Among the many powerful mathematical capabilities provided by the HP-71B Math ROM’s comprehensive set of keywords, \textbf{FOUR} (Fast Fourier Transform, FFT for short) must rank as one of the most specialized, and thus less used and understood of the whole set. After all, lots of people find matrix operations useful in many different fields, not necessarily math-related, and complex numbers also enjoy a wide range of uses, from electrical engineering to surveying. Same goes for numerical integration, root finding, etc. Even exotic special functions such as Gamma and hyperbolics have their share of uses in engineering, architecture, and statistics, but who needs to do an FFT or two, let alone three?

It’s the purpose of this article to introduce a powerful technique where we’ll need to use \textbf{FOUR} ... well, not four but three times. In a row. To be precise, we shall do two Discrete Fourier Transforms, plus one Inverse Discrete Fourier Transform, all of which, fortunately, can be done using \textbf{FOUR}. And now you might be wondering what’s that all-too-bizarre application that requires three Fast Fourier Transforms to get accomplished?

\textbf{Multiplying numbers. Fast!}

That’s right, you read correctly. Unlikely and almost unbelievable as it seems, the fastest known way (2005) to multiply two sufficiently large, high-precision numbers, is by means of FFTs. The usual, school method to multiply two numbers goes like this:

\begin{center}
\begin{tabular}{c}
53 \\
\times \\
12 \\
\hline
106 \\
53 \\
\hline
636
\end{tabular}
\end{center}

\textbf{1st number} \hspace{1cm} \textbf{2nd number} \hspace{1cm} \textbf{partial product} \hspace{1cm} \textbf{partial product} \hspace{1cm} \textbf{final result}

and while this simple algorithm is extremely straightforward to implement in a computer program, even for large numbers, the problem is, the execution time grows \textit{quadratically} with the size of the numbers being multiplied, i.e., for N-digit numbers, it is approximately proportional to N^2. Thus, if you \textit{double} the number of digits, the time \textit{quadruples}. This may not seem much of a problem but for certain applications, such as in Experimental Mathematics and Numerical Research, where computations are carried routinely to thousands and even millions of digits, an $O(N^2)$ time might not be acceptable. Consider for example modern computations of Pi to hundreds and thousands of millions of digits. As all computations of transcendental functions and even divisions can ultimately be reduced to multiplications, the time to multiply two large numbers is the key to every multiprecision computation. Having a quadratically growing multiplication
time when dealing with numbers up to a billion (European flavour) digits in size means the computation is usually unfeasible.

Can multiplication be done in less than $O(N^2)$? Yes, there are clever ways to reduce the exponent 2 to lesser values (Karatsuba), arranging operations to use binary shifts to compute subproducts (instead of actual multiplications), and applying such techniques recursively. But even so, we can’t get much below exponent 1.58, and that’s still polynomial time. What we need is linear time (exponent 1) or as near to it as possible. This will mean that doubling the number of digits will result in double computing time, not quadruple. Increasing the number of digits a thousand times will increase the computing time a thousand times or so, not a million times. Fair enough, but how? Enter the FFT.

FFT-based multiplication

While the standard and Karatsuba methods of multiplication are perfectly suitable for low decimal digit precision, higher levels of precision require the much faster performance achieved by employing a convolution-FFT approach. Assuming we wish to multiply two multiprecision values A and B, we consider both as vectors, where each element stores a fixed number of digits of each original value:

$$A = (a_0, a_1, a_2, \ldots, a_{n-1}), \quad B = (b_0, b_1, b_2, b_{n-1})$$

then the product of the original numbers, except for releasing carries, is the acyclic convolution of the vectors, which can be reduced to cyclic convolutions by simply extending both to length $2N$ by appending N zeroes to each. Thus, the $2N$-long product C of A and B is the cyclic convolution of vectors A and B:

$$c_k = \sum_{j=0}^{2n-1} a_j b_{k-j}, \quad 0 \leq k < 2n,$$

and this cyclic convolution is evaluated using FFTs. The results from the final FFT are floating-point numbers which we need to round to the nearest integer. A final release of carries gives us the desired multiplication result.

