 x - 0.56542641 x2 + 0.10801104 x3

 - 0.01201826 x4 + 0.00071517 x5 - 0.00001756 x6

which has a guaranteed maximum error H=0.0008+ over the 20 data points
sampled. Let’s check its maximum error when scanning the interval at 0.1 steps:
 >FNE(2,10,0.1) [ENTER]
 2.30000000 (x of the point where the maximum error is)
 0.00098788 (maximum deviation)
which is still less than the required 0.001. An ultra-fine, ultra-slow scan using 0.01
steps gives 0.00098826 (at x=2.29), still within tolerance so we’re done. Let’s find
out Gamma-1(5) using our computed polynomial, then check the result:
 >FNF(5) [ENTER]

 3.85162159 (predicted value of Gamma-1(5))
 >FNROOT(3,4,GAMMA(FVAR)-5), RES-FNF(5) [ENTER]

 3.85235546 (true value of Gamma-1(5))
 0.00073387 (the absolute error is indeed less than 0.001)

Page 10 DATAFILE Vxx Nx

3. Fledgling math genius F. Resnel is studying the function defined by this
indefinite integral, which cannot be expressed in terms of elementary functions:

and he would like to find a polynomial approximation of the lowest possible
degree yet guaranteing 4 correct decimal places for all arguments x in the
interval [0,1]. He’ll then print a comparison table from x=0 to 1 using 0.1 steps.
>RUN
Verbose ? (Y/N): N [ENTER] (don’t show convergence)
[K]bd,[D]ef,[F]ile= D [ENTER] (we’ll define f(x))
f(X)= INTEGRAL(0,X,1E-5,SIN(IVAR*IVAR)) [ENTER]
X1,X2,N= 0,1,20 [ENTER] (we’ll use 20 points in [0,1])
Store in * [ENTER] (no need to store the points)
Degree= [ENTER] (we don’t specify the degree ..)
Max. error= 5E-5 [ENTER] (..but max.err must be <0.00005)

Degree 1 ... H= 0.05773118
Degree 2 ... H= 0.00768950
Degree 3 ... H= 0.00103943
Degree 4 ... H= 0.00023957
Degree 5 ... H= 0.00003041 (degree 5 will suffice)
A0= 0.00003041, A1=-0.00221685, A2= 0.02503280, A3= 0.23175179
A4= 0.17790388, A5=-0.12220333 (polynomial’s coefficients)

So we have:
 P(x) = 0.00003041 - 0.00221685 x + 0.02503280 x2 + 0.23175179 x3

 + 0.17790388 x4 - 0.12220333 x5

which has a guaranteed maximum error H=0.00003+ over the 20 data points
sampled. Now, let’s print the comparison table from x=0 to 1, using 0.1 steps:
 >FIX 5 [ENTER]
 >FOR X = 0 TO 1 STEP .1 @ X;FNF(X);INTEGRAL(0,X,1E-5,SIN(IVAR*IVAR));
 RES-FNF(X) @ NEXT X [ENTER]
 {x} {P(x)} {f(x)} {error}
 0.00000 0.00003 0.00000 -0.00003

 0.10000 0.00031 0.00033 0.00003
 0.20000 0.00269 0.00267 -0.00002
 0.30000 0.00902 0.00899 -0.00002
 0.40000 0.02128 0.02129 0.00001
 0.50000 0.04145 0.04148 0.00003
 0.60000 0.07132 0.07134 0.00001
 0.70000 0.11241 0.11239 -0.00002
 0.80000 0.16576 0.16574 -0.00002
 0.90000 0.23182 0.23185 0.00003
 1.00000 0.31030 0.31027 -0.00003

so F. Resnel does indeed get 4 correct decimal places (within 1 ulp) from P(x).

DATAFILE Vxx Nx Page 11

4. Freshman L. Oggsinn has been assigned the task of selecting a suitable
polynomial to fit the following experimental data, rounded to 4 decimal places

X 0.0000 0.6931 1.0986 1.3863 1.6094 1.7918 1.9459 2.0794 2.1972 2.3026
Y 0.0000 0.6390 0.8906 0.9830 0.9993 0.9757 0.9305 0.8734 0.8101 0.7440

with the proviso that the degree must be selected so as to fit the data as closely
as possible while filtering out rounding-induced noise, then compute P(Pi/2)

