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HP-71B Math ROM Baker’s Dozen (Vol. 2) 
Valentín Albillo (#1075, PPC #4747) 

 

Welcome to the second part of this Baker’s Dozen compendium of assorted 
mini-topics discussing some interesting uses of the HP-71B’s Math ROM1. The 
six remaining topics discussed here deal with advanced applications such as 
polynomial data fitting (real or complex data), multidimensional integration, 
solving systems of non-linear equations, and finding all eigenvalues of arbitrary 
matrices. As in Volume 1, it’s the purpose of this second part to show just how 
easily these usually complicated tasks can be dealt with, almost in a casual 
manner, thanks to the incredibly powerful Math ROM features. 

8. Tight fitting 
Many real-life tasks require fitting a polynomial curve to a given set of data. The 
coefficients of the nth degree polynomial: 

P(x) = a0 + a1x + a2x
2 + ... + anx

n 

which includes (N+1) given data points (x0,y0), (x1,y1), ..., (xn,yn) can be found 
very easily using MAT ... SYS. Here’s a 4-liner that asks for the degree N of the 
polynomial and the (N+1) data points, then outputs the coefficients a0, a1 , ... , an 
of the polynomial2: 

DESTROY ALL @ OPTION BASE 0 @ INPUT “N=”;N  
DIM X(N),Y(N),A(N),M(N,N) @ MAT INPUT X,Y 
FOR I=0 TO N @ FOR J=0 TO N @ M(I,J)=X(I)^J @ NEXT J  
NEXT I @ MAT A=SYS(M,Y) @ MAT DISP A 
 

However, it would be more useful if rewritten as a subprogram, callable from 
anywhere: 

SUB IPOL(X(),Y(),A()) @ N=UBND(X,1) @ DIM M(N,N)  
MAT M=CON @ FOR I=0 TO N @ FOR J=1 TO N @ M(I,J)=X(I)^J 
NEXT J @ NEXT I @ MAT A=SYS(M,Y) @ END SUB 
 

Notice the use of UBND to find out the number of data points passed to the 
subprogram, and MAT ... CON to save one iteration in the J loop. 

An example of a separate ‘tester’ program calling this subprogram goes like this: 
 

                                                 
1 Having no HP-71B and/or no Math ROM doesn’t mean you can’t try and enjoy this article, 
just search the web for Emu71 (a free emulator for Windows) or HP-71X (a 48/49 based-one). 
2 In all program listings here, line numbers are present only if referenced; you may use 
whatever line numbering suits you as long as it’s sequential from lower  to higher line numbers. 
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DESTROY ALL @ OPTION BASE 0 @ INPUT “N=”;N  
DIM X(N),Y(N),A(N) @ MAT INPUT X,Y  
CALL IPOL(X,Y,A) @ MAT DISP A  

 

For instance, let’s fit a 2nd degree polynomial to data points (2, 1), (5, 70), (3, 16): 
>RUN    [ENTER] 
N=2    [ENTER] 
X(0)? 2,5,3  [ENTER] 
Y(0)? 1,70,16  [ENTER] 

-5 -5  4 

so the fitting polynomial is: P(x) = –5 –5*x +4*x2 

Notice that the data points need not be equally spaced, and further they need not 
be entered in any particular order.  

9. What about fitting complex data ? 
The IPOL subprogram featured above can be generalized to fit a polynomial with 
complex coefficients to any given set of complex data points. To that effect, very 
few changes are needed to extend operations into the complex domain. Let’s see: 

The subprogram header can automatically accept complex arrays as parameters 
and return a complex array as a result, so no change needed here. SYS and 
arithmetic operations will happily work with complex arguments, too. So the only 
change IPOL needs is to create matrix M as either REAL or COMPLEX, depending 
on the type of the arrays passed to the subprogram. Thus, it suffices to replace in 
IPOL the original statement 

DIM M(N,N) 

by the conditional construct: 
IF TYPE(X)=5 THEN DIM M(N,N) ELSE COMPLEX M(N,N) 

and that’s it, IPOL will now happily work for real and complex data alike. To test 
it with complex data, you need to change DIM in the tester program above to 
COMPLEX and now you can try and fit a polynomial to the 4 complex data points: 

X (1,1) (-1,3) (2,1) (0,-2) 

Y (2,1) (50,21) (10,13) (-12,19) 

 
>RUN        [ENTER] 
N=3        [ENTER] 
X(0)? (1,1),(-1,3),(2,1),(0,-2)  [ENTER] 
Y(0)? (2,1),(50,21),(10,13),(-12,19) [ENTER] 
 (-2,-3) (3,-1) (4.994083E-15,-3) (2,1) 
 

so the fitting polynomial is: P(x) = (-2, -3) + (3, -1)*x + (0, -3)* x2 +(2, 1)*x3 
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10. Multiple integrals made easy 
There aren’t that many examples in the Math ROM’s Owner’s Handbook for 
computing multiple integrals of functions in several variables and the few that are 
featured aren’t general enough. But it’s actually quite easy and systematic once 
you know how to do it.  