The Discrete and Inverse Discrete Fourier Transforms (DFT) are defined for a complex vector Z:

$$Z = (z_0, z_1, z_2, \ldots, z_{n-1})$$

as follows:

$$F_k(z) = \sum_{j=0}^{n-1} z_j e^{-2\pi i j k/n}, \quad 0 \leq k < n$$

$$F_k^{-1}(z) = \frac{1}{n} \sum_{j=0}^{n-1} z_j e^{2\pi i j k/n}, \quad 0 \leq k < n.$$
and the cyclic convolution featured above can be calculated using these DFT as:

\[c_k = F_k^{-1}[F_j(a)F_j(b)], \quad 0 \leq k < 2n. \]

where the three DFT themselves can be efficiently calculated by employing FFTs and that’s exactly what the Math ROM’s **FOUR** keyword does. Actually, the more you look at it the less believable it seems that you can multiply two integer values by computing sums of products of complex values times exponentials of complex values (which involves complex floating point values where we originally had real integer values), let alone do it fast! But the FFT algorithm is \(O(N \times \log(N)) \), and thus, for large enough values of \(N \), much faster than any \(O(N^2) \) or \(O(N^{1.58}) \) algorithm, however simple or efficiently implemented.

The Fantastic FOUR to the rescue!

The fact that the Math ROM includes the **FOUR** keyword makes our implementation of FFT-based multiplication that much easier and efficient. No need to deal with tricky exponentials of complex values and all that drudgery, **FOUR** will take care of it for us, a single keyword replacing many lines of intricate code and what’s better, working at assembly language speeds and with internal extended precision. This is absolutely vital if we’re going to improve on the simpler algorithms and if our final results are to be exact. Remember we’re dealing here with approximate floating-point values that will get ultimately rounded, so extended precision while computing the FFTs is mandatory. In short, **FOUR** gives us simultaneously:

- **Economy:** a single **FOUR** keyword will compute a very complicated FFT, which can be used to compute both a direct DFT and an Inverse DFT.
- **Speed:** **FOUR** is a highly-optimized assembly language implementation of the state-of-the-art Cooley-Tukey’s FFT algorithm
- **Accuracy:** **FOUR** works at full internal precision, with extended mantissas and exponent range, plus full provision for denormalization if needed.

This extremely fortunate combination of desirable characteristics will allow us to design a very efficient FFT-based multiplication implementation that beats the straightforward methods hands down. Also, for maximum convenience, our implementation will be in the form of a subprogram which will encapsulate the whole FFT-based multiplication algorithm without disturbing the caller’s environment, and which can be called from other programs or even right from the keyboard if desired.
The subprogram FFTMULT

FFTMULT is a short (366 bytes) subprogram (10 lines as formatted for this article but can be reduced to just 8 by simply fitting more statements in each line), which will accept as parameters three vectors, the 1st and 2nd containing the multiprecision integer numbers to be multiplied, and the 3rd vector being where their resulting product will be returned. Here's the listing (the line numbers are completely arbitrary as the subprogram uses no line addressing whatsoever):

900 SUB FFTMULT(A(),B(),C()) @ I=UBND(A,1) @ J=UBND(B,1)
910 K=I+J @ COMPLEX X(I),Y(J) @ MAT X=A @ MAT Y=B
920 N=LOG2(MAX(I,J)) @ E=10000 @ N=2^(INT(N)+(FP(N)#0))
930 M=2*N @ COMPLEX X(M),Y(M),Z(M) @ MAT X=FOUR(X)
940 MAT Y=FOUR(Y) @ FOR I=1 TO M @ Z(I)=X(I)*Y(I) @ NEXT I
950 COMPLEX Z(M,1) @ MAT Z=TRN(Z) @ MAT Z=FOUR(Z)
960 MAT Z=TRN(Z) @ MAT Z=(M*M)*Z @ COMPLEX Z(M)
970 FOR I=1 TO K @ C(I)=IROUND(REPT(Z(I))) @ NEXT I
980 FOR I=K-1 TO 1 STEP -1 @ J=I+1 @ C(J)=C(J)+MOD(C(I),E)
990 C(I)=C(I) DIV E+C(J) DIV E @ C(J)=MOD(C(J),E) @ NEXT I