L’s best strategy is to specify neither a degree for the polynomial nor a maximum
error to be met but let the program compute all mínimax polynomials starting from
degree 1 and going all the way up to 9th degree, which is sure to be an exact fit
(rounding errors aside) as there are 10 data points. Now, the proper degree will be
the last one which results in a markedly diminished maximum error. As soon as the
maximum error ceases to decrease significantly, then you know you’re actually
fitting also the errors, rather than just the data !
>RUN
Verbose ? (Y/N): N [ENTER] (no intermediates shown)
[K]bd,[D]ef,[F]ile= K [ENTER] (data from the keyboard)
Points= 10 [ENTER] (number of data points)
#1: X,Y= 0,0 [ENTER] (1st data point)
#2: X,Y= 0.6931,0.6390 [ENTER]
#3: X,Y= 1.0986,0.8906 [ENTER]
#4: X,Y= 1.3863,0.9830 [ENTER]
#5: X,Y= 1.6094,0.9993 [ENTER]
#6: X,Y= 1.7918,0.9757 [ENTER]
#7: X,Y= 1.9459,0.9305 [ENTER]
#8: X,Y= 2.0794,0.8734 [ENTER]
#9: X,Y= 2.1972,0.8101 [ENTER]
#10: X,Y= 2.3026,0.7440 [ENTER] (last data point)
Store in KDATA [ENTER] (store them in “KDATA”)
Degree= [ENTER] (no degree specified)
Max. error= 0 [ENTER] (compute all polynomials)

Degree 1 ... H= 0.26781403 (error for polynomial of degree 1)
Degree 2 ... H= 0.02296048 (error reduced by a factor of 11+)
Degree 3 ... H= 0.00604656 (error reduced by a factor of 3.7+)
Degree 4 ... H= 0.00017079 (error reduced by a factor of 35+)
Degree 5 ... H= 0.00001993 (error reduced by a factor of 8.6+)
Degree 6 ... H= 0.00001823 (.. negligible error reduction ..)
Degree 7 ... H= 0.00001676 (.. negligible error reduction ..)
Degree 8 ... H= 0.00001089 (.. negligible error reduction ..)
Degree 9 ... H= 0.00000001 (forced exact fit save rounding)

A0=-1.53699813E-13, A1= .. (coefficients of the 9th degree P(x))
Max. degree reached

Notice how sharply the error diminishes at first, then after 5th degree you hardly get
any improvements at all until, suddenly, 9th-degree necessarily achieves exact fit.
Of course L’s not interested in using an (N-1)-th degree P(x) to fit N data points,
that’s not minimaxing but plain collocation, mimicking both data and errors alike.
L’s best choice in this case is the 5th-degree polynomial, which we’ll produce now:
>RUN
Verbose ? (Y/N): N [ENTER] (don’t show convergence)

Page 12 DATAFILE Vxx Nx

[K]bd,[D]ef,[F]ile= F [ENTER] (data points taken from a file)
Filename= KDATA [ENTER] (they were stored in “KDATA”)

 f(X)=Points (0 , 2.3026), 10 points (details retrieved & shown)

Degree= 5 [ENTER] (we want the 5th-degree P(x))
 H= 0.00001993

A0= 0.00001993, A1= 0.99397302, A2= 0.02362975, A3=-0.20069600,
A4= 0.02220127, A5= 0.00241094

So L’s polynomial is:

P(x) = 0.00001993 + 0.99397302 x + 0.02362975 x2 - 0.200696 x3

 + 0.02220127 x4 + 0.00241094 x5

which has a maximum error H=0.00002+ over all datapoints. As they are specified
to 4 decimal places, this means P(x) agrees with them to that many places as well:
 >FIX 4@ FOR I=1 TO 10@ DISP USING "Z.4D3X";Z(I),Y(I),FNF(Z(I))@NEXT I
 {x} {y} {P(x)}

0.0000 0.0000 0.0000
0.6931 0.6390 0.6390
1.0986 0.8906 0.8906
1.3863 0.9830 0.9830
1.6094 0.9993 0.9993
1.7918 0.9757 0.9757
1.9459 0.9305 0.9305
2.0794 0.8734 0.8734
2.1972 0.8101 0.8101
2.3026 0.7440 0.7440

Perfect agreement to 4 places, indeed. Now, let’s compute P(Pi/2), as specified:
 >FNF(PI/2)
 1.0000

which sure looks good.

Final remarks
Minimax polynomial fitting is an incredibly powerful technique to add to one’s
own data-fitting arsenal. Though the internal details are complex enough and it
does require a lot of computing muscle when compared to other well-known
strategies such as Least Squares, the final reward is the improved accuracy it
provides for any given degree or, conversely, the least possible degree for any
given accuracy. It may take longer to compute the minimax polynomial, but
typically you do that exactly once, then evaluate the resulting polynomial many
times, which, being of lower degree than the ones obtained by other methods, will
then execute faster and thus result in time savings in the long run.

I hope you enjoyed this subject and perhaps even found it useful. As always,
you’re welcome and encouraged to port it to your favourite high-end HP model.