Here’s a general example particularized for triple integrals, but the essential 
details are the same for integrals of other multiplicities (up to 5 nested integrals 
which is the maximum nesting allowed by INTEGRAL). We aim to compute the 
value of this general triple integral, with given precision P: 

 
                                                                                                                                                                                              
where the limits of integration are, respectively: 

• a1 and a2, which are arbitrary constants 

• b1(x) and b2(x), which are arbitrary functions of x (including them being 
constant values) 

• c1(x,y) and c2(x,y), which are arbitrary functions of  x and y (including 
them being functions of only x, only y or even constant values).  

 

Finally, f(x,y,z) is the function of x, y, and z (including being independent of 
some or all the variables) which we want to integrate between those limits. In 
order to obtain the value of the integral, just use this template, replacing the 
precision (P), the limits (a1, a2, b1, b2, c1, c2) and function being integrated (f) 
by your own functions and constants (the line numbers are completely arbitrary). 
 

10 DEF FNF(X,Y,Z)=f(x,y,z)                          
20 DEF FNG(X,Y)=INTEGRAL(c1(x,y),c2(x,y),P,FNF(X,Y,IVAR))   
30 DEF FNH(X)=INTEGRAL(b1(x), b2(x), P, FNG(X,IVAR))         
40 I=INTEGRAL(a1, a2, P, FNH(IVAR))                    

 

Note: You could optimize it a little by inserting the definition for your 
f(x,y,z) right into the innermost INTEGRAL at line 20 and replacing all 
occurrences of z by IVAR. Thus line 10 would not be needed and the 
computation would proceed somewhat faster, but from a didactic point of 
view I nevertheless think that it’s much more understandable as written. 
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For instance, let’s compute this triple integral with precision P = 1E-3: 

 
                                                                 
Making the appropriate substitutions into the template above, we have: 
 

10 DEF FNF(X,Y,Z)=X*Y*Z                           
20 DEF FNG(X,Y)=INTEGRAL(0, X*Y, 1E-3, FNF(X,Y,IVAR))   
30 DEF FNH(X)=INTEGRAL(0, X, 1E-3, FNG(X, IVAR))         
40 I=INTEGRAL(0, 2, 1E-3, FNH(IVAR))     

                

which, upon running, returns the desired value, I = 4.0000, correct to 5 digits. 

11. And Systems of Simultaneous Non-linear equations too ! 
Thanks to the multiple levels of nesting allowed by FNROOT (Find Root), solving 
systems of up to 5 non-linear equations in five independent variables is a distinct 
possibility. However, as it was the case for multiple integration, the Math ROM’s 
Owner’s Handbook isn’t flooding with examples. Actually, it’s got none at all. 
You can find one example which shows how to find a solution pair (x,y) for a 
single equation in two variables, and another example which shows how to find 
the minimum of another very similar function in two variables, but that’s it. 

To overcome this bothersome lack of much needed examples, here you’ll find a 
couple of templates you can use to solve a system on non-linear equations, 
particularized for simplicity to the case of two equations in two variables, but 
easily generalized to more variables if needed. First consider this template, where 
f(x,y) and g(x,y) are your two equations ( i.e., f(x,y)=0 and g(x,y)=0 ): 
 
    10 DEF FNF(X,Y)=f(x,y) 
  20 DEF FNG(X,Y)=g(x,y) 
  30 DEF FNH(X,Y)=ABS((FNF(X,Y),FNG(X,Y))) 
  40 DEF FND(X) @Y=FNROOT(Y,Y,FNH(X,FVAR)) @FND=FVALUE @ENDDEF 
  50 DESTROY ALL @ RADIANS @ FIX 6 
  60 INPUT "X,Y=";X,Y @ X=FNROOT(X,X,FND(FVAR)) 
  70 DISP X;Y,FNF(X,Y);FNG(X,Y) 
 