Notes:

- Each multiprecision number is to be stored divided into 4-digit groups, each group taking one element of the corresponding vector. Their product is returned in the result vector in a like fashion. The input vectors can have any number of elements but the result vector must have at least the same number of elements as both combined (say 100, 80, and 180). Maximum speed and efficiency are achieved when the number of elements is an exact power of two (say 64 elements = 64*4 = 256 digits). For instance, to compute:

\[54761407 \times 86132724 = 4716749154982668\]

you’d do the following from the keyboard:

```
>OPTION BASE 1 @ DIM X(2),Y(2),Z(4) [ENTER]
>MAT INPUT X,Y [ENTER]
X(1)? 5476,1407,8613,2724 [ENTER]
>CALL FFTMULT(X,Y,Z) @ MAT DISP Z [ENTER]
4716 7491 5498 2668
```

Of course, for larger numbers or multiple operations you’d better call FFTMULT programmatically from a suitable program that sets up the input data and later uses or prints the results. Such a program is used below.
• Though the size of both the input and output vectors is arbitrary, the FFT algorithm internally implemented by `FOUR` requires a size which is *an exact power of 2* (i.e.: 1, 2, 4, 8, 16, etc). `FFTMULT` takes this into account and, for the sake of convenience and generality, internally extends the input/output vectors to meet this requirement. Nevertheless to achieve maximum efficiency original numbers should have 4, 8, 16, 32, ..., 256, 512, ... digits.

Detailed explanation:
As the subprogram is so short, here’s a detailed explanation of its inner workings, just in case you’d like to adapt it to some other HP model:

```plaintext
900 SUB FFTMULT(A(),B(),C()) @ I=UBND(A,1) @ J=UBND(B,1)
   The subprogram’s header just accepts all three vectors and finds out the size of the input vectors A and B.

910 K=I+J @ COMPLEX X(I),Y(J) @ MAT X=A @ MAT Y=B
   The size of the result vector is computed as well, and as `FOUR` only works with complex vectors, two such X, Y are created to stand for the original ones, their elements being copied into X’s and Y’s real parts.

920 N=LOG2(MAX(I,J)) @ E=10000 @ N=2^(INT(N)+(FP(N)#0))
   `FOUR` only works with vector sizes equal to an exact power of 2, so a new size is computed for both vectors, equal to the nearest power of 2. Also, a constant is defined to help in post-processing, when releasing the carries.

930 M=2*N @ COMPLEX X(M),Y(M),Z(M) @ MAT X=FOUR(X)
   The new size for the result vector is computed, then both X and Y are redimensioned to their new common size, while a new complex vector Z is created to hold the result. The 1st FFT is then performed on X, *in place*.

940 MAT Y=FOUR(Y) @ FOR I=1 TO M @ Z(I)=X(I)*Y(I) @ NEXT I
   Likewise, the 2nd FFT is performed on Y, and the corresponding elements of the resulting transformed X and Y are multiplied together.

950 COMPLEX Z(M,1) @ MAT Z=TRN(Z) @ MAT Z=FOUR(Z)
   Now we need to do the final *inverse* DFT to get the desired product. To that effect we need the *complex conjugate* of Z, and this is achieved by redimensioning Z from a column vector to a row vector, then using the TRN (Matrix Transpose) Math ROM keyword, which, when applied to complex matrices, does *not* return the usual transpose, but the *complex*
**Conjugate Transpose**

The elements are not only transposed but replaced by their complex conjugates as well, avoiding a slow user-code loop here. Once we have the complex conjugate of $Z$, the 3rd FFT is performed on it.

960 $MAT \ Z=\text{TRN}(Z) \ @ \ MAT \ Z=(M*M)*Z \ @ \ \text{COMPLEX } Z(M)$

Again, we need the complex conjugate of the transformed $Z$. This is achieved by using TRN a second time. Then an scalar-matrix multiplication completes the inverse DFT. The complex vector $Z$ now holds the desired product, we merely redimension it back to a one-dimensional vector (for easier, faster indexing) and proceed directly to post-processing.

970 FOR $I=1$ TO $K$ @ $C(I)=\text{IROUND}(\text{REPT}(Z(I)))$ @ NEXT $I$

$Z$ holds approximate, floating-point values in both its real and imaginary parts. We’re only interested in the integer, rounded values of the real parts, so we use the handy Math ROM’s keywords REPT and IROUND to extract such values and store them in their final destination, real vector $C$.

980 FOR $I=K-1$ TO $1$ STEP $-1$ @ $J=I+1$ @ $C(J)=C(J)+\text{MOD}(C(I),E)$
990 $C(I)=C(I) \ \text{DIV} \ E+C(J) \ \text{DIV} \ E \ @ \ C(J)=\text{MOD}(C(J),E)$ @ NEXT $I$

It’s nearly over. All we need do is release the carries. This loop does exactly that, in place. The product is returned in vector $C$ and we’re done!

**Testing time!**

Let’s see FFTMULT in action! In order to test the exactness of its results and its speed, we need to enter very large numbers, which is a real chore and error-prone.

Instead, we’ll use this small (267 bytes) ‘tester’ program, which will generate some very large test values randomly (in a repeatable way), and will provide adequate printing features, in order to display/print both the generated input values as well as their product:

100 DESTROY ALL @ OPTION BASE 1 @ STD @ INPUT "N="; N
110 DIM X(N),Y(N),Z(2*N) @ GOSUB 140 @ CALL PM(X) @ DISP "X"
120 CALL PM(Y) @ CALL FFTMULT(X,Y,Z) @ DISP "=" @ CALL PM(Z)
130 END
140 RANDOMIZE PI @ FOR $I=1$ TO $N$ @ $X(I)=\text{INT}(\text{RND}*10000)$
150 $Y(I)=\text{INT}(\text{RND}*10000)$ @ NEXT $I$ @ RETURN
160 !
170 SUB PM(X()) @ $N=16$ @ FOR $I=1$ TO $\text{UBND}(X,1)$
180 DISP USING "#,4Z";X(I) @ $J=J+1$ @ IF $J=N$ THEN $J=0$ @ DISP
190 NEXT $I$ @ DISP @ END SUB
All it does is set up some initial conditions and ask how many 4-digit groups the generated number will consist of (say, 64 for a 64*4 = 256-digit number), then the required vectors \( X, Y, Z \) are dimensioned to their proper sizes, and a call is made to subroutine 140 which simply fills up \( X \) and \( Y \) with 4-digit random values. Now \( X \) and \( Y \) hold the representation of the large random integers we’re going to multiply, and subprogram \( \text{PM} \) is called twice, which simply displays the digits stored in the vectors in an orderly fashion, with zeroes interspersed when necessary. Then \( \text{FFTMULT} \) is called to compute their product, and \( \text{PM} \) is called a final time to display the result. Let’s give it a try:

\[
> \text{RUN } \quad \text{[ENTER]}
\]
\[
N=64 \quad \text{[ENTER]}
\]
\[
5476140724498765145164255055853905531677983738245287518763857813