This attemps to minimize the sum of the squares of your f(x,y) and g(x,y). Of 
course, the minimum possible sum (0) is achieved when and only when both 
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f(x,y) and g(x,y) are equal to 0 simultaneously, so finding a pair (x,y) which 
minimizes this sum is equivalent to solving the system. Let’s use this template to 
solve the simple system: 

x2 + y2 = 5 
x2 - y2 = 3 

First, enter the proper definitions for f(x,y) and g(x,y) into the template: 
10 DEF FNF(X,Y)=X*X+Y*Y-5 
20 DEF FNG(X,Y)=X*X-Y*Y-3 
 

Now, using x0 = y0 = 3 as initial approximations: 
>RUN  [ENTER] 
X,Y=3,3 [ENTER] 
 2.000000  1.000000   0.000000  0.000000 

And, as you can see, the values x=2 and y=1 do make f(x,y) and g(x,y) equal 0 
and are thus a valid root pair.  

Another somewhat simpler approach, usually faster and with improved 
convergence, can be put to work by using this alternate template:  
 

10 DEF FNF(X,Y)=f(x,y) 
20 DEF FNG(X,Y)=g(x,y) 
30 DEF FNY(X)=FNROOT(Y1,Y2,FNF(X,FVAR)) 
40 DESTROY ALL @ RADIANS @ FIX 6 
50 INPUT "X1,X2,Y1,Y2=";X1,X2,Y1,Y2 
60 X=FNROOT(X1,X2,FNG(FVAR,FNY(FVAR))) @ Y=FNY(X) 
70 DISP X;Y,FNF(X,Y);FNG(X,Y) 
 

Let’s use this new template to solve the not-so-simple system (values in radians): 

x = sin(x + y) 
y = cos(x – y)  

First, we enter the proper definitions for f(x,y) and g(x,y) into this template: 
10 DEF FNF(X,Y)=X-SIN(X+Y) 
20 DEF FNG(X,Y)=Y-COS(X-Y)  
 

Now, using x1 = y1 = 1 and x2 = y2 = 5  as the initial search range: 
>RUN     [ENTER] 
X1,X2,Y1,Y2=1,5,1,5  [ENTER] 
 0.935082  0.998020      2.000000E-12  3.000000E-12 
 

So, the values x=0.935082 and y=0.998020 are indeed the sought for root pair. 
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12. Synergic Eigenvalues 
The need to compute the eigenvalues of arbitrary matrices frequently arises in 
many engineering applications, and so there’s a number of  methods available, 
mainly for special cases such as symmetric matrices where all eigenvalues are 
real. But the general case of arbitrary square matrices, where the eigenvalues can 
be complex, usually requires complicated algorithms and computing muscle. 

Not so with the Math ROM. Its matrix functions combine synergically with its 
root finding capabilities to make computing eigenvalues extremely easy and fast. 
In particular, finding just one eigenvalue of any given square matrix is almost 
trivial, as this 4-liner demonstrates: 
 
  DESTROY ALL @ OPTION BASE 1 @ STD 
  INPUT "N=";N @ DIM A(N,N),B(N,N),U(N,N) @ MAT INPUT A 
  DISP "Eigenvalue = ";FNROOT(-10,10,FND(FVAR)) @ END 
  DEF FND(X) @ MAT U=IDN @ MAT U=(X)*U @ MAT B=A-U @ FND=DET(B) 
 
It simply uses FNROOT to find one eigenvalue as a root of a user-defined function 
FND which uses matrix operations to construct the equation an eigenvalue must 
satisfy. Let’s test it with a 5x5 matrix: 
 
>RUN  [ENTER] 
N=5  [ENTER] 
A(1,1)? 5,1,2,0,4,1,4,2,1,3,2,2,5,4,0,0,1,4,1,3,4,3,0,3,4 [ENT] 
Eigenvalue =  5.67255139609 
 
The general case of finding all eigenvalues of any square matrix is hardly any 
more difficult, as demonstrated by this 5-liner that will accept any square matrix 
and will promptly compute both the coefficients of its Characteristic Polynomial 
and all its eigenvalues, real and/or complex: 
 

DESTROY ALL @ OPTION BASE 0 @ FIX 5 @ INPUT "N=";N @ M=N-1 
DIM A(M,M),U(M,M),C(N),D(N,N) @ COMPLEX E(N) @ MAT INPUT A 
MAT D=CON @ MAT U=IDN @ FOR I=0 TO N @ IF I THEN MAT A=A-U 
C(I)=DET(A) @FOR J=1 TO N @ D(I,N-J)=I^J @ NEXT J @ NEXT I 
MAT C=SYS(D,C) @ MAT DISP C @ MAT E=PROOT(C) @ MAT DISP E 

 
Once the matrix has been entered, all it does is use DET (Determinant) to find N+1 
values of the Characteristic Polynomial, then MAT ... SYS is used to explicitly find 
(and display) the coefficients of this polynomial (see IPOL in section 8 above),  
then all its roots (the eigenvalues) real and/or complex are computed at once by 
PROOT and displayed as well. Let’s test it with the same 5x5 matrix as before: 
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>RUN  [ENTER] 
N=5  [ENTER] 
A(0,0)? 5,1,2,0,4,1,4,2,1,3,2,2,5,4,0,0,1,4,1,3,4,3,0,3,4 [ENT] 

-1.00000   19.00000  -79.00000  -146.00000 
1153.0000     -1222.00000 

  (1.49766, 0.00000) (3.36188, 0.00000)  (-3.55784,0.00000) 
  (5.67255,-0.00000)  (12.02575,0.00000) 
 
so the Characteristic Polynomial is : 

P(x)= -x5+ 19*x4-79*x3-146*x2+1153*x-1222 
 
and, as expected, all five eigenvalues are real (imaginary parts = 0): 

x1 = 1.49766,  x2 = 3.36188,  x3 = -3.55784 
x4 = 5.67255,  x5 = 12.02575 

 

You can verify them by checking that their product equals the matrix determinant 
(DET(A)=-1222). To verify the Characteristic Polynomial, you can apply it to the 
matrix itself: the resulting value should be a zero matrix, i.e.: P(A) à ZER 

13. Enter the MOB (Matrix Operations Benchmarks) 
For comparison purposes, the HP-71B used in these tests displays 9.41 (seconds) 
when executing this multi-statement sentence right from the command line: 
DESTROY ALL @ SETTIME 0 @ FOR I=1 TO 1000 @ NEXT I @ DISP TIME 

All matrices are NxN square matrices, REAL or COMPLEX, filled up with random 
elements. Times for SHORT precision are very much the same as for REAL. Times 
for INTEGER precision (real values only) are slightly worse. 
MAT X=SYS(A,B) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.11 0.26 10 5.50 30.79 20 30.36 - 

5 1.23 5.60 15 14.73 89.10 25 54.02 - 

MAT A=INV(A) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.07 0.16 10 8.40 60.89 20 61.32 - 

5 1.26 8.37 15 26.65 199.72 25 117.09 - 

MAT A=A+B  and  MAT A=A-B 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.06 0.06 10 0.53 0.94 20 1.95 3.62 

5 0.18 0.27 15 1.12 2.06 25 3.03 - 



Page 8 DATAFILE Vxx Nx 

MAT A=A*B  and  MAT A=TRN(A)*B 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.06 0.09 10 8.03 34.80 20 62.04 - 

5 1.10 4.45 15 26.60 115.85 25 - - 

MAT A=TRN(A) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.04 0.04 10 0.33 0.38 20 1.42 1.62 

5 0.11 0.12 15 0.78 0.90 25 2.33 2.63 

MAT A=ZER 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.04 0.03 10 0.06 0.08 20 0.12 0.22 

5 0.04 0.04 15 0.09 0.14 25 0.18 0.33 

MAT A=(1) and MAT A=((1,1)) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.03 0.04 10 0.07 0.11 20 0.17 0.28 

5 0.04 0.05 15 0.12 0.18 25 0.24 0.42 

FNORM(A) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.06 0.07 10 0.75 1.46 20 2.87 5.72 

5 0.22 0.40 15 1.65 3.23 25 4.48 8.95 

CNORM(A) and RNORM(A) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

10 0.06 0.25 500 1.30 10.38 1000 2.61 - 

100 0.29 2.11 700 1.96 14.53 - - - 

DET(A) 

N REAL COMPLEX N REAL COMPLEX N REAL COMPLEX 

1 0.06 - 10 3.06 - 20 21.24 - 

5 0.53 - 15 9.45 - 25 40.01 - 

 

Summary 
That’s all. I hope this article succeeds in making you aware that not only is the 
Math ROM a real must add-on for the HP-71B in terms of power and capabilities, 
but also from the enjoyment perspective as well. A brave new world to explore !  