\]
\[
6327817291924274284391508535323487727034799658219644909081309067
\]
\[
25948280125060465081178728897837083606796788063811574831566277675
\]
\[
269008304231308945452923871956459466446958243009810470529085361
\]
\[
\times
\]
\[
8613272483920715414162300723618786418866092062249377500985773606
\]
\[
4662458631705546812446590769217075964055392578377430132675516521
\]
\[
209073621625412721545848594524816548023637192643292312151263003
\]
\[
6019700443135076274093253344852677580447279631645164021852716383
\]
\[
= 471674922204028649674970068312320467962230019683526396980208929
\]
\[
814479869891206889209629755548948239606320386278774464309942475
\]
\[
64213641618497320655715681283971232852469066172813836399626113
\]
\[
9758747743298173466811693657744732258337534982396879492806571297
\]
\[
3710834368617759391402653484418328618757195082961982876828493898
\]
\[
4603039652792831669763120962090875778261102590570752098488793116
\]
\[
244885868270496279776233643900426048471951249128458059774536742
\]
\[
2290065181199484453117984492752773390888344738900086346330169263
\]

Have a look at these timings for diverse runs of the tester program (calling \( \text{FFTMULT} \), which uses 4-digit groups) versus a straightforward implementation of the ‘school’ algorithm (using 6-digit groups for maximum efficiency):

<table>
<thead>
<tr>
<th># GROUPS</th>
<th>DIGITS X,Y</th>
<th>DIGITS X*Y</th>
<th>TIME FFT</th>
<th>TIME SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>64</td>
<td>128</td>
<td>24.11</td>
<td>27.51</td>
</tr>
<tr>
<td>32</td>
<td>128</td>
<td>256</td>
<td>53.41</td>
<td>62.90</td>
</tr>
<tr>
<td>64</td>
<td>256</td>
<td>512</td>
<td>116.74</td>
<td>270.61</td>
</tr>
<tr>
<td>128</td>
<td>512</td>
<td>1024</td>
<td>269.89</td>
<td>1034.20</td>
</tr>
</tbody>
</table>

As you can see, the times for the FFT-based algorithm increase approximately \textit{linearly} with the size of the numbers, so that going from 256-digit numbers to 512-digit numbers (a 2x size increase) results in a 2.3x increase in running time, and even going from 128-d numbers to 512-d numbers (a 4x size increase) only
means a 5.1x increase. In contrast, the ‘school’ algorithm takes 3.8x and 16.4x longer, respectively, so the *quadratically* growing running time is taking its toll.

**Summary**

As a *proof-of-concept*, didactic piece of code, **FFTMULT** delivers the goods. It shows how such complex algorithms as FFT-based multiplication do actually *work* and can be implemented in the HP-71B efficiently and even with utterly surprising *ease*, thanks to the powerful Math ROM features. What next?

Well, being didactic in nature, I refrained from optimizing **FFTMULT** to production quality, sacrificing efficiency and speed for clarity and brevity. Possible improvements include:

- Even though **FFTMULT** accepts as parameters *real-valued* vectors, it creates internal working copies as *complex-valued* vectors, with initially zeroed imaginary parts. This is simple and needs a minimum amount of code, but is highly inefficient. For real-valued arrays there’s a simple trick that allows performing FFTs on them using complex vectors *half* the size, thus *half* the memory and running time.

- **FFTMULT** uses 4-digit groups for each vector element. This is so that you can multiply very large numbers without risking errors due to **FOUR** being unable to generate values which correctly round to the exact integers, due to *oversized* elements before releasing carries. For smaller sizes, it might be possible to use 5-digit groups for greater speed and less memory needed, while for larger sizes it might be necessary to stick to 3-digit groups. Using 4-digit groups is a decent compromise which seems to work flawlessly up to 1024-digit numbers (2048-digit results) at least.

- To *empirically* determine if the number of digits per group is adequate or else rounding errors might be creeping in, simply monitor if the values getting rounded (with **IROUND**) are *sufficiently near an integer*. Keeping track of the maximum difference (in absolute value) between each value and the nearest integer will warn you if the results are no longer reliable, say MDIF > 3/8.

Well, I sincerely hope you found the topic interesting. That one can multiply numbers this way is nothing sort of *miraculous* the first time you see it, and that it happens to be faster than the obvious way, despite the complex exponentials, approximate floating-point values and all, is *downright miraculous*, period. The greater miracle, however, is that it can be implemented so easily in the HP-71B. Agreed, an HP-49G++S-Whatever can multiply two reasonably large integers much faster than a 71B running this algorithm. But let the numbers get bigger and bigger, and invariably you’ll reach a point where the 71B will *win*. That is, unless you try and adapt this algorithm to run in your machine... Well? Why don’t you give it a try?